/* This file is part of the program psim. Copyright (C) 1994-1997, Andrew Cagney This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _SIM_CORE_C_ #define _SIM_CORE_C_ #include "sim-main.h" #include "sim-assert.h" #include /* for Windows builds. signal numbers used by MSVC are mostly the same as non-linux unixen. */ #ifndef SIGBUS # define SIGBUS 10 #endif /* "core" module install handler. This is called via sim_module_install to install the "core" subsystem into the simulator. */ static MODULE_INIT_FN sim_core_init; static MODULE_UNINSTALL_FN sim_core_uninstall; EXTERN_SIM_CORE\ (SIM_RC) sim_core_install (SIM_DESC sd) { SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* establish the other handlers */ sim_module_add_uninstall_fn (sd, sim_core_uninstall); sim_module_add_init_fn (sd, sim_core_init); /* establish any initial data structures - none */ return SIM_RC_OK; } /* Uninstall the "core" subsystem from the simulator. */ STATIC_SIM_CORE\ (void) sim_core_uninstall (SIM_DESC sd) { sim_core *core = STATE_CORE(sd); sim_core_maps map; /* blow away any mappings */ for (map = 0; map < nr_sim_core_maps; map++) { sim_core_mapping *curr = core->common.map[map].first; while (curr != NULL) { sim_core_mapping *tbd = curr; curr = curr->next; if (tbd->free_buffer != NULL) { SIM_ASSERT(tbd->buffer != NULL); zfree(tbd->free_buffer); } zfree(tbd); } core->common.map[map].first = NULL; } } STATIC_SIM_CORE\ (SIM_RC) sim_core_init (SIM_DESC sd) { /* Nothing to do */ return SIM_RC_OK; } #ifndef SIM_CORE_SIGNAL #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \ sim_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR)) STATIC_SIM_CORE\ (void) sim_core_signal (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, sim_core_maps map, int nr_bytes, address_word addr, transfer_type transfer, sim_core_signals sig) { const char *copy = (transfer == read_transfer ? "read" : "write"); switch (sig) { case sim_core_unmapped_signal: sim_io_eprintf (sd, "core: %d byte %s to unmaped address 0x%lx\n", nr_bytes, copy, (unsigned long) addr); sim_engine_halt (sd, cpu, NULL, cia, sim_signalled, SIGSEGV); break; case sim_core_unaligned_signal: sim_io_eprintf (sd, "core: %d byte misaligned %s to address 0x%lx", nr_bytes, copy, (unsigned long) addr); sim_engine_halt (sd, cpu, NULL, cia, sim_signalled, SIGBUS); break; default: sim_engine_abort (sd, cpu, cia, "sim_core_signal - internal error - bad switch"); } } #endif STATIC_INLINE_SIM_CORE\ (const char *) sim_core_map_to_str (sim_core_maps map) { switch (map) { case sim_core_read_map: return "read"; case sim_core_write_map: return "write"; case sim_core_execute_map: return "exec"; default: return "(invalid-map)"; } } STATIC_SIM_CORE\ (sim_core_mapping *) new_sim_core_mapping (SIM_DESC sd, int level, int space, address_word addr, address_word nr_bytes, unsigned modulo, device *device, void *buffer, void *free_buffer) { sim_core_mapping *new_mapping = ZALLOC(sim_core_mapping); /* common */ new_mapping->level = level; new_mapping->space = space; new_mapping->base = addr; new_mapping->nr_bytes = nr_bytes; new_mapping->bound = addr + (nr_bytes - 1); if (modulo == 0) new_mapping->mask = (unsigned) 0 - 1; else new_mapping->mask = modulo - 1; new_mapping->buffer = buffer; new_mapping->free_buffer = free_buffer; new_mapping->device = device; return new_mapping; } STATIC_SIM_CORE\ (void) sim_core_map_attach (SIM_DESC sd, sim_core_map *access_map, int level, int space, address_word addr, address_word nr_bytes, unsigned modulo, device *client, /*callback/default*/ void *buffer, /*raw_memory*/ void *free_buffer) /*raw_memory*/ { /* find the insertion point for this additional mapping and then insert */ sim_core_mapping *next_mapping; sim_core_mapping **last_mapping; SIM_ASSERT ((client == NULL) != (buffer == NULL)); SIM_ASSERT ((client == NULL) >= (free_buffer != NULL)); /* actually do occasionally get a zero size map */ if (nr_bytes == 0) { #if (WITH_DEVICES) device_error(client, "called on sim_core_map_attach with size zero"); #else sim_io_error (sd, "called on sim_core_map_attach with size zero"); #endif } /* find the insertion point (between last/next) */ next_mapping = access_map->first; last_mapping = &access_map->first; while(next_mapping != NULL && (next_mapping->level < level || (next_mapping->level == level && next_mapping->bound < addr))) { /* provided levels are the same */ /* assert: next_mapping->base > all bases before next_mapping */ /* assert: next_mapping->bound >= all bounds before next_mapping */ last_mapping = &next_mapping->next; next_mapping = next_mapping->next; } /* check insertion point correct */ SIM_ASSERT (next_mapping == NULL || next_mapping->level >= level); if (next_mapping != NULL && next_mapping->level == level && next_mapping->base < (addr + (nr_bytes - 1))) { #if (WITH_DEVICES) device_error (client, "memory map %d:0x%lx..0x%lx (%ld bytes) overlaps %d:0x%lx..0x%lx (%ld bytes)", space, (long) addr, (long) nr_bytes, (long) (addr + (nr_bytes - 1)), next_mapping->space, (long) next_mapping->base, (long) next_mapping->bound, (long) next_mapping->nr_bytes); #else sim_io_error (sd, "memory map %d:0x%lx..0x%lx (%ld bytes) overlaps %d:0x%lx..0x%lx (%ld bytes)", space, (long) addr, (long) nr_bytes, (long) (addr + (nr_bytes - 1)), next_mapping->space, (long) next_mapping->base, (long) next_mapping->bound, (long) next_mapping->nr_bytes); #endif } /* create/insert the new mapping */ *last_mapping = new_sim_core_mapping(sd, level, space, addr, nr_bytes, modulo, client, buffer, free_buffer); (*last_mapping)->next = next_mapping; } EXTERN_SIM_CORE\ (void) sim_core_attach (SIM_DESC sd, sim_cpu *cpu, int level, access_type access, int space, address_word addr, address_word nr_bytes, unsigned modulo, device *client, void *optional_buffer) { sim_core *memory = STATE_CORE(sd); sim_core_maps map; void *buffer; void *free_buffer; /* check for for attempt to use unimplemented per-processor core map */ if (cpu != NULL) sim_io_error (sd, "sim_core_map_attach - processor specific memory map not yet supported"); if ((access & access_read_write_exec) == 0 || (access & ~access_read_write_exec) != 0) { #if (WITH_DEVICES) device_error(client, "invalid access for core attach"); #else sim_io_error (sd, "invalid access for core attach"); #endif } /* verify modulo memory */ if (!WITH_MODULO_MEMORY && modulo != 0) { #if (WITH_DEVICES) device_error (client, "sim_core_attach - internal error - modulo memory disabled"); #else sim_io_error (sd, "sim_core_attach - internal error - modulo memory disabled"); #endif } if (client != NULL && modulo != 0) { #if (WITH_DEVICES) device_error (client, "sim_core_attach - internal error - modulo and callback memory conflict"); #else sim_io_error (sd, "sim_core_attach - internal error - modulo and callback memory conflict"); #endif } if (modulo != 0) { unsigned mask = modulo - 1; /* any zero bits */ while (mask >= sizeof (unsigned64)) /* minimum modulo */ { if ((mask & 1) == 0) mask = 0; else mask >>= 1; } if (mask != sizeof (unsigned64) - 1) { #if (WITH_DEVICES) device_error (client, "sim_core_attach - internal error - modulo %lx not power of two", (long) modulo); #else sim_io_error (sd, "sim_core_attach - internal error - modulo %lx not power of two", (long) modulo); #endif } } /* verify consistency between device and buffer */ if (client != NULL && optional_buffer != NULL) { #if (WITH_DEVICES) device_error (client, "sim_core_attach - internal error - conflicting buffer and attach arguments"); #else sim_io_error (sd, "sim_core_attach - internal error - conflicting buffer and attach arguments"); #endif } if (client == NULL) { if (optional_buffer == NULL) { int padding = (addr % sizeof (unsigned64)); free_buffer = zalloc ((modulo == 0 ? nr_bytes : modulo) + padding); buffer = (char*) free_buffer + padding; } else { buffer = optional_buffer; free_buffer = NULL; } } else { /* a device */ buffer = NULL; free_buffer = NULL; } /* attach the region to all applicable access maps */ for (map = 0; map < nr_sim_core_maps; map++) { switch (map) { case sim_core_read_map: if (access & access_read) sim_core_map_attach (sd, &memory->common.map[map], level, space, addr, nr_bytes, modulo, client, buffer, free_buffer); free_buffer = NULL; break; case sim_core_write_map: if (access & access_write) sim_core_map_attach (sd, &memory->common.map[map], level, space, addr, nr_bytes, modulo, client, buffer, free_buffer); free_buffer = NULL; break; case sim_core_execute_map: if (access & access_exec) sim_core_map_attach (sd, &memory->common.map[map], level, space, addr, nr_bytes, modulo, client, buffer, free_buffer); free_buffer = NULL; break; case nr_sim_core_maps: sim_io_error (sd, "sim_core_attach - internal error - bad switch"); break; } } /* Just copy this map to each of the processor specific data structures. FIXME - later this will be replaced by true processor specific maps. */ { int i; for (i = 0; i < MAX_NR_PROCESSORS; i++) { CPU_CORE (STATE_CPU (sd, i))->common = STATE_CORE (sd)->common; } } } /* Remove any memory reference related to this address */ STATIC_INLINE_SIM_CORE\ (void) sim_core_map_detach (SIM_DESC sd, sim_core_map *access_map, int level, int space, address_word addr) { sim_core_mapping **entry; for (entry = &access_map->first; (*entry) != NULL; entry = &(*entry)->next) { if ((*entry)->base == addr && (*entry)->level == level && (*entry)->space == space) { sim_core_mapping *dead = (*entry); (*entry) = dead->next; if (dead->free_buffer != NULL) zfree (dead->free_buffer); zfree (dead); return; } } } EXTERN_SIM_CORE\ (void) sim_core_detach (SIM_DESC sd, sim_cpu *cpu, int level, int address_space, address_word addr) { sim_core *memory = STATE_CORE (sd); sim_core_maps map; for (map = 0; map < nr_sim_core_maps; map++) { sim_core_map_detach (sd, &memory->common.map[map], level, address_space, addr); } /* Just copy this update to each of the processor specific data structures. FIXME - later this will be replaced by true processor specific maps. */ { int i; for (i = 0; i < MAX_NR_PROCESSORS; i++) { CPU_CORE (STATE_CPU (sd, i))->common = STATE_CORE (sd)->common; } } } STATIC_INLINE_SIM_CORE\ (sim_core_mapping *) sim_core_find_mapping(sim_core_common *core, sim_core_maps map, address_word addr, unsigned nr_bytes, transfer_type transfer, int abort, /*either 0 or 1 - hint to inline/-O */ sim_cpu *cpu, /* abort => cpu != NULL */ sim_cia cia) { sim_core_mapping *mapping = core->map[map].first; ASSERT ((addr & (nr_bytes - 1)) == 0); /* must be aligned */ ASSERT ((addr + (nr_bytes - 1)) >= addr); /* must not wrap */ ASSERT (!abort || cpu != NULL); /* abort needs a non null CPU */ while (mapping != NULL) { if (addr >= mapping->base && (addr + (nr_bytes - 1)) <= mapping->bound) return mapping; mapping = mapping->next; } if (abort) { SIM_CORE_SIGNAL (CPU_STATE (cpu), cpu, cia, map, nr_bytes, addr, transfer, sim_core_unmapped_signal); } return NULL; } STATIC_INLINE_SIM_CORE\ (void *) sim_core_translate (sim_core_mapping *mapping, address_word addr) { if (WITH_MODULO_MEMORY) return (void *)((unsigned8 *) mapping->buffer + ((addr - mapping->base) & mapping->mask)); else return (void *)((unsigned8 *) mapping->buffer + addr - mapping->base); } EXTERN_SIM_CORE\ (unsigned) sim_core_read_buffer (SIM_DESC sd, sim_cpu *cpu, sim_core_maps map, void *buffer, address_word addr, unsigned len) { sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common); unsigned count = 0; while (count < len) { unsigned_word raddr = addr + count; sim_core_mapping *mapping = sim_core_find_mapping(core, map, raddr, /*nr-bytes*/1, read_transfer, 0 /*dont-abort*/, NULL, NULL_CIA); if (mapping == NULL) break; #if (WITH_DEVICES) if (mapping->device != NULL) { int nr_bytes = len - count; if (raddr + nr_bytes - 1> mapping->bound) nr_bytes = mapping->bound - raddr + 1; if (device_io_read_buffer(mapping->device, (unsigned_1*)buffer + count, mapping->space, raddr, nr_bytes) != nr_bytes) break; count += nr_bytes; } else #endif { ((unsigned_1*)buffer)[count] = *(unsigned_1*)sim_core_translate(mapping, raddr); count += 1; } } return count; } EXTERN_SIM_CORE\ (unsigned) sim_core_write_buffer (SIM_DESC sd, sim_cpu *cpu, sim_core_maps map, const void *buffer, address_word addr, unsigned len) { sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common); unsigned count = 0; while (count < len) { unsigned_word raddr = addr + count; sim_core_mapping *mapping = sim_core_find_mapping(core, map, raddr, /*nr-bytes*/1, write_transfer, 0 /*dont-abort*/, NULL, NULL_CIA); if (mapping == NULL) break; #if (WITH_DEVICES) if (WITH_CALLBACK_MEMORY && mapping->device != NULL) { int nr_bytes = len - count; if (raddr + nr_bytes - 1 > mapping->bound) nr_bytes = mapping->bound - raddr + 1; if (device_io_write_buffer(mapping->device, (unsigned_1*)buffer + count, mapping->space, raddr, nr_bytes) != nr_bytes) break; count += nr_bytes; } else #endif { *(unsigned_1*)sim_core_translate(mapping, raddr) = ((unsigned_1*)buffer)[count]; count += 1; } } return count; } EXTERN_SIM_CORE\ (void) sim_core_set_xor (SIM_DESC sd, sim_cpu *cpu, int is_xor) { /* set up the XOR map if required. */ if (WITH_XOR_ENDIAN) { { sim_core *core = STATE_CORE (sd); sim_cpu_core *cpu_core = (cpu != NULL ? CPU_CORE (cpu) : NULL); if (cpu_core != NULL) { int i = 1; unsigned mask; if (is_xor) mask = WITH_XOR_ENDIAN - 1; else mask = 0; while (i - 1 < WITH_XOR_ENDIAN) { cpu_core->xor[i-1] = mask; mask = (mask << 1) & (WITH_XOR_ENDIAN - 1); i = (i << 1); } } else { if (is_xor) core->byte_xor = WITH_XOR_ENDIAN - 1; else core->byte_xor = 0; } } } else { if (is_xor) sim_engine_abort (sd, cpu, NULL_CIA, "Attempted to enable xor-endian mode when permenantly disabled."); } } STATIC_INLINE_SIM_CORE\ (void) reverse_n (unsigned_1 *dest, const unsigned_1 *src, int nr_bytes) { int i; for (i = 0; i < nr_bytes; i++) { dest [nr_bytes - i - 1] = src [i]; } } EXTERN_SIM_CORE\ (unsigned) sim_core_xor_read_buffer (SIM_DESC sd, sim_cpu *cpu, sim_core_maps map, void *buffer, address_word addr, unsigned nr_bytes) { address_word byte_xor = (cpu == NULL ? STATE_CORE (sd)->byte_xor : CPU_CORE (cpu)->xor[0]); if (!WITH_XOR_ENDIAN || !byte_xor) return sim_core_read_buffer (sd, cpu, map, buffer, addr, nr_bytes); else /* only break up transfers when xor-endian is both selected and enabled */ { unsigned_1 x[WITH_XOR_ENDIAN + 1]; /* +1 to avoid zero-sized array */ unsigned nr_transfered = 0; address_word start = addr; unsigned nr_this_transfer = (WITH_XOR_ENDIAN - (addr & ~(WITH_XOR_ENDIAN - 1))); address_word stop; /* initial and intermediate transfers are broken when they cross an XOR endian boundary */ while (nr_transfered + nr_this_transfer < nr_bytes) /* initial/intermediate transfers */ { /* since xor-endian is enabled stop^xor defines the start address of the transfer */ stop = start + nr_this_transfer - 1; SIM_ASSERT (start <= stop); SIM_ASSERT ((stop ^ byte_xor) <= (start ^ byte_xor)); if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer) != nr_this_transfer) return nr_transfered; reverse_n (&((unsigned_1*)buffer)[nr_transfered], x, nr_this_transfer); nr_transfered += nr_this_transfer; nr_this_transfer = WITH_XOR_ENDIAN; start = stop + 1; } /* final transfer */ nr_this_transfer = nr_bytes - nr_transfered; stop = start + nr_this_transfer - 1; SIM_ASSERT (stop == (addr + nr_bytes - 1)); if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer) != nr_this_transfer) return nr_transfered; reverse_n (&((unsigned_1*)buffer)[nr_transfered], x, nr_this_transfer); return nr_bytes; } } EXTERN_SIM_CORE\ (unsigned) sim_core_xor_write_buffer (SIM_DESC sd, sim_cpu *cpu, sim_core_maps map, const void *buffer, address_word addr, unsigned nr_bytes) { address_word byte_xor = (cpu == NULL ? STATE_CORE (sd)->byte_xor : CPU_CORE (cpu)->xor[0]); if (!WITH_XOR_ENDIAN || !byte_xor) return sim_core_write_buffer (sd, cpu, map, buffer, addr, nr_bytes); else /* only break up transfers when xor-endian is both selected and enabled */ { unsigned_1 x[WITH_XOR_ENDIAN + 1]; /* +1 to avoid zero sized array */ unsigned nr_transfered = 0; address_word start = addr; unsigned nr_this_transfer = (WITH_XOR_ENDIAN - (addr & ~(WITH_XOR_ENDIAN - 1))); address_word stop; /* initial and intermediate transfers are broken when they cross an XOR endian boundary */ while (nr_transfered + nr_this_transfer < nr_bytes) /* initial/intermediate transfers */ { /* since xor-endian is enabled stop^xor defines the start address of the transfer */ stop = start + nr_this_transfer - 1; SIM_ASSERT (start <= stop); SIM_ASSERT ((stop ^ byte_xor) <= (start ^ byte_xor)); reverse_n (x, &((unsigned_1*)buffer)[nr_transfered], nr_this_transfer); if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer) != nr_this_transfer) return nr_transfered; nr_transfered += nr_this_transfer; nr_this_transfer = WITH_XOR_ENDIAN; start = stop + 1; } /* final transfer */ nr_this_transfer = nr_bytes - nr_transfered; stop = start + nr_this_transfer - 1; SIM_ASSERT (stop == (addr + nr_bytes - 1)); reverse_n (x, &((unsigned_1*)buffer)[nr_transfered], nr_this_transfer); if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer) != nr_this_transfer) return nr_transfered; return nr_bytes; } } /* define the read/write 1/2/4/8/16/word functions */ #define N 1 #include "sim-n-core.h" #undef N #define N 2 #include "sim-n-core.h" #undef N #define N 4 #include "sim-n-core.h" #undef N #define N 8 #include "sim-n-core.h" #undef N #define N 16 #include "sim-n-core.h" #undef N #endif