/* Target-dependent code for the S+core architecture, for GDB, the GNU Debugger. Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Qinwei (qinwei@sunnorth.com.cn) Contributed by Ching-Peng Lin (cplin@sunplus.com) This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "gdb_assert.h" #include "inferior.h" #include "symtab.h" #include "objfiles.h" #include "gdbcore.h" #include "target.h" #include "arch-utils.h" #include "regcache.h" #include "dis-asm.h" #include "frame-unwind.h" #include "frame-base.h" #include "trad-frame.h" #include "dwarf2-frame.h" #include "score-tdep.h" #define G_FLD(_i,_ms,_ls) (((_i) << (31 - (_ms))) >> (31 - (_ms) + (_ls))) #define RM_PBITS(_raw) ((G_FLD(_raw, 31, 16) << 15) | G_FLD(_raw, 14, 0)) typedef struct{ unsigned int v; unsigned int raw; char is15; }inst_t; struct score_frame_cache { CORE_ADDR base; CORE_ADDR fp; struct trad_frame_saved_reg *saved_regs; }; #if 0 /* If S+core GCC will generate these instructions in the prologue: lw rx, imm1 addi rx, -imm2 mv! r2, rx then .pdr section is used. */ #define P_SIZE 8 #define PI_SYM 0 #define PI_R_MSK 1 #define PI_R_OFF 2 #define PI_R_LEF 4 #define PI_F_OFF 5 #define PI_F_REG 6 #define PI_RAREG 7 typedef struct frame_extra_info { CORE_ADDR p_frame; unsigned int pdr[P_SIZE]; } extra_info_t; struct obj_priv { bfd_size_type size; char *contents; }; static bfd *the_bfd; static int score_compare_pdr_entries (const void *a, const void *b) { CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a); CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b); if (lhs < rhs) return -1; else if (lhs == rhs) return 0; else return 1; } static void score_analyze_pdr_section (CORE_ADDR startaddr, CORE_ADDR pc, struct frame_info *this_frame, struct score_frame_cache *this_cache) { struct symbol *sym; struct obj_section *sec; extra_info_t *fci_ext; CORE_ADDR leaf_ra_stack_addr = -1; gdb_assert (startaddr <= pc); gdb_assert (this_cache != NULL); fci_ext = frame_obstack_zalloc (sizeof (extra_info_t)); if ((sec = find_pc_section (pc)) == NULL) { error ("Error: Can't find section in file:%s, line:%d!", __FILE__, __LINE__); return; } /* Anylyze .pdr section and get coresponding fields. */ { static struct obj_priv *priv = NULL; if (priv == NULL) { asection *bfdsec; priv = obstack_alloc (&sec->objfile->objfile_obstack, sizeof (struct obj_priv)); if ((bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr"))) { priv->size = bfd_section_size (sec->objfile->obfd, bfdsec); priv->contents = obstack_alloc (&sec->objfile->objfile_obstack, priv->size); bfd_get_section_contents (sec->objfile->obfd, bfdsec, priv->contents, 0, priv->size); the_bfd = sec->objfile->obfd; qsort (priv->contents, priv->size / 32, 32, score_compare_pdr_entries); the_bfd = NULL; } else priv->size = 0; } if (priv->size != 0) { int low = 0, mid, high = priv->size / 32; char *ptr; do { CORE_ADDR pdr_pc; mid = (low + high) / 2; ptr = priv->contents + mid * 32; pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); pdr_pc += ANOFFSET (sec->objfile->section_offsets, SECT_OFF_TEXT (sec->objfile)); if (pdr_pc == startaddr) break; if (pdr_pc > startaddr) high = mid; else low = mid + 1; } while (low != high); if (low != high) { gdb_assert (bfd_get_32 (sec->objfile->obfd, ptr) == startaddr); #define EXT_PDR(_pi) bfd_get_32(sec->objfile->obfd, ptr+((_pi)<<2)) fci_ext->pdr[PI_SYM] = EXT_PDR (PI_SYM); fci_ext->pdr[PI_R_MSK] = EXT_PDR (PI_R_MSK); fci_ext->pdr[PI_R_OFF] = EXT_PDR (PI_R_OFF); fci_ext->pdr[PI_R_LEF] = EXT_PDR (PI_R_LEF); fci_ext->pdr[PI_F_OFF] = EXT_PDR (PI_F_OFF); fci_ext->pdr[PI_F_REG] = EXT_PDR (PI_F_REG); fci_ext->pdr[PI_RAREG] = EXT_PDR (PI_RAREG); #undef EXT_PDR } } } } #endif #if 0 /* Open these functions if build with simulator. */ int score_target_can_use_watch (int type, int cnt, int othertype) { if (strcmp (current_target.to_shortname, "sim") == 0) { return soc_gh_can_use_watch (type, cnt); } else { return (*current_target.to_can_use_hw_breakpoint) (type, cnt, othertype); } } int score_stopped_by_watch (void) { if (strcmp (current_target.to_shortname, "sim") == 0) { return soc_gh_stopped_by_watch (); } else { return (*current_target.to_stopped_by_watchpoint) (); } } int score_target_insert_watchpoint (CORE_ADDR addr, int len, int type) { if (strcmp (current_target.to_shortname, "sim") == 0) { return soc_gh_add_watch (addr, len, type); } else { return (*current_target.to_insert_watchpoint) (addr, len, type); } } int score_target_remove_watchpoint (CORE_ADDR addr, int len, int type) { if (strcmp (current_target.to_shortname, "sim") == 0) { return soc_gh_del_watch (addr, len, type); } else { return (*current_target.to_remove_watchpoint) (addr, len, type); } } int score_target_insert_hw_breakpoint (struct bp_target_info * bp_tgt) { if (strcmp (current_target.to_shortname, "sim") == 0) { return soc_gh_add_hardbp (bp_tgt->placed_address); } else { return (*current_target.to_insert_hw_breakpoint) (bp_tgt); } } int score_target_remove_hw_breakpoint (struct bp_target_info * bp_tgt) { if (strcmp (current_target.to_shortname, "sim") == 0) { return soc_gh_del_hardbp (bp_tgt->placed_address); } else { return (*current_target.to_remove_hw_breakpoint) (bp_tgt); } } #endif static struct type * score_register_type (struct gdbarch *gdbarch, int regnum) { gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS); return builtin_type_uint32; } static CORE_ADDR score_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, SCORE_PC_REGNUM); } static CORE_ADDR score_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, SCORE_SP_REGNUM); } static const char * score_register_name (struct gdbarch *gdbarch, int regnum) { const char *score_register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "PSR", "COND", "ECR", "EXCPVEC", "CCR", "EPC", "EMA", "TLBLOCK", "TLBPT", "PEADDR", "TLBRPT", "PEVN", "PECTX", "LIMPFN", "LDMPFN", "PREV", "DREG", "PC", "DSAVE", "COUNTER", "LDCR", "STCR", "CEH", "CEL", }; gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS); return score_register_names[regnum]; } static int score_register_sim_regno (struct gdbarch *gdbarch, int regnum) { gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS); return regnum; } static int score_print_insn (bfd_vma memaddr, struct disassemble_info *info) { if (info->endian == BFD_ENDIAN_BIG) return print_insn_big_score (memaddr, info); else return print_insn_little_score (memaddr, info); } static const gdb_byte * score_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) { gdb_byte buf[SCORE_INSTLEN] = { 0 }; int ret; unsigned int raw; if ((ret = target_read_memory (*pcptr & ~0x3, buf, SCORE_INSTLEN)) != 0) { error ("Error: target_read_memory in file:%s, line:%d!", __FILE__, __LINE__); } raw = extract_unsigned_integer (buf, SCORE_INSTLEN); if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) { if (!(raw & 0x80008000)) { /* 16bits instruction. */ static gdb_byte big_breakpoint16[] = { 0x60, 0x02 }; *pcptr &= ~0x1; *lenptr = sizeof (big_breakpoint16); return big_breakpoint16; } else { /* 32bits instruction. */ static gdb_byte big_breakpoint32[] = { 0x80, 0x00, 0x80, 0x06 }; *pcptr &= ~0x3; *lenptr = sizeof (big_breakpoint32); return big_breakpoint32; } } else { if (!(raw & 0x80008000)) { /* 16bits instruction. */ static gdb_byte little_breakpoint16[] = { 0x02, 0x60 }; *pcptr &= ~0x1; *lenptr = sizeof (little_breakpoint16); return little_breakpoint16; } else { /* 32bits instruction. */ static gdb_byte little_breakpoint32[] = { 0x06, 0x80, 0x00, 0x80 }; *pcptr &= ~0x3; *lenptr = sizeof (little_breakpoint32); return little_breakpoint32; } } } static CORE_ADDR score_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) { return align_down (addr, 16); } static void score_xfer_register (struct regcache *regcache, int regnum, int length, enum bfd_endian endian, gdb_byte *readbuf, const gdb_byte *writebuf, int buf_offset) { int reg_offset = 0; gdb_assert (regnum >= 0 && regnum < SCORE_NUM_REGS); switch (endian) { case BFD_ENDIAN_BIG: reg_offset = SCORE_REGSIZE - length; break; case BFD_ENDIAN_LITTLE: reg_offset = 0; break; case BFD_ENDIAN_UNKNOWN: reg_offset = 0; break; default: error ("Error: score_xfer_register in file:%s, line:%d!", __FILE__, __LINE__); } if (readbuf != NULL) regcache_cooked_read_part (regcache, regnum, reg_offset, length, readbuf + buf_offset); if (writebuf != NULL) regcache_cooked_write_part (regcache, regnum, reg_offset, length, writebuf + buf_offset); } static enum return_value_convention score_return_value (struct gdbarch *gdbarch, struct type *func_type, struct type *type, struct regcache *regcache, gdb_byte * readbuf, const gdb_byte * writebuf) { if (TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION || TYPE_CODE (type) == TYPE_CODE_ARRAY) return RETURN_VALUE_STRUCT_CONVENTION; else { int offset; int regnum; for (offset = 0, regnum = SCORE_A0_REGNUM; offset < TYPE_LENGTH (type); offset += SCORE_REGSIZE, regnum++) { int xfer = SCORE_REGSIZE; if (offset + xfer > TYPE_LENGTH (type)) xfer = TYPE_LENGTH (type) - offset; score_xfer_register (regcache, regnum, xfer, gdbarch_byte_order (gdbarch), readbuf, writebuf, offset); } return RETURN_VALUE_REGISTER_CONVENTION; } } static struct frame_id score_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) { return frame_id_build ( get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM), get_frame_pc (this_frame)); } static int score_type_needs_double_align (struct type *type) { enum type_code typecode = TYPE_CODE (type); if ((typecode == TYPE_CODE_INT && TYPE_LENGTH (type) == 8) || (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)) return 1; else if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) { int i, n; n = TYPE_NFIELDS (type); for (i = 0; i < n; i++) if (score_type_needs_double_align (TYPE_FIELD_TYPE (type, i))) return 1; return 0; } return 0; } static CORE_ADDR score_push_dummy_call (struct gdbarch *gdbarch, struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { int argnum; int argreg; int arglen = 0; CORE_ADDR stack_offset = 0; CORE_ADDR addr = 0; /* Step 1, Save RA. */ regcache_cooked_write_unsigned (regcache, SCORE_RA_REGNUM, bp_addr); /* Step 2, Make space on the stack for the args. */ struct_addr = align_down (struct_addr, 16); sp = align_down (sp, 16); for (argnum = 0; argnum < nargs; argnum++) arglen += align_up (TYPE_LENGTH (value_type (args[argnum])), SCORE_REGSIZE); sp -= align_up (arglen, 16); argreg = SCORE_BEGIN_ARG_REGNUM; /* Step 3, Check if struct return then save the struct address to r4 and increase the stack_offset by 4. */ if (struct_return) { regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); stack_offset += SCORE_REGSIZE; } /* Step 4, Load arguments: If arg length is too long (> 4 bytes), then split the arg and save every parts. */ for (argnum = 0; argnum < nargs; argnum++) { struct value *arg = args[argnum]; struct type *arg_type = check_typedef (value_type (arg)); enum type_code typecode = TYPE_CODE (arg_type); const gdb_byte *val = value_contents (arg); int downward_offset = 0; int odd_sized_struct_p; int arg_last_part_p = 0; arglen = TYPE_LENGTH (arg_type); odd_sized_struct_p = (arglen > SCORE_REGSIZE && arglen % SCORE_REGSIZE != 0); /* If a arg should be aligned to 8 bytes (long long or double), the value should be put to even register numbers. */ if (score_type_needs_double_align (arg_type)) { if (argreg & 1) argreg++; } /* If sizeof a block < SCORE_REGSIZE, then Score GCC will chose the default "downward"/"upward" method: Example: struct struc { char a; char b; char c; } s = {'a', 'b', 'c'}; Big endian: s = {X, 'a', 'b', 'c'} Little endian: s = {'a', 'b', 'c', X} Where X is a hole. */ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) && argreg > SCORE_LAST_ARG_REGNUM && arglen < SCORE_REGSIZE) downward_offset += (SCORE_REGSIZE - arglen); while (arglen > 0) { int partial_len = arglen < SCORE_REGSIZE ? arglen : SCORE_REGSIZE; ULONGEST regval = extract_unsigned_integer (val, partial_len); /* The last part of a arg should shift left when gdbarch_byte_order is BFD_ENDIAN_BIG. */ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG && arg_last_part_p == 1 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) regval <<= ((SCORE_REGSIZE - partial_len) * TARGET_CHAR_BIT); /* Always increase the stack_offset and save args to stack. */ addr = sp + stack_offset + downward_offset; write_memory (addr, val, partial_len); if (argreg <= SCORE_LAST_ARG_REGNUM) { regcache_cooked_write_unsigned (regcache, argreg++, regval); if (arglen > SCORE_REGSIZE && arglen < SCORE_REGSIZE * 2) arg_last_part_p = 1; } val += partial_len; arglen -= partial_len; stack_offset += align_up (partial_len, SCORE_REGSIZE); } } /* Step 5, Save SP. */ regcache_cooked_write_unsigned (regcache, SCORE_SP_REGNUM, sp); return sp; } static char * score_malloc_and_get_memblock (CORE_ADDR addr, CORE_ADDR size) { int ret; char *memblock = NULL; if (size < 0) { error ("Error: malloc size < 0 in file:%s, line:%d!", __FILE__, __LINE__); return NULL; } else if (size == 0) return NULL; memblock = (char *) xmalloc (size); memset (memblock, 0, size); ret = target_read_memory (addr & ~0x3, memblock, size); if (ret) { error ("Error: target_read_memory in file:%s, line:%d!", __FILE__, __LINE__); return NULL; } return memblock; } static void score_free_memblock (char *memblock) { xfree (memblock); } static void score_adjust_memblock_ptr (char **memblock, CORE_ADDR prev_pc, CORE_ADDR cur_pc) { if (prev_pc == -1) { /* First time call this function, do nothing. */ } else if (cur_pc - prev_pc == 2 && (cur_pc & 0x3) == 0) { /* First 16-bit instruction, then 32-bit instruction. */ *memblock += SCORE_INSTLEN; } else if (cur_pc - prev_pc == 4) { /* Is 32-bit instruction, increase MEMBLOCK by 4. */ *memblock += SCORE_INSTLEN; } } static inst_t * score_fetch_inst (struct gdbarch *gdbarch, CORE_ADDR addr, char *memblock) { static inst_t inst = { 0, 0 }; char buf[SCORE_INSTLEN] = { 0 }; int big; int ret; if (target_has_execution && memblock != NULL) { /* Fetch instruction from local MEMBLOCK. */ memcpy (buf, memblock, SCORE_INSTLEN); } else { /* Fetch instruction from target. */ ret = target_read_memory (addr & ~0x3, buf, SCORE_INSTLEN); if (ret) { error ("Error: target_read_memory in file:%s, line:%d!", __FILE__, __LINE__); return 0; } } inst.raw = extract_unsigned_integer (buf, SCORE_INSTLEN); inst.is15 = !(inst.raw & 0x80008000); inst.v = RM_PBITS (inst.raw); big = (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG); if (inst.is15) { if (big ^ ((addr & 0x2) == 2)) inst.v = G_FLD (inst.v, 29, 15); else inst.v = G_FLD (inst.v, 14, 0); } return &inst; } static CORE_ADDR score_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) { CORE_ADDR cpc = pc; int iscan = 32, stack_sub = 0; while (iscan-- > 0) { inst_t *inst = score_fetch_inst (gdbarch, cpc, NULL); if (!inst) break; if (!inst->is15 && !stack_sub && (G_FLD (inst->v, 29, 25) == 0x1 && G_FLD (inst->v, 24, 20) == 0x0)) { /* addi r0, offset */ pc = stack_sub = cpc + SCORE_INSTLEN; } else if (!inst->is15 && inst->v == RM_PBITS (0x8040bc56)) { /* mv r2, r0 */ pc = cpc + SCORE_INSTLEN; break; } else if (inst->is15 && inst->v == RM_PBITS (0x0203)) { /* mv! r2, r0 */ pc = cpc + SCORE16_INSTLEN; break; } else if (inst->is15 && ((G_FLD (inst->v, 14, 12) == 3) /* j15 form */ || (G_FLD (inst->v, 14, 12) == 4) /* b15 form */ || (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 3, 0) == 0x4))) /* br! */ break; else if (!inst->is15 && ((G_FLD (inst->v, 29, 25) == 2) /* j32 form */ || (G_FLD (inst->v, 29, 25) == 4) /* b32 form */ || (G_FLD (inst->v, 29, 25) == 0x0 && G_FLD (inst->v, 6, 1) == 0x4))) /* br */ break; cpc += inst->is15 ? SCORE16_INSTLEN : SCORE_INSTLEN; } return pc; } static int score_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR cur_pc) { inst_t *inst = score_fetch_inst (gdbarch, cur_pc, NULL); if (inst->v == 0x23) return 1; /* mv! r0, r2 */ else if (G_FLD (inst->v, 14, 12) == 0x2 && G_FLD (inst->v, 3, 0) == 0xa) return 1; /* pop! */ else if (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 7, 0) == 0x34) return 1; /* br! r3 */ else if (G_FLD (inst->v, 29, 15) == 0x2 && G_FLD (inst->v, 6, 1) == 0x2b) return 1; /* mv r0, r2 */ else if (G_FLD (inst->v, 29, 25) == 0x0 && G_FLD (inst->v, 6, 1) == 0x4 && G_FLD (inst->v, 19, 15) == 0x3) return 1; /* br r3 */ else return 0; } static void score_analyze_prologue (CORE_ADDR startaddr, CORE_ADDR pc, struct frame_info *this_frame, struct score_frame_cache *this_cache) { struct gdbarch *gdbarch = get_frame_arch (this_frame); CORE_ADDR sp; CORE_ADDR fp; CORE_ADDR cur_pc = startaddr; int sp_offset = 0; int ra_offset = 0; int fp_offset = 0; int ra_offset_p = 0; int fp_offset_p = 0; int inst_len = 0; char *memblock = NULL; char *memblock_ptr = NULL; CORE_ADDR prev_pc = -1; /* Allocate MEMBLOCK if PC - STARTADDR > 0. */ memblock_ptr = memblock = score_malloc_and_get_memblock (startaddr, pc - startaddr); sp = get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM); fp = get_frame_register_unsigned (this_frame, SCORE_FP_REGNUM); for (; cur_pc < pc; prev_pc = cur_pc, cur_pc += inst_len) { inst_t *inst = NULL; if (memblock != NULL) { /* Reading memory block from target succefully and got all the instructions(from STARTADDR to PC) needed. */ score_adjust_memblock_ptr (&memblock, prev_pc, cur_pc); inst = score_fetch_inst (gdbarch, cur_pc, memblock); } else { /* Otherwise, we fetch 4 bytes from target, and GDB also work correctly. */ inst = score_fetch_inst (gdbarch, cur_pc, NULL); } if (inst->is15 == 1) { inst_len = SCORE16_INSTLEN; if (G_FLD (inst->v, 14, 12) == 0x2 && G_FLD (inst->v, 3, 0) == 0xe) { /* push! */ sp_offset += 4; if (G_FLD (inst->v, 11, 7) == 0x6 && ra_offset_p == 0) { /* push! r3, [r0] */ ra_offset = sp_offset; ra_offset_p = 1; } else if (G_FLD (inst->v, 11, 7) == 0x4 && fp_offset_p == 0) { /* push! r2, [r0] */ fp_offset = sp_offset; fp_offset_p = 1; } } else if (G_FLD (inst->v, 14, 12) == 0x2 && G_FLD (inst->v, 3, 0) == 0xa) { /* pop! */ sp_offset -= 4; } else if (G_FLD (inst->v, 14, 7) == 0xc1 && G_FLD (inst->v, 2, 0) == 0x0) { /* subei! r0, n */ sp_offset += (int) pow (2, G_FLD (inst->v, 6, 3)); } else if (G_FLD (inst->v, 14, 7) == 0xc0 && G_FLD (inst->v, 2, 0) == 0x0) { /* addei! r0, n */ sp_offset -= (int) pow (2, G_FLD (inst->v, 6, 3)); } } else { inst_len = SCORE_INSTLEN; if (G_FLD (inst->v, 29, 15) == 0xc60 && G_FLD (inst->v, 2, 0) == 0x4) { /* sw r3, [r0, offset]+ */ sp_offset += SCORE_INSTLEN; if (ra_offset_p == 0) { ra_offset = sp_offset; ra_offset_p = 1; } } if (G_FLD (inst->v, 29, 15) == 0xc40 && G_FLD (inst->v, 2, 0) == 0x4) { /* sw r2, [r0, offset]+ */ sp_offset += SCORE_INSTLEN; if (fp_offset_p == 0) { fp_offset = sp_offset; fp_offset_p = 1; } } else if (G_FLD (inst->v, 29, 15) == 0x1c60 && G_FLD (inst->v, 2, 0) == 0x0) { /* lw r3, [r0]+, 4 */ sp_offset -= SCORE_INSTLEN; ra_offset_p = 1; } else if (G_FLD (inst->v, 29, 15) == 0x1c40 && G_FLD (inst->v, 2, 0) == 0x0) { /* lw r2, [r0]+, 4 */ sp_offset -= SCORE_INSTLEN; fp_offset_p = 1; } else if (G_FLD (inst->v, 29, 17) == 0x100 && G_FLD (inst->v, 0, 0) == 0x0) { /* addi r0, -offset */ sp_offset += 65536 - G_FLD (inst->v, 16, 1); } else if (G_FLD (inst->v, 29, 17) == 0x110 && G_FLD (inst->v, 0, 0) == 0x0) { /* addi r2, offset */ if (pc - cur_pc > 4) { unsigned int save_v = inst->v; inst_t *inst2 = score_fetch_inst (gdbarch, cur_pc + SCORE_INSTLEN, NULL); if (inst2->v == 0x23) { /* mv! r0, r2 */ sp_offset -= G_FLD (save_v, 16, 1); } } } } } /* Save RA. */ if (ra_offset_p == 1) { if (this_cache->saved_regs[SCORE_PC_REGNUM].addr == -1) this_cache->saved_regs[SCORE_PC_REGNUM].addr = sp + sp_offset - ra_offset; } else { this_cache->saved_regs[SCORE_PC_REGNUM] = this_cache->saved_regs[SCORE_RA_REGNUM]; } /* Save FP. */ if (fp_offset_p == 1) { if (this_cache->saved_regs[SCORE_FP_REGNUM].addr == -1) this_cache->saved_regs[SCORE_FP_REGNUM].addr = sp + sp_offset - fp_offset; } /* Save SP and FP. */ this_cache->base = sp + sp_offset; this_cache->fp = fp; /* Don't forget to free MEMBLOCK if we allocated it. */ if (memblock_ptr != NULL) score_free_memblock (memblock_ptr); } static struct score_frame_cache * score_make_prologue_cache (struct frame_info *this_frame, void **this_cache) { struct score_frame_cache *cache; if ((*this_cache) != NULL) return (*this_cache); cache = FRAME_OBSTACK_ZALLOC (struct score_frame_cache); (*this_cache) = cache; cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); /* Analyze the prologue. */ { const CORE_ADDR pc = get_frame_pc (this_frame); CORE_ADDR start_addr; find_pc_partial_function (pc, NULL, &start_addr, NULL); if (start_addr == 0) return cache; score_analyze_prologue (start_addr, pc, this_frame, *this_cache); } /* Save SP. */ trad_frame_set_value (cache->saved_regs, SCORE_SP_REGNUM, cache->base); return (*this_cache); } static void score_prologue_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { struct score_frame_cache *info = score_make_prologue_cache (this_frame, this_cache); (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); } static struct value * score_prologue_prev_register (struct frame_info *this_frame, void **this_cache, int regnum) { struct score_frame_cache *info = score_make_prologue_cache (this_frame, this_cache); return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); } static const struct frame_unwind score_prologue_unwind = { NORMAL_FRAME, score_prologue_this_id, score_prologue_prev_register, NULL, default_frame_sniffer }; static CORE_ADDR score_prologue_frame_base_address (struct frame_info *this_frame, void **this_cache) { struct score_frame_cache *info = score_make_prologue_cache (this_frame, this_cache); return info->fp; } static const struct frame_base score_prologue_frame_base = { &score_prologue_unwind, score_prologue_frame_base_address, score_prologue_frame_base_address, score_prologue_frame_base_address, }; static const struct frame_base * score_prologue_frame_base_sniffer (struct frame_info *this_frame) { return &score_prologue_frame_base; } static struct gdbarch * score_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) { return (arches->gdbarch); } gdbarch = gdbarch_alloc (&info, 0); set_gdbarch_short_bit (gdbarch, 16); set_gdbarch_int_bit (gdbarch, 32); set_gdbarch_float_bit (gdbarch, 32); set_gdbarch_double_bit (gdbarch, 64); set_gdbarch_long_double_bit (gdbarch, 64); set_gdbarch_register_sim_regno (gdbarch, score_register_sim_regno); set_gdbarch_pc_regnum (gdbarch, SCORE_PC_REGNUM); set_gdbarch_sp_regnum (gdbarch, SCORE_SP_REGNUM); set_gdbarch_num_regs (gdbarch, SCORE_NUM_REGS); set_gdbarch_register_name (gdbarch, score_register_name); set_gdbarch_breakpoint_from_pc (gdbarch, score_breakpoint_from_pc); set_gdbarch_register_type (gdbarch, score_register_type); set_gdbarch_frame_align (gdbarch, score_frame_align); set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_unwind_pc (gdbarch, score_unwind_pc); set_gdbarch_unwind_sp (gdbarch, score_unwind_sp); set_gdbarch_print_insn (gdbarch, score_print_insn); set_gdbarch_skip_prologue (gdbarch, score_skip_prologue); set_gdbarch_in_function_epilogue_p (gdbarch, score_in_function_epilogue_p); /* Watchpoint hooks. */ set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); /* Dummy frame hooks. */ set_gdbarch_return_value (gdbarch, score_return_value); set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); set_gdbarch_dummy_id (gdbarch, score_dummy_id); set_gdbarch_push_dummy_call (gdbarch, score_push_dummy_call); /* Normal frame hooks. */ dwarf2_append_unwinders (gdbarch); frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); frame_unwind_append_unwinder (gdbarch, &score_prologue_unwind); frame_base_append_sniffer (gdbarch, score_prologue_frame_base_sniffer); return gdbarch; } extern initialize_file_ftype _initialize_score_tdep; void _initialize_score_tdep (void) { gdbarch_register (bfd_arch_score, score_gdbarch_init, NULL); }