# Copyright 1999-2015 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
# This file was based on a file written by Fred Fish. (fnf@cygnus.com)
# Test setup routines that work with the MI interpreter.
load_lib gdb-utils.exp
# The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt.
# Set it if it is not already set.
global mi_gdb_prompt
if ![info exists mi_gdb_prompt] then {
set mi_gdb_prompt "\[(\]gdb\[)\] \r\n"
}
global mi_inferior_tty_name
set MIFLAGS "-i=mi"
set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n"
set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?"
set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?"
set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n"
#
# mi_gdb_exit -- exit the GDB, killing the target program if necessary
#
proc mi_gdb_exit {} {
catch mi_uncatched_gdb_exit
}
proc mi_uncatched_gdb_exit {} {
global GDB
global INTERNAL_GDBFLAGS GDBFLAGS
global verbose
global gdb_spawn_id
global gdb_prompt
global mi_gdb_prompt
global MIFLAGS
gdb_stop_suppressing_tests
if { [info procs sid_exit] != "" } {
sid_exit
}
if ![info exists gdb_spawn_id] {
return
}
verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
if { [is_remote host] && [board_info host exists fileid] } {
send_gdb "999-gdb-exit\n"
gdb_expect 10 {
-re "y or n" {
send_gdb "y\n"
exp_continue
}
-re "Undefined command.*$gdb_prompt $" {
send_gdb "quit\n"
exp_continue
}
-re "DOSEXIT code" { }
default { }
}
}
if ![is_remote host] {
remote_close host
}
unset gdb_spawn_id
}
#
# default_mi_gdb_start [INFERIOR_PTY] -- start gdb running, default procedure
#
# INFERIOR_PTY should be set to separate-inferior-tty to have the inferior work
# with it's own PTY. If set to same-inferior-tty, the inferior shares GDB's PTY.
# The default value is same-inferior-tty.
#
# When running over NFS, particularly if running many simultaneous
# tests on different hosts all using the same server, things can
# get really slow. Give gdb at least 3 minutes to start up.
#
proc default_mi_gdb_start { args } {
global verbose use_gdb_stub
global GDB
global INTERNAL_GDBFLAGS GDBFLAGS
global gdb_prompt
global mi_gdb_prompt
global timeout
global gdb_spawn_id inferior_spawn_id
global MIFLAGS
gdb_stop_suppressing_tests
set inferior_pty no-tty
# Set the default value, it may be overriden later by specific testfile.
set use_gdb_stub [target_info exists use_gdb_stub]
if { [llength $args] == 1} {
set inferior_pty [lindex $args 0]
}
set separate_inferior_pty [string match $inferior_pty separate-inferior-tty]
# Start SID.
if { [info procs sid_start] != "" } {
verbose "Spawning SID"
sid_start
}
verbose "Spawning $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
if [info exists gdb_spawn_id] {
return 0
}
if ![is_remote host] {
if { [which $GDB] == 0 } then {
perror "$GDB does not exist."
exit 1
}
}
set res [remote_spawn host "$GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS [host_info gdb_opts]"]
if { $res < 0 || $res == "" } {
perror "Spawning $GDB failed."
return 1
}
gdb_expect {
-re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" {
# We have a new format mi startup prompt. If we are
# running mi1, then this is an error as we should be
# using the old-style prompt.
if { $MIFLAGS == "-i=mi1" } {
perror "(mi startup) Got unexpected new mi prompt."
remote_close host
return -1
}
verbose "GDB initialized."
}
-re "\[^~\].*$mi_gdb_prompt$" {
# We have an old format mi startup prompt. If we are
# not running mi1, then this is an error as we should be
# using the new-style prompt.
if { $MIFLAGS != "-i=mi1" } {
perror "(mi startup) Got unexpected old mi prompt."
remote_close host
return -1
}
verbose "GDB initialized."
}
-re ".*unrecognized option.*for a complete list of options." {
untested "Skip mi tests (not compiled with mi support)."
remote_close host
return -1
}
-re ".*Interpreter `mi' unrecognized." {
untested "Skip mi tests (not compiled with mi support)."
remote_close host
return -1
}
timeout {
perror "(timeout) GDB never initialized after 10 seconds."
remote_close host
return -1
}
}
set gdb_spawn_id $res
# FIXME: mi output does not go through pagers, so these can be removed.
# force the height to "unlimited", so no pagers get used
send_gdb "100-gdb-set height 0\n"
gdb_expect 10 {
-re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" {
verbose "Setting height to 0." 2
}
timeout {
warning "Couldn't set the height to 0"
}
}
# force the width to "unlimited", so no wraparound occurs
send_gdb "101-gdb-set width 0\n"
gdb_expect 10 {
-re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" {
verbose "Setting width to 0." 2
}
timeout {
warning "Couldn't set the width to 0."
}
}
# Create the new PTY for the inferior process.
if { $separate_inferior_pty } {
spawn -pty
global mi_inferior_tty_name
set inferior_spawn_id $spawn_id
set mi_inferior_tty_name $spawn_out(slave,name)
send_gdb "102-inferior-tty-set $mi_inferior_tty_name\n"
gdb_expect 10 {
-re ".*102\\\^done\r\n$mi_gdb_prompt$" {
verbose "redirect inferior output to new terminal device."
}
timeout {
warning "Couldn't redirect inferior output." 2
}
}
}
if {![info exists inferior_spawn_id]} {
set inferior_spawn_id $gdb_spawn_id
}
mi_detect_async
return 0
}
#
# Overridable function. You can override this function in your
# baseboard file.
#
proc mi_gdb_start { args } {
return [default_mi_gdb_start $args]
}
# Many of the tests depend on setting breakpoints at various places and
# running until that breakpoint is reached. At times, we want to start
# with a clean-slate with respect to breakpoints, so this utility proc
# lets us do this without duplicating this code everywhere.
#
proc mi_delete_breakpoints {} {
global mi_gdb_prompt
# FIXME: The mi operation won't accept a prompt back and will use the 'all' arg
send_gdb "102-break-delete\n"
gdb_expect 30 {
-re "Delete all breakpoints.*y or n.*$" {
send_gdb "y\n"
exp_continue
}
-re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" {
# This happens if there were no breakpoints
}
timeout { perror "Delete all breakpoints in mi_delete_breakpoints (timeout)" ; return }
}
# The correct output is not "No breakpoints or watchpoints." but an
# empty BreakpointTable. Also, a query is not acceptable with mi.
send_gdb "103-break-list\n"
gdb_expect 30 {
-re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {}
-re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {}
-re "103-break-list\r\n103\\\^doneNo breakpoints or watchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"}
-re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return }
-re "Delete all breakpoints.*or n.*$" {
warning "Unexpected prompt for breakpoints deletion"
send_gdb "y\n"
exp_continue
}
timeout { perror "-break-list (timeout)" ; return }
}
}
proc mi_gdb_reinitialize_dir { subdir } {
global mi_gdb_prompt
global MIFLAGS
global suppress_flag
if { $suppress_flag } {
return
}
if [is_remote host] {
return ""
}
if { $MIFLAGS == "-i=mi1" } {
send_gdb "104-environment-directory\n"
gdb_expect 60 {
-re ".*Reinitialize source path to empty.*y or n. " {
warning "Got confirmation prompt for dir reinitialization."
send_gdb "y\n"
gdb_expect 60 {
-re "$mi_gdb_prompt$" {}
timeout {error "Dir reinitialization failed (timeout)"}
}
}
-re "$mi_gdb_prompt$" {}
timeout {error "Dir reinitialization failed (timeout)"}
}
} else {
send_gdb "104-environment-directory -r\n"
gdb_expect 60 {
-re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {}
-re "$mi_gdb_prompt$" {}
timeout {error "Dir reinitialization failed (timeout)"}
}
}
send_gdb "105-environment-directory $subdir\n"
gdb_expect 60 {
-re "Source directories searched.*$mi_gdb_prompt$" {
verbose "Dir set to $subdir"
}
-re "105\\\^done.*\r\n$mi_gdb_prompt$" {
# FIXME: We return just the prompt for now.
verbose "Dir set to $subdir"
# perror "Dir \"$subdir\" failed."
}
}
}
# Send GDB the "target" command.
# FIXME: Some of these patterns are not appropriate for MI. Based on
# config/monitor.exp:gdb_target_command.
proc mi_gdb_target_cmd { targetname serialport } {
global mi_gdb_prompt
set serialport_re [string_to_regexp $serialport]
for {set i 1} {$i <= 3} {incr i} {
send_gdb "47-target-select $targetname $serialport\n"
gdb_expect 60 {
-re "47\\^connected.*$mi_gdb_prompt" {
verbose "Set target to $targetname"
return 0
}
-re "unknown host.*$mi_gdb_prompt" {
verbose "Couldn't look up $serialport"
}
-re "Couldn't establish connection to remote.*$mi_gdb_prompt$" {
verbose "Connection failed"
}
-re "Remote MIPS debugging.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Remote target $targetname connected to.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Connected to.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Ending remote.*$mi_gdb_prompt$" { }
-re "Connection refused.*$mi_gdb_prompt$" {
verbose "Connection refused by remote target. Pausing, and trying again."
sleep 5
continue
}
-re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" {
unsupported "Non-stop mode not supported"
return 1
}
-re "Timeout reading from remote system.*$mi_gdb_prompt$" {
verbose "Got timeout error from gdb."
}
timeout {
send_gdb ""
break
}
}
}
return 1
}
#
# load a file into the debugger (file command only).
# return a -1 if anything goes wrong.
#
proc mi_gdb_file_cmd { arg } {
global verbose
global loadpath
global loadfile
global GDB
global mi_gdb_prompt
global last_loaded_file
upvar timeout timeout
set last_loaded_file $arg
if [is_remote host] {
set arg [remote_download host $arg]
if { $arg == "" } {
error "download failed"
return -1
}
}
# FIXME: Several of these patterns are only acceptable for console
# output. Queries are an error for mi.
send_gdb "105-file-exec-and-symbols $arg\n"
gdb_expect 120 {
-re "Reading symbols from.*done.*$mi_gdb_prompt$" {
verbose "\t\tLoaded $arg into the $GDB"
return 0
}
-re "has no symbol-table.*$mi_gdb_prompt$" {
perror "$arg wasn't compiled with \"-g\""
return -1
}
-re "Load new symbol table from \".*\".*y or n. $" {
send_gdb "y\n"
gdb_expect 120 {
-re "Reading symbols from.*done.*$mi_gdb_prompt$" {
verbose "\t\tLoaded $arg with new symbol table into $GDB"
# All OK
}
timeout {
perror "(timeout) Couldn't load $arg, other program already loaded."
return -1
}
}
}
-re "No such file or directory.*$mi_gdb_prompt$" {
perror "($arg) No such file or directory\n"
return -1
}
-re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" {
# We (MI) are just giving the prompt back for now, instead of giving
# some acknowledgement.
return 0
}
timeout {
perror "couldn't load $arg into $GDB (timed out)."
return -1
}
eof {
# This is an attempt to detect a core dump, but seems not to
# work. Perhaps we need to match .* followed by eof, in which
# gdb_expect does not seem to have a way to do that.
perror "couldn't load $arg into $GDB (end of file)."
return -1
}
}
}
#
# connect to the target and download a file, if necessary.
# return a -1 if anything goes wrong.
#
proc mi_gdb_target_load { } {
global verbose
global loadpath
global loadfile
global GDB
global mi_gdb_prompt
if [target_info exists gdb_load_timeout] {
set loadtimeout [target_info gdb_load_timeout]
} else {
set loadtimeout 1600
}
if { [info procs gdbserver_gdb_load] != "" } {
mi_gdb_test "kill" ".*" ""
if { [catch gdbserver_gdb_load res] == 1 } {
perror $res
return -1
}
set protocol [lindex $res 0]
set gdbport [lindex $res 1]
if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } {
return -1
}
} elseif { [info procs send_target_sid] != "" } {
# For SID, things get complex
send_gdb "kill\n"
gdb_expect 10 {
-re ".*$mi_gdb_prompt$"
}
send_target_sid
gdb_expect $loadtimeout {
-re "\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to connect to SID target (timeout)"
return -1
}
}
send_gdb "48-target-download\n"
gdb_expect $loadtimeout {
-re "48\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to download to SID target (timeout)"
return -1
}
}
} elseif { [target_info protocol] == "sim" } {
# For the simulator, just connect to it directly.
send_gdb "47-target-select sim\n"
gdb_expect $loadtimeout {
-re "47\\^connected.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to select sim target (timeout)"
return -1
}
}
send_gdb "48-target-download\n"
gdb_expect $loadtimeout {
-re "48\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to download to sim target (timeout)"
return -1
}
}
} elseif { [target_info gdb_protocol] == "remote" } {
# remote targets
if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } {
perror "Unable to connect to remote target"
return -1
}
send_gdb "48-target-download\n"
gdb_expect $loadtimeout {
-re "48\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to download to remote target (timeout)"
return -1
}
}
}
return 0
}
#
# load a file into the debugger.
# return a -1 if anything goes wrong.
#
proc mi_gdb_load { arg } {
if { $arg != "" } {
return [mi_gdb_file_cmd $arg]
}
return 0
}
# mi_gdb_test COMMAND PATTERN MESSAGE [IPATTERN] -- send a command to gdb;
# test the result.
#
# COMMAND is the command to execute, send to GDB with send_gdb. If
# this is the null string no command is sent.
# PATTERN is the pattern to match for a PASS, and must NOT include
# the \r\n sequence immediately before the gdb prompt.
# MESSAGE is the message to be printed. (If this is the empty string,
# then sometimes we don't call pass or fail at all; I don't
# understand this at all.)
# IPATTERN is the pattern to match for the inferior's output. This parameter
# is optional. If present, it will produce a PASS if the match is
# successful, and a FAIL if unsuccessful.
#
# Returns:
# 1 if the test failed,
# 0 if the test passes,
# -1 if there was an internal error.
#
proc mi_gdb_test { args } {
global verbose
global mi_gdb_prompt
global GDB expect_out
global inferior_exited_re async
upvar timeout timeout
set command [lindex $args 0]
set pattern [lindex $args 1]
set message [lindex $args 2]
if [llength $args]==4 {
set ipattern [lindex $args 3]
}
if [llength $args]==5 {
set question_string [lindex $args 3]
set response_string [lindex $args 4]
} else {
set question_string "^FOOBAR$"
}
if $verbose>2 then {
send_user "Sending \"$command\" to gdb\n"
send_user "Looking to match \"$pattern\"\n"
send_user "Message is \"$message\"\n"
}
set result -1
set string "${command}\n"
set string_regex [string_to_regexp $command]
if { $command != "" } {
while { "$string" != "" } {
set foo [string first "\n" "$string"]
set len [string length "$string"]
if { $foo < [expr $len - 1] } {
set str [string range "$string" 0 $foo]
if { [send_gdb "$str"] != "" } {
global suppress_flag
if { ! $suppress_flag } {
perror "Couldn't send $command to GDB."
}
fail "$message"
return $result
}
gdb_expect 2 {
-re "\[\r\n\]" { }
timeout { }
}
set string [string range "$string" [expr $foo + 1] end]
} else {
break
}
}
if { "$string" != "" } {
if { [send_gdb "$string"] != "" } {
global suppress_flag
if { ! $suppress_flag } {
perror "Couldn't send $command to GDB."
}
fail "$message"
return $result
}
}
}
if [info exists timeout] {
set tmt $timeout
} else {
global timeout
if [info exists timeout] {
set tmt $timeout
} else {
set tmt 60
}
}
if {$async} {
# With $prompt_re "" there may come arbitrary asynchronous response
# from the previous command, before or after $string_regex.
set string_regex ".*"
}
verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)"
gdb_expect $tmt {
-re "\\*\\*\\* DOSEXIT code.*" {
if { $message != "" } {
fail "$message"
}
gdb_suppress_entire_file "GDB died"
return -1
}
-re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" {
if ![isnative] then {
warning "Can`t communicate to remote target."
}
gdb_exit
gdb_start
set result -1
}
-re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" {
# At this point, $expect_out(1,string) is the MI input command.
# and $expect_out(2,string) is the MI output command.
# If $expect_out(1,string) is "", then there was no MI input command here.
# NOTE, there is no trailing anchor because with GDB/MI,
# asynchronous responses can happen at any point, causing more
# data to be available. Normally an anchor is used to make
# sure the end of the output is matched, however, $mi_gdb_prompt
# is just as good of an anchor since mi_gdb_test is meant to
# match a single mi output command. If a second GDB/MI output
# response is sent, it will be in the buffer for the next
# time mi_gdb_test is called.
if ![string match "" $message] then {
pass "$message"
}
set result 0
}
-re "(${question_string})$" {
send_gdb "$response_string\n"
exp_continue
}
-re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" {
perror "Undefined command \"$command\"."
fail "$message"
set result 1
}
-re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" {
perror "\"$command\" is not a unique command name."
fail "$message"
set result 1
}
-re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" {
if ![string match "" $message] then {
set errmsg "$message (the program exited)"
} else {
set errmsg "$command (the program exited)"
}
fail "$errmsg"
return -1
}
-re "The program is not being run.*$mi_gdb_prompt\[ \]*$" {
if ![string match "" $message] then {
set errmsg "$message (the program is no longer running)"
} else {
set errmsg "$command (the program is no longer running)"
}
fail "$errmsg"
return -1
}
-re ".*$mi_gdb_prompt\[ \]*$" {
if ![string match "" $message] then {
fail "$message"
}
set result 1
}
"" {
send_gdb "\n"
perror "Window too small."
fail "$message"
}
-re "\\(y or n\\) " {
send_gdb "n\n"
perror "Got interactive prompt."
fail "$message"
}
eof {
perror "Process no longer exists"
if { $message != "" } {
fail "$message"
}
return -1
}
full_buffer {
perror "internal buffer is full."
fail "$message"
}
timeout {
if ![string match "" $message] then {
fail "$message (timeout)"
}
set result 1
}
}
# If the GDB output matched, compare the inferior output.
if { $result == 0 } {
if [ info exists ipattern ] {
if { ![target_info exists gdb,noinferiorio] } {
global gdb_spawn_id inferior_spawn_id
set sid "$inferior_spawn_id $gdb_spawn_id"
gdb_expect {
-i "$sid" -re "$ipattern" {
pass "$message inferior output"
}
timeout {
fail "$message inferior output (timeout)"
set result 1
}
}
} else {
unsupported "$message inferior output"
}
}
}
return $result
}
# Collect output sent to the console output stream until UNTIL is
# seen. UNTIL is a regular expression. MESSAGE is the message to be
# printed in case of timeout.
proc mi_gdb_expect_cli_output {until message} {
set output ""
gdb_expect {
-re "~\"(\[^\r\n\]+)\"\r\n" {
append output $expect_out(1,string)
exp_continue
}
-notransfer -re "$until" {
# Done
}
timeout {
fail "$message (timeout)"
return ""
}
}
return $output
}
#
# MI run command. (A modified version of gdb_run_cmd)
#
# In patterns, the newline sequence ``\r\n'' is matched explicitly as
# ``.*$'' could swallow up output that we attempt to match elsewhere.
# Send the command to run the test program.
#
# If USE_MI_COMMAND is true, the "-exec-run" command is used.
# Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is
# true, -exec-continue and continue are used instead of their run counterparts.
#
# ARGS is passed as argument to the command used to run the test program.
# Beware that arguments to "-exec-run" do not have the same semantics as
# arguments to the "run" command, so USE_MI_COMMAND influences the meaning
# of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run.
# If USE_MI_COMMAND is false, they are effectively arguments passed
# to the test program. If the global USE_GDB_STUB is true, ARGS is not used.
proc mi_run_cmd_full {use_mi_command args} {
global suppress_flag
if { $suppress_flag } {
return -1
}
global mi_gdb_prompt use_gdb_stub
global thread_selected_re
global library_loaded_re
if {$use_mi_command} {
set run_prefix "220-exec-"
set run_match "220"
} else {
set run_prefix ""
set run_match ""
}
foreach command [gdb_init_commands] {
send_gdb "$command\n"
gdb_expect 30 {
-re "$mi_gdb_prompt$" { }
default {
perror "gdb_init_command for target failed"
return -1
}
}
}
if { [mi_gdb_target_load] < 0 } {
return -1
}
if $use_gdb_stub {
if [target_info exists gdb,do_reload_on_run] {
send_gdb "${run_prefix}continue\n"
gdb_expect 60 {
-re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {}
-re "${run_match}\\^error.*$mi_gdb_prompt" {return -1}
default {}
}
return 0
}
if [target_info exists gdb,start_symbol] {
set start [target_info gdb,start_symbol]
} else {
set start "start"
}
# HACK: Should either use 000-jump or fix the target code
# to better handle RUN.
send_gdb "jump *$start\n"
warning "Using CLI jump command, expect run-to-main FAIL"
return 0
}
send_gdb "${run_prefix}run $args\n"
gdb_expect {
-re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" {
}
-re "\\^error,msg=\"The target does not support running in non-stop mode.\"" {
unsupported "Non-stop mode not supported"
return -1
}
timeout {
perror "Unable to start target"
return -1
}
}
# NOTE: Shortly after this there will be a ``000*stopped,...(gdb)''
return 0
}
# A wrapper for mi_run_cmd_full which uses -exec-run and
# -exec-continue, as appropriate. ARGS are passed verbatim to
# mi_run_cmd_full.
proc mi_run_cmd {args} {
return [eval mi_run_cmd_full 1 $args]
}
# A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and
# 'continue', as appropriate. ARGS are passed verbatim to
# mi_run_cmd_full.
proc mi_run_with_cli {args} {
return [eval mi_run_cmd_full 0 $args]
}
#
# Just like run-to-main but works with the MI interface
#
proc mi_run_to_main { } {
global suppress_flag
if { $suppress_flag } {
return -1
}
global srcdir
global subdir
global binfile
global srcfile
mi_delete_breakpoints
mi_gdb_reinitialize_dir $srcdir/$subdir
mi_gdb_load ${binfile}
mi_runto main
}
# Just like gdb's "runto" proc, it will run the target to a given
# function. The big difference here between mi_runto and mi_execute_to
# is that mi_execute_to must have the inferior running already. This
# proc will (like gdb's runto) (re)start the inferior, too.
#
# FUNC is the linespec of the place to stop (it inserts a breakpoint here).
# It returns:
# -1 if test suppressed, failed, timedout
# 0 if test passed
proc mi_runto_helper {func run_or_continue} {
global suppress_flag
if { $suppress_flag } {
return -1
}
global mi_gdb_prompt expect_out
global hex decimal fullname_syntax
set test "mi runto $func"
set bp [mi_make_breakpoint -type breakpoint -disp del \
-func $func\(\\\(.*\\\)\)?]
mi_gdb_test "200-break-insert -t $func" "200\\^done,$bp" \
"breakpoint at $func"
if {$run_or_continue == "run"} {
if { [mi_run_cmd] < 0 } {
return -1
}
} else {
mi_send_resuming_command "exec-continue" "$test"
}
mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test
}
proc mi_runto {func} {
return [mi_runto_helper $func "run"]
}
# Next to the next statement
# For return values, see mi_execute_to_helper
proc mi_next { test } {
return [mi_next_to {.*} {.*} {.*} {.*} $test]
}
# Step to the next statement
# For return values, see mi_execute_to_helper
proc mi_step { test } {
return [mi_step_to {.*} {.*} {.*} {.*} $test]
}
set async "unknown"
proc mi_detect_async {} {
global async
global mi_gdb_prompt
send_gdb "show mi-async\n"
gdb_expect {
-re "asynchronous mode is on...*$mi_gdb_prompt$" {
set async 1
}
-re ".*$mi_gdb_prompt$" {
set async 0
}
timeout {
set async 0
}
}
return $async
}
# Wait for MI *stopped notification to appear.
# The REASON, FUNC, ARGS, FILE and LINE are regular expressions
# to match against whatever is output in *stopped. FILE may also match
# filename of a file without debug info. ARGS should not include [] the
# list of argument is enclosed in, and other regular expressions should
# not include quotes.
# If EXTRA is a list of one element, it's the regular expression
# for output expected right after *stopped, and before GDB prompt.
# If EXTRA is a list of two elements, the first element is for
# output right after *stopped, and the second element is output
# right after reason field. The regex after reason should not include
# the comma separating it from the following fields.
#
# When we fail to match output at all, -1 is returned. If FILE does
# match and the target system has no debug info for FILE return 0.
# Otherwise, the line at which we stop is returned. This is useful when
# exact line is not possible to specify for some reason -- one can pass
# the .* or "\[0-9\]*" regexps for line, and then check the line
# programmatically.
#
# Do not pass .* for any argument if you are expecting more than one stop.
proc mi_expect_stop { reason func args file line extra test } {
global mi_gdb_prompt
global hex
global decimal
global fullname_syntax
global async
global thread_selected_re
global breakpoint_re
set any "\[^\n\]*"
set after_stopped ""
set after_reason ""
if { [llength $extra] == 2 } {
set after_stopped [lindex $extra 0]
set after_reason [lindex $extra 1]
set after_reason "${after_reason},"
} elseif { [llength $extra] == 1 } {
set after_stopped [lindex $extra 0]
}
if {$async} {
set prompt_re ""
} else {
set prompt_re "$mi_gdb_prompt$"
}
if { $reason == "really-no-reason" } {
gdb_expect {
-re "\\*stopped\r\n$prompt_re" {
pass "$test"
}
timeout {
fail "$test (timeout)"
}
}
return
}
if { $reason == "exited-normally" } {
gdb_expect {
-re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" {
pass "$test"
}
-re ".*$mi_gdb_prompt$" {fail "continue to end (2)"}
timeout {
fail "$test (timeout)"
}
}
return
}
if { $reason == "exited" } {
gdb_expect {
-re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" {
pass "$test"
}
-re ".*$mi_gdb_prompt$" {
fail "$test (inferior not stopped)"
}
timeout {
fail "$test (timeout)"
}
}
return
}
if { $reason == "solib-event" } {
set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
verbose -log "mi_expect_stop: expecting: $pattern"
gdb_expect {
-re "$pattern" {
pass "$test"
}
timeout {
fail "$test (timeout)"
}
}
return
}
set args "\\\[$args\\\]"
set bn ""
if { $reason == "breakpoint-hit" } {
set bn {bkptno="[0-9]+",}
} elseif { $reason == "solib-event" } {
set bn ".*"
}
set r ""
if { $reason != "" } {
set r "reason=\"$reason\","
}
set a $after_reason
verbose -log "mi_expect_stop: expecting: \\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
gdb_expect {
-re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
pass "$test"
if {[array names expect_out "2,string"] != ""} {
return $expect_out(2,string)
}
# No debug info available but $file does match.
return 0
}
-re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
verbose -log "got $expect_out(buffer)"
fail "$test (stopped at wrong place)"
return -1
}
-re ".*\r\n$mi_gdb_prompt$" {
verbose -log "got $expect_out(buffer)"
fail "$test (unknown output after running)"
return -1
}
timeout {
fail "$test (timeout)"
return -1
}
}
}
# Wait for MI *stopped notification related to an interrupt request to
# appear.
proc mi_expect_interrupt { test } {
global mi_gdb_prompt
global decimal
global async
if {$async} {
set prompt_re ""
} else {
set prompt_re "$mi_gdb_prompt$"
}
set r_nonstop "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\""
set r_allstop "reason=\"signal-received\",signal-name=\"SIGINT\",signal-meaning=\"Interrupt\""
set r "(${r_nonstop}|${r_allstop})"
set any "\[^\n\]*"
# A signal can land anywhere, just ignore the location
verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re"
gdb_expect {
-re "\\*stopped,${r}$any\r\n$prompt_re" {
pass "$test"
return 0
}
-re ".*\r\n$mi_gdb_prompt$" {
verbose -log "got $expect_out(buffer)"
fail "$test (unknown output after running)"
return -1
}
timeout {
fail "$test (timeout)"
return -1
}
}
}
# cmd should not include the number or newline (i.e. "exec-step 3", not
# "220-exec-step 3\n"
# Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives
# after the first prompt is printed.
proc mi_execute_to { cmd reason func args file line extra test } {
global suppress_flag
if { $suppress_flag } {
return -1
}
mi_send_resuming_command "$cmd" "$test"
set r [mi_expect_stop $reason $func $args $file $line $extra $test]
return $r
}
proc mi_next_to { func args file line test } {
mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
"$file" "$line" "" "$test"
}
proc mi_step_to { func args file line test } {
mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
"$file" "$line" "" "$test"
}
proc mi_finish_to { func args file line result ret test } {
mi_execute_to "exec-finish" "function-finished" "$func" "$args" \
"$file" "$line" \
",gdb-result-var=\"$result\",return-value=\"$ret\"" \
"$test"
}
proc mi_continue_to {func} {
mi_runto_helper $func "continue"
}
proc mi0_execute_to { cmd reason func args file line extra test } {
mi_execute_to_helper "$cmd" "$reason" "$func" "\{$args\}" \
"$file" "$line" "$extra" "$test"
}
proc mi0_next_to { func args file line test } {
mi0_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
"$file" "$line" "" "$test"
}
proc mi0_step_to { func args file line test } {
mi0_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
"$file" "$line" "" "$test"
}
proc mi0_finish_to { func args file line result ret test } {
mi0_execute_to "exec-finish" "function-finished" "$func" "$args" \
"$file" "$line" \
",gdb-result-var=\"$result\",return-value=\"$ret\"" \
"$test"
}
proc mi0_continue_to { bkptno func args file line test } {
mi0_execute_to "exec-continue" "breakpoint-hit\",bkptno=\"$bkptno" \
"$func" "$args" "$file" "$line" "" "$test"
}
# Creates a breakpoint and checks the reported fields are as expected.
# This procedure takes the same options as mi_make_breakpoint and
# returns the breakpoint regexp from that procedure.
proc mi_create_breakpoint {location test args} {
set bp [eval mi_make_breakpoint $args]
mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test
return $bp
}
# Creates varobj named NAME for EXPRESSION.
# Name cannot be "-".
proc mi_create_varobj { name expression testname } {
mi_gdb_test "-var-create $name * $expression" \
"\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \
$testname
}
proc mi_create_floating_varobj { name expression testname } {
mi_gdb_test "-var-create $name @ $expression" \
"\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \
$testname
}
# Same as mi_create_varobj, but also checks the reported type
# of the varobj.
proc mi_create_varobj_checked { name expression type testname } {
mi_gdb_test "-var-create $name * $expression" \
"\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \
$testname
}
# Same as mi_create_floating_varobj, but assumes the test is creating
# a dynamic varobj that has children, so the value must be "{...}".
# The "has_more" attribute is checked.
proc mi_create_dynamic_varobj {name expression has_more testname} {
mi_gdb_test "-var-create $name @ $expression" \
"\\^done,name=\"$name\",numchild=\"0\",value=\"{\\.\\.\\.}\",type=.*,has_more=\"${has_more}\"" \
$testname
}
# Deletes the specified NAME.
proc mi_delete_varobj { name testname } {
mi_gdb_test "-var-delete $name" \
"\\^done,ndeleted=.*" \
$testname
}
# Updates varobj named NAME and checks that all varobjs in EXPECTED
# are reported as updated, and no other varobj is updated.
# Assumes that no varobj is out of scope and that no varobj changes
# types.
proc mi_varobj_update { name expected testname } {
set er "\\^done,changelist=\\\["
set first 1
foreach item $expected {
set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}"
if {$first == 1} {
set er "$er$v"
set first 0
} else {
set er "$er,$v"
}
}
set er "$er\\\]"
verbose -log "Expecting: $er" 2
mi_gdb_test "-var-update $name" $er $testname
}
proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } {
set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}"
set er "\\^done,changelist=\\\[$v\\\]"
verbose -log "Expecting: $er"
mi_gdb_test "-var-update $name" $er $testname
}
proc mi_varobj_update_with_type_change { name new_type new_children testname } {
mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname
}
# A helper that turns a key/value list into a regular expression
# matching some MI output.
proc mi_varobj_update_kv_helper {list} {
set first 1
set rx ""
foreach {key value} $list {
if {!$first} {
append rx ,
}
set first 0
if {$key == "new_children"} {
append rx "$key=\\\[$value\\\]"
} else {
append rx "$key=\"$value\""
}
}
return $rx
}
# A helper for mi_varobj_update_dynamic that computes a match
# expression given a child list.
proc mi_varobj_update_dynamic_helper {children} {
set crx ""
set first 1
foreach child $children {
if {!$first} {
append crx ,
}
set first 0
append crx "{"
append crx [mi_varobj_update_kv_helper $child]
append crx "}"
}
return $crx
}
# Update a dynamic varobj named NAME. CHILDREN is a list of children
# that have been updated; NEW_CHILDREN is a list of children that were
# added to the primary varobj. Each child is a list of key/value
# pairs that are expected. SELF is a key/value list holding
# information about the varobj itself. TESTNAME is the name of the
# test.
proc mi_varobj_update_dynamic {name testname self children new_children} {
if {[llength $new_children]} {
set newrx [mi_varobj_update_dynamic_helper $new_children]
lappend self new_children $newrx
}
set selfrx [mi_varobj_update_kv_helper $self]
set crx [mi_varobj_update_dynamic_helper $children]
set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\""
append er ",$selfrx\}"
if {"$crx" != ""} {
append er ",$crx"
}
append er "\\\]"
verbose -log "Expecting: $er"
mi_gdb_test "-var-update $name" $er $testname
}
proc mi_check_varobj_value { name value testname } {
mi_gdb_test "-var-evaluate-expression $name" \
"\\^done,value=\"$value\"" \
$testname
}
# Helper proc which constructs a child regexp for
# mi_list_varobj_children and mi_varobj_update_dynamic.
proc mi_child_regexp {children add_child} {
set children_exp {}
if {$add_child} {
set pre "child="
} else {
set pre ""
}
foreach item $children {
set name [lindex $item 0]
set exp [lindex $item 1]
set numchild [lindex $item 2]
if {[llength $item] == 5} {
set type [lindex $item 3]
set value [lindex $item 4]
lappend children_exp\
"$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
} elseif {[llength $item] == 4} {
set type [lindex $item 3]
lappend children_exp\
"$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
} else {
lappend children_exp\
"$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}"
}
}
return [join $children_exp ","]
}
# Check the results of the:
#
# -var-list-children VARNAME
#
# command. The CHILDREN parement should be a list of lists.
# Each inner list can have either 3 or 4 elements, describing
# fields that gdb is expected to report for child variable object,
# in the following order
#
# - Name
# - Expression
# - Number of children
# - Type
#
# If inner list has 3 elements, the gdb is expected to output no
# type for a child and no value.
#
# If the inner list has 4 elements, gdb output is expected to
# have no value.
#
proc mi_list_varobj_children { varname children testname } {
mi_list_varobj_children_range $varname "" "" [llength $children] $children \
$testname
}
# Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is
# the total number of children.
proc mi_list_varobj_children_range {varname from to numchildren children testname} {
set options ""
if {[llength $varname] == 2} {
set options [lindex $varname 1]
set varname [lindex $varname 0]
}
set children_exp_j [mi_child_regexp $children 1]
if {$numchildren} {
set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]"
} {
set expected "\\^done,numchild=\"0\""
}
if {"$to" == ""} {
append expected ",has_more=\"0\""
} elseif {$to >= 0 && $numchildren > $to} {
append expected ",has_more=\"1\""
} else {
append expected ",has_more=\"0\""
}
verbose -log "Expecting: $expected"
mi_gdb_test "-var-list-children $options $varname $from $to" \
$expected $testname
}
# Verifies that variable object VARNAME has NUMBER children,
# where each one is named $VARNAME. and has type TYPE.
proc mi_list_array_varobj_children { varname number type testname } {
mi_list_array_varobj_children_with_index $varname $number 0 $type $testname
}
# Same as mi_list_array_varobj_children, but allowing to pass a start index
# for an array.
proc mi_list_array_varobj_children_with_index { varname number start_index \
type testname } {
set t {}
set index $start_index
for {set i 0} {$i < $number} {incr i} {
lappend t [list $varname.$index $index 0 $type]
incr index
}
mi_list_varobj_children $varname $t $testname
}
# A list of two-element lists. First element of each list is
# a Tcl statement, and the second element is the line
# number of source C file where the statement originates.
set mi_autotest_data ""
# The name of the source file for autotesting.
set mi_autotest_source ""
proc count_newlines { string } {
return [regexp -all "\n" $string]
}
# Prepares for running inline tests in FILENAME.
# See comments for mi_run_inline_test for detailed
# explanation of the idea and syntax.
proc mi_prepare_inline_tests { filename } {
global srcdir
global subdir
global mi_autotest_source
global mi_autotest_data
set mi_autotest_data {}
set mi_autotest_source $filename
if { ! [regexp "^/" "$filename"] } then {
set filename "$srcdir/$subdir/$filename"
}
set chan [open $filename]
set content [read $chan]
set line_number 1
while {1} {
set start [string first "/*:" $content]
if {$start != -1} {
set end [string first ":*/" $content]
if {$end == -1} {
error "Unterminated special comment in $filename"
}
set prefix [string range $content 0 $start]
set prefix_newlines [count_newlines $prefix]
set line_number [expr $line_number+$prefix_newlines]
set comment_line $line_number
set comment [string range $content [expr $start+3] [expr $end-1]]
set comment_newlines [count_newlines $comment]
set line_number [expr $line_number+$comment_newlines]
set comment [string trim $comment]
set content [string range $content [expr $end+3] \
[string length $content]]
lappend mi_autotest_data [list $comment $comment_line]
} else {
break
}
}
close $chan
}
# Helper to mi_run_inline_test below.
# Return the list of all (statement,line_number) lists
# that comprise TESTCASE. The begin and end markers
# are not included.
proc mi_get_inline_test {testcase} {
global mi_gdb_prompt
global mi_autotest_data
global mi_autotest_source
set result {}
set seen_begin 0
set seen_end 0
foreach l $mi_autotest_data {
set comment [lindex $l 0]
if {$comment == "BEGIN: $testcase"} {
set seen_begin 1
} elseif {$comment == "END: $testcase"} {
set seen_end 1
break
} elseif {$seen_begin==1} {
lappend result $l
}
}
if {$seen_begin == 0} {
error "Autotest $testcase not found"
}
if {$seen_begin == 1 && $seen_end == 0} {
error "Missing end marker for test $testcase"
}
return $result
}
# Sets temporary breakpoint at LOCATION.
proc mi_tbreak {location} {
global mi_gdb_prompt
mi_gdb_test "-break-insert -t $location" \
{\^done,bkpt=.*} \
"run to $location (set breakpoint)"
}
# Send COMMAND that must be a command that resumes
# the inferior (run/continue/next/etc) and consumes
# the "^running" output from it.
proc mi_send_resuming_command_raw {command test} {
global mi_gdb_prompt
global thread_selected_re
global library_loaded_re
send_gdb "$command\n"
gdb_expect {
-re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" {
# Note that lack of 'pass' call here -- this works around limitation
# in DejaGNU xfail mechanism. mi-until.exp has this:
#
# setup_kfail gdb/2104 "*-*-*"
# mi_execute_to ...
#
# and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here,
# it will reset kfail, so when the actual test fails, it will be flagged
# as real failure.
return 0
}
-re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" {
unsupported "$test (Thumb mode)"
return -1
}
-re "\\^error,msg=.*" {
fail "$test (MI error)"
return -1
}
-re ".*${mi_gdb_prompt}" {
fail "$test (failed to resume)"
return -1
}
timeout {
fail "$test"
return -1
}
}
}
proc mi_send_resuming_command {command test} {
mi_send_resuming_command_raw -$command $test
}
# Helper to mi_run_inline_test below.
# Sets a temporary breakpoint at LOCATION and runs
# the program using COMMAND. When the program is stopped
# returns the line at which it. Returns -1 if line cannot
# be determined.
# Does not check that the line is the same as requested.
# The caller can check itself if required.
proc mi_continue_to_line {location test} {
mi_tbreak $location
mi_send_resuming_command "exec-continue" "run to $location (exec-continue)"
return [mi_get_stop_line $test]
}
# Wait until gdb prints the current line.
proc mi_get_stop_line {test} {
global mi_gdb_prompt
global async
if {$async} {
set prompt_re ""
} else {
set prompt_re "$mi_gdb_prompt$"
}
gdb_expect {
-re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" {
return $expect_out(1,string)
}
-re ".*$mi_gdb_prompt" {
fail "wait for stop ($test)"
}
timeout {
fail "wait for stop ($test)"
}
}
}
# Run a MI test embedded in comments in a C file.
# The C file should contain special comments in the following
# three forms:
#
# /*: BEGIN: testname :*/
# /*: :*/
# /*: END: testname :*/
#
# This procedure find the begin and end marker for the requested
# test. Then, a temporary breakpoint is set at the begin
# marker and the program is run (from start).
#
# After that, for each special comment between the begin and end
# marker, the Tcl statements are executed. It is assumed that
# for each comment, the immediately preceding line is executable
# C statement. Then, gdb will be single-stepped until that
# preceding C statement is executed, and after that the
# Tcl statements in the comment will be executed.
#
# For example:
#
# /*: BEGIN: assignment-test :*/
# v = 10;
# /*: 0} {
fail "MI and console have same threads ($name)"
# Send a list of failures to the log
send_log "Console has thread ids: $console_thread_list\n"
send_log "MI has thread ids: $mi_thread_list\n"
} else {
pass "MI and console have same threads ($name)"
}
}
}
}
}
# Download shared libraries to the target.
proc mi_load_shlibs { args } {
if {![is_remote target]} {
return
}
foreach file $args {
gdb_download [shlib_target_file $file]
}
# Even if the target supplies full paths for shared libraries,
# they may not be paths for this system.
mi_gdb_test "set solib-search-path [file dirname [lindex $args 0]]" "\^done" ""
}
proc mi_reverse_list { list } {
if { [llength $list] <= 1 } {
return $list
}
set tail [lrange $list 1 [llength $list]]
set rtail [mi_reverse_list $tail]
lappend rtail [lindex $list 0]
return $rtail
}
proc mi_check_thread_states { xstates test } {
global expect_out
set states [mi_reverse_list $xstates]
set pattern ".*\\^done,threads=\\\["
foreach s $states {
set pattern "${pattern}(.*)state=\"$s\""
}
set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*"
verbose -log "expecting: $pattern"
mi_gdb_test "-thread-info" $pattern $test
}
# Return a list of MI features supported by this gdb.
proc mi_get_features {} {
global expect_out mi_gdb_prompt
send_gdb "-list-features\n"
gdb_expect {
-re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" {
regsub -all -- \" $expect_out(1,string) "" features
return [split $features ,]
}
-re ".*\r\n$mi_gdb_prompt$" {
verbose -log "got $expect_out(buffer)"
return ""
}
timeout {
verbose -log "timeout in mi_gdb_prompt"
return ""
}
}
}
# Variable Object Trees
#
# Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of
# variables (not unlike the actual source code definition), and it will
# automagically test the children for you (by default).
#
# Example:
#
# source code:
# struct bar {
# union {
# int integer;
# void *ptr;
# };
# const int *iPtr;
# };
#
# class foo {
# public:
# int a;
# struct {
# int b;
# struct bar *c;
# };
# };
#
# foo *f = new foo (); <-- break here
#
# We want to check all the children of "f".
#
# Translate the above structures into the following tree:
#
# set tree {
# foo f {
# {} public {
# int a {}
# anonymous struct {
# {} public {
# int b {}
# {bar *} c {
# {} public {
# anonymous union {
# {} public {
# int integer {}
# {void *} ptr {}
# }
# }
# {const int *} iPtr {
# {const int} {*iPtr} {}
# }
# }
# }
# }
# }
# }
# }
# }
#
# mi_walk_varobj_tree c++ $tree
#
# If you'd prefer to walk the tree using your own callback,
# simply pass the name of the callback to mi_walk_varobj_tree.
#
# This callback should take one argument, the name of the variable
# to process. This name is the name of a global array holding the
# variable's properties (object name, type, etc).
#
# An example callback:
#
# proc my_callback {var} {
# upvar #0 $var varobj
#
# puts "my_callback: called on varobj $varobj(obj_name)"
# }
#
# The arrays created for each variable object contain the following
# members:
#
# obj_name - the object name for accessing this variable via MI
# display_name - the display name for this variable (exp="display_name" in
# the output of -var-list-children)
# type - the type of this variable (type="type" in the output
# of -var-list-children, or the special tag "anonymous"
# path_expr - the "-var-info-path-expression" for this variable
# NOTE: This member cannot be used reliably with typedefs.
# Use with caution!
# See notes inside get_path_expr for more.
# parent - the variable name of the parent varobj
# children - a list of children variable names (which are the
# names Tcl arrays, not object names)
#
# For each variable object, an array containing the above fields will
# be created under the root node (conveniently called, "root"). For example,
# a variable object with handle "OBJ.public.0_anonymous.a" will have
# a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a".
#
# Note that right now, this mechanism cannot be used for recursive data
# structures like linked lists.
namespace eval ::varobj_tree {
# An index which is appended to root varobjs to ensure uniqueness.
variable _root_idx 0
# A procedure to help with debuggging varobj trees.
# VARIABLE_NAME is the name of the variable to dump.
# CMD, if present, is the name of the callback to output the contstructed
# strings. By default, it uses expect's "send_log" command.
# TERM, if present, is a terminating character. By default it is the newline.
#
# To output to the terminal (not the expect log), use
# mi_varobj_tree_dump_variable my_variable puts ""
proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} {
upvar #0 $variable_name varobj
eval "$cmd \"VAR = $variable_name$term\""
# Explicitly encode the array indices, since outputting them
# in some logical order is better than what "array names" might
# return.
foreach idx {obj_name parent display_name type path_expr} {
eval "$cmd \"\t$idx = $varobj($idx)$term\""
}
# Output children
set num [llength $varobj(children)]
eval "$cmd \"\tnum_children = $num$term\""
if {$num > 0} {
eval "$cmd \"\tchildren = $varobj(children)$term\""
}
}
# The default callback used by mi_walk_varobj_tree. This callback
# simply checks all of VAR's children. It specifically does not test
# path expressions, since that is very problematic.
#
# This procedure may be used in custom callbacks.
proc test_children_callback {variable_name} {
upvar #0 $variable_name varobj
if {[llength $varobj(children)] > 0} {
# Construct the list of children the way mi_list_varobj_children
# expects to get it:
# { {obj_name display_name num_children type} ... }
set children_list {}
foreach child $varobj(children) {
upvar #0 $child c
set clist [list [string_to_regexp $c(obj_name)] \
[string_to_regexp $c(display_name)] \
[llength $c(children)]]
if {[string length $c(type)] > 0} {
lappend clist [string_to_regexp $c(type)]
}
lappend children_list $clist
}
mi_list_varobj_children $varobj(obj_name) $children_list \
"VT: list children of $varobj(obj_name)"
}
}
# Set the properties of the varobj represented by
# PARENT_VARIABLE - the name of the parent's variable
# OBJNAME - the MI object name of this variable
# DISP_NAME - the display name of this variable
# TYPE - the type of this variable
# PATH - the path expression for this variable
# CHILDREN - a list of the variable's children
proc create_varobj {parent_variable objname disp_name \
type path children} {
upvar #0 $parent_variable parent
set var_name "root.$objname"
global $var_name
array set $var_name [list obj_name $objname]
array set $var_name [list display_name $disp_name]
array set $var_name [list type $type]
array set $var_name [list path_expr $path]
array set $var_name [list parent "$parent_variable"]
array set $var_name [list children \
[get_tree_children $var_name $children]]
return $var_name
}
# Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD
# varobjs and anonymous structs/unions are not used for path expressions.
proc is_path_expr_parent {variable} {
upvar #0 $variable varobj
# If the varobj's type is "", it is a CPLUS_FAKE_CHILD.
# If the tail of the varobj's object name is "%d_anonymous",
# then it represents an anonymous struct or union.
if {[string length $varobj(type)] == 0 \
|| [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} {
return false
}
return true
}
# Return the path expression for the variable named NAME in
# parent varobj whose variable name is given by PARENT_VARIABLE.
proc get_path_expr {parent_variable name type} {
upvar #0 $parent_variable parent
upvar #0 $parent_variable path_parent
# If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs,
# which has no path expression. Likewsise for anonymous structs
# and unions.
if {[string length $type] == 0 \
|| [string compare $type "anonymous"] == 0} {
return ""
}
# Find the path parent variable.
while {![is_path_expr_parent $parent_variable]} {
set parent_variable $path_parent(parent)
upvar #0 $parent_variable path_parent
}
# This is where things get difficult. We do not actually know
# the real type for variables defined via typedefs, so we don't actually
# know whether the parent is a structure/union or not.
#
# So we assume everything that isn't a simple type is a compound type.
set stars ""
regexp {\*+} $parent(type) stars
set is_compound 1
if {[string index $name 0] == "*"} {
set is_compound 0
}
if {[string index $parent(type) end] == "\]"} {
# Parent is an array.
return "($path_parent(path_expr))\[$name\]"
} elseif {$is_compound} {
# Parent is a structure or union or a pointer to one.
if {[string length $stars]} {
set join "->"
} else {
set join "."
}
global root
# To make matters even more hideous, varobj.c has slightly different
# path expressions for C and C++.
set path_expr "($path_parent(path_expr))$join$name"
if {[string compare -nocase $root(language) "c"] == 0} {
return $path_expr
} else {
return "($path_expr)"
}
} else {
# Parent is a pointer.
return "*($path_parent(path_expr))"
}
}
# Process the CHILDREN (a list of varobj_tree elements) of the variable
# given by PARENT_VARIABLE. Returns a list of children variables.
proc get_tree_children {parent_variable children} {
upvar #0 $parent_variable parent
set field_idx 0
set children_list {}
foreach {type name children} $children {
if {[string compare $parent_variable "root"] == 0} {
# Root variable
variable _root_idx
incr _root_idx
set objname "$name$_root_idx"
set disp_name "$name"
set path_expr "$name"
} elseif {[string compare $type "anonymous"] == 0} {
# Special case: anonymous types. In this case, NAME will either be
# "struct" or "union".
set objname "$parent(obj_name).${field_idx}_anonymous"
set disp_name ""
set path_expr ""
set type "$name {...}"
} else {
set objname "$parent(obj_name).$name"
set disp_name $name
set path_expr [get_path_expr $parent_variable $name $type]
}
lappend children_list [create_varobj $parent_variable $objname \
$disp_name $type $path_expr $children]
incr field_idx
}
return $children_list
}
# The main procedure to call the given CALLBACK on the elements of the
# given varobj TREE. See detailed explanation above.
proc walk_tree {language tree callback} {
global root
variable _root_idx
if {[llength $tree] < 3} {
error "tree does not contain enough elements"
}
set _root_idx 0
# Create root node and process the tree.
array set root [list language $language]
array set root [list obj_name "root"]
array set root [list display_name "root"]
array set root [list type "root"]
array set root [list path_expr "root"]
array set root [list parent "root"]
array set root [list children [get_tree_children root $tree]]
# Walk the tree
set all_nodes $root(children); # a stack of nodes
while {[llength $all_nodes] > 0} {
# "Pop" the name of the global variable containing this varobj's
# information from the stack of nodes.
set var_name [lindex $all_nodes 0]
set all_nodes [lreplace $all_nodes 0 0]
# Bring the global named in VAR_NAME into scope as the local variable
# VAROBJ.
upvar #0 $var_name varobj
# Append any children of VAROBJ to the list of nodes to walk.
if {[llength $varobj(children)] > 0} {
set all_nodes [concat $all_nodes $varobj(children)]
}
# If this is a root variable, create the variable object for it.
if {[string compare $varobj(parent) "root"] == 0} {
mi_create_varobj $varobj(obj_name) $varobj(display_name) \
"VT: create root varobj for $varobj(display_name)"
}
# Now call the callback for VAROBJ.
uplevel #0 $callback $var_name
}
}
}
# The default varobj tree callback, which simply tests -var-list-children.
proc mi_varobj_tree_test_children_callback {variable} {
::varobj_tree::test_children_callback $variable
}
# Walk the variable object tree given by TREE, calling the specified
# CALLBACK. By default this uses mi_varobj_tree_test_children_callback.
proc mi_walk_varobj_tree {language tree \
{callback \
mi_varobj_tree_test_children_callback}} {
::varobj_tree::walk_tree $language $tree $callback
}
# Build a list of key-value pairs given by the list ATTR_LIST. Flatten
# this list using the optional JOINER, a comma by default.
#
# The list must contain an even number of elements, which are the key-value
# pairs. Each value will be surrounded by quotes, according to the grammar,
# except if the value starts with \[ or \{, when the quotes will be omitted.
#
# Example: mi_build_kv_pairs {a b c d e f g \[.*\]}
# returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\]
proc mi_build_kv_pairs {attr_list {joiner ,}} {
set l {}
foreach {var value} $attr_list {
if {[string range $value 0 1] == "\\\["
|| [string range $value 0 1] == "\\\{"} {
lappend l "$var=$value"
} else {
lappend l "$var=\"$value\""
}
}
return "[join $l $joiner]"
}
# Construct a breakpoint regexp. This may be used to test the output of
# -break-insert, -dprintf-insert, or -break-info.
#
# All arguments for the breakpoint may be specified using the options
# number, type, disp, enabled, addr, func, file, fullanme, line,
# thread-groups, times, ignore, script, and original-location.
#
# Only if -script and -ignore are given will they appear in the output.
# Otherwise, this procedure will skip them using ".*".
#
# Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3
# will return the breakpoint:
# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*",
# file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\],
# times="0".*original-location=".*"}
proc mi_make_breakpoint {args} {
parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*}
{func .*} {file .*} {fullname .*} {line .*}
{thread-groups \\\[.*\\\]} {times .*} {ignore 0}
{script ""} {original-location .*}}
set attr_list {}
foreach attr [list number type disp enabled addr func file \
fullname line thread-groups times] {
lappend attr_list $attr [set $attr]
}
set result "bkpt={[mi_build_kv_pairs $attr_list]"
# There are always exceptions.
# If SCRIPT and IGNORE are not present, do not output them.
if {$ignore != 0} {
append result ","
append result [mi_build_kv_pairs [list "ignore" $ignore]]
append result ","
}
if {[string length $script] > 0} {
append result ","
append result [mi_build_kv_pairs [list "script" $script]]
append result ","
} else {
# Allow anything up until the next "official"/required attribute.
# This pattern skips over script/ignore if matches on those
# were not specifically required by the caller.
append result ".*"
}
append result [mi_build_kv_pairs \
[list "original-location" ${original-location}]]
append result "}"
return $result
}
# Build a breakpoint table regexp given the list of breakpoints in `bp_list',
# constructed by mi_make_breakpoint.
#
# Example: Construct a breakpoint table where the only attributes we
# test for are the existence of three breakpoints numbered 1, 2, and 3.
#
# set bps {}
# lappend bps [mi_make_breakpoint -number 1]
# lappend bps [mi_make_breakpoint -number 2]
# lappned bps [mi_make_breakpoint -number 3]
# mi_make_breakpoint_table $bps
# will return (abbreviated for clarity):
# BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...],
# body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]}
proc mi_make_breakpoint_table {bp_list} {
# Build header -- assume a standard header for all breakpoint tables.
set hl {}
foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \
addr Address what What] {
# The elements here are the MI table headers, which have the
# format:
# {width="7",alignment="-1",col_name="number",colhdr="Num"}
lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \
col_name $nm colhdr $hdr]]}"
}
set header "hdr=\\\[[join $hl ,]\\\]"
# The caller has implicitly supplied the number of columns and rows.
set nc [llength $hl]
set nr [llength $bp_list]
# Build body -- mi_make_breakpoint has done most of the work.
set body "body=\\\[[join $bp_list ,]\\\]"
# Assemble the final regexp.
return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}"
}