# Copyright 2010-2015 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Return true if the target supports DWARF-2 and uses gas. # For now pick a sampling of likely targets. proc dwarf2_support {} { if {[istarget *-*-linux*] || [istarget *-*-gnu*] || [istarget *-*-elf*] || [istarget *-*-openbsd*] || [istarget arm*-*-eabi*] || [istarget arm*-*-symbianelf*] || [istarget powerpc-*-eabi*]} { return 1 } return 0 } # Build an executable from a fission-based .S file. # This handles the extra work of splitting the .o into non-dwo and dwo # pieces, making sure the .dwo is available if we're using cc-with-tweaks.sh # to build a .dwp file. # The arguments and results are the same as for build_executable. # # Current restrictions: # - only supports one source file # - cannot be run on remote hosts proc build_executable_from_fission_assembler { testname executable sources options } { verbose -log "build_executable_from_fission_assembler $testname $executable $sources $options" if { [llength $sources] != 1 } { error "Only one source file supported." } if [is_remote host] { error "Remote hosts are not supported." } global srcdir subdir set source_file ${srcdir}/${subdir}/${sources} set root_name [file rootname [file tail $source_file]] set output_base [standard_output_file $root_name] set object_file ${output_base}.o set dwo_file ${output_base}.dwo set object_options "object $options" set objcopy [gdb_find_objcopy] set result [gdb_compile $source_file $object_file object $options] if { "$result" != "" } { return -1 } set command "$objcopy --extract-dwo $object_file $dwo_file" verbose -log "Executing $command" set result [catch "exec $command" output] verbose -log "objcopy --extract-dwo output: $output" if { $result == 1 } { return -1 } set command "$objcopy --strip-dwo $object_file" verbose -log "Executing $command" set result [catch "exec $command" output] verbose -log "objcopy --strip-dwo output: $output" if { $result == 1 } { return -1 } set result [gdb_compile $object_file $executable executable {nodebug}] if { "$result" != "" } { return -1 } return 0 } # Return a list of expressions about function FUNC's address and length. # The first expression is the address of function FUNC, and the second # one is FUNC's length. SRC is the source file having function FUNC. # An internal label ${func}_label must be defined inside FUNC: # # int main (void) # { # asm ("main_label: .globl main_label"); # return 0; # } # # This label is needed to compute the start address of function FUNC. # If the compiler is gcc, we can do the following to get function start # and end address too: # # asm ("func_start: .globl func_start"); # static void func (void) {} # asm ("func_end: .globl func_end"); # # however, this isn't portable, because other compilers, such as clang, # may not guarantee the order of global asms and function. The code # becomes: # # asm ("func_start: .globl func_start"); # asm ("func_end: .globl func_end"); # static void func (void) {} # proc function_range { func src } { global decimal gdb_prompt set exe [standard_temp_file func_addr[pid].x] gdb_compile $src $exe executable {debug} gdb_exit gdb_start gdb_load "$exe" # Compute the label offset, and we can get the function start address # by "${func}_label - $func_label_offset". set func_label_offset "" set test "p ${func}_label - ${func}" gdb_test_multiple $test $test { -re ".* = ($decimal)\r\n$gdb_prompt $" { set func_label_offset $expect_out(1,string) } } # Compute the function length. global hex set func_length "" set test "disassemble $func" gdb_test_multiple $test $test { -re ".*$hex <\\+($decimal)>:\[^\r\n\]+\r\nEnd of assembler dump\.\r\n$gdb_prompt $" { set func_length $expect_out(1,string) } } # Compute the size of the last instruction. if { $func_length == 0 } then { set func_pattern "$func" } else { set func_pattern "$func\\+$func_length" } set test "x/2i $func+$func_length" gdb_test_multiple $test $test { -re ".*($hex) <$func_pattern>:\[^\r\n\]+\r\n\[ \]+($hex).*\.\r\n$gdb_prompt $" { set start $expect_out(1,string) set end $expect_out(2,string) set func_length [expr $func_length + $end - $start] } } return [list "${func}_label - $func_label_offset" $func_length] } # A DWARF assembler. # # All the variables in this namespace are private to the # implementation. Also, any procedure whose name starts with "_" is # private as well. Do not use these. # # Exported functions are documented at their definition. # # In addition to the hand-written functions documented below, this # module automatically generates a function for each DWARF tag. For # most tags, two forms are made: a full name, and one with the # "DW_TAG_" prefix stripped. For example, you can use either # 'DW_TAG_compile_unit' or 'compile_unit' interchangeably. # # There are two exceptions to this rule: DW_TAG_variable and # DW_TAG_namespace. For these, the full name must always be used, # as the short name conflicts with Tcl builtins. (Should future # versions of Tcl or DWARF add more conflicts, this list will grow. # If you want to be safe you should always use the full names.) # # Each tag procedure is defined like: # # proc DW_TAG_mumble {{attrs {}} {children {}}} { ... } # # ATTRS is an optional list of attributes. # It is run through 'subst' in the caller's context before processing. # # Each attribute in the list has one of two forms: # 1. { NAME VALUE } # 2. { NAME VALUE FORM } # # In each case, NAME is the attribute's name. # This can either be the full name, like 'DW_AT_name', or a shortened # name, like 'name'. These are fully equivalent. # # Besides DWARF standard attributes, assembler supports 'macro' attribute # which will be substituted by one or more standard or macro attributes. # supported macro attributes are: # # - MACRO_AT_range { FUNC FILE } # It is substituted by DW_AT_low_pc and DW_AT_high_pc with the start and # end address of function FUNC in file FILE. # # - MACRO_AT_func { FUNC FILE } # It is substituted by DW_AT_name with FUNC and MACRO_AT_range. # # If FORM is given, it should name a DW_FORM_ constant. # This can either be the short form, like 'DW_FORM_addr', or a # shortened version, like 'addr'. If the form is given, VALUE # is its value; see below. In some cases, additional processing # is done; for example, DW_FORM_strp manages the .debug_str # section automatically. # # If FORM is 'SPECIAL_expr', then VALUE is treated as a location # expression. The effective form is then DW_FORM_block, and VALUE # is passed to the (internal) '_location' proc to be translated. # This proc implements a miniature DW_OP_ assembler. # # If FORM is not given, it is guessed: # * If VALUE starts with the "@" character, the rest of VALUE is # looked up as a DWARF constant, and DW_FORM_sdata is used. For # example, '@DW_LANG_c89' could be used. # * If VALUE starts with the ":" character, then it is a label # reference. The rest of VALUE is taken to be the name of a label, # and DW_FORM_ref4 is used. See 'new_label' and 'define_label'. # * Otherwise, VALUE is taken to be a string and DW_FORM_string is # used. In order to prevent bugs where a numeric value is given but # no form is specified, it is an error if the value looks like a number # (using Tcl's "string is integer") and no form is provided. # More form-guessing functionality may be added. # # CHILDREN is just Tcl code that can be used to define child DIEs. It # is evaluated in the caller's context. # # Currently this code is missing nice support for CFA handling, and # probably other things as well. namespace eval Dwarf { # True if the module has been initialized. variable _initialized 0 # Constants from dwarf2.h. variable _constants # DW_AT short names. variable _AT # DW_FORM short names. variable _FORM # DW_OP short names. variable _OP # The current output file. variable _output_file # Note: The _cu_ values here also apply to type units (TUs). # Think of a TU as a special kind of CU. # Current CU count. variable _cu_count # The current CU's base label. variable _cu_label # The current CU's version. variable _cu_version # The current CU's address size. variable _cu_addr_size # The current CU's offset size. variable _cu_offset_size # Label generation number. variable _label_num # The deferred output array. The index is the section name; the # contents hold the data for that section. variable _deferred_output # If empty, we should write directly to the output file. # Otherwise, this is the name of a section to write to. variable _defer # The abbrev section. Typically .debug_abbrev but can be .debug_abbrev.dwo # for Fission. variable _abbrev_section # The next available abbrev number in the current CU's abbrev # table. variable _abbrev_num # The string table for this assembly. The key is the string; the # value is the label for that string. variable _strings proc _process_one_constant {name value} { variable _constants variable _AT variable _FORM variable _OP set _constants($name) $value if {![regexp "^DW_(\[A-Z\]+)_(\[A-Za-z0-9_\]+)$" $name \ ignore prefix name2]} { error "non-matching name: $name" } if {$name2 == "lo_user" || $name2 == "hi_user"} { return } # We only try to shorten some very common things. # FIXME: CFA? switch -exact -- $prefix { TAG { # Create two procedures for the tag. These call # _handle_DW_TAG with the full tag name baked in; this # does all the actual work. proc $name {{attrs {}} {children {}}} \ "_handle_DW_TAG $name \$attrs \$children" # Filter out ones that are known to clash. if {$name2 == "variable" || $name2 == "namespace"} { set name2 "tag_$name2" } if {[info commands $name2] != {}} { error "duplicate proc name: from $name" } proc $name2 {{attrs {}} {children {}}} \ "_handle_DW_TAG $name \$attrs \$children" } AT { set _AT($name2) $name } FORM { set _FORM($name2) $name } OP { set _OP($name2) $name } default { return } } } proc _read_constants {} { global srcdir hex decimal variable _constants # DWARF name-matching regexp. set dwrx "DW_\[a-zA-Z0-9_\]+" # Whitespace regexp. set ws "\[ \t\]+" set fd [open [file join $srcdir .. .. include dwarf2.h]] while {![eof $fd]} { set line [gets $fd] if {[regexp -- "^${ws}($dwrx)${ws}=${ws}($hex|$decimal),?$" \ $line ignore name value ignore2]} { _process_one_constant $name $value } } close $fd set fd [open [file join $srcdir .. .. include dwarf2.def]] while {![eof $fd]} { set line [gets $fd] if {[regexp -- \ "^DW_\[A-Z_\]+${ws}\\(($dwrx),${ws}($hex|$decimal)\\)$" \ $line ignore name value ignore2]} { _process_one_constant $name $value } } close $fd set _constants(SPECIAL_expr) $_constants(DW_FORM_block) } proc _quote {string} { # FIXME return "\"${string}\\0\"" } proc _nz_quote {string} { # For now, no quoting is done. return "\"${string}\"" } proc _handle_DW_FORM {form value} { switch -exact -- $form { DW_FORM_string { _op .ascii [_quote $value] } DW_FORM_flag_present { # We don't need to emit anything. } DW_FORM_data4 - DW_FORM_ref4 { _op .4byte $value } DW_FORM_ref_addr { variable _cu_offset_size variable _cu_version variable _cu_addr_size if {$_cu_version == 2} { set size $_cu_addr_size } else { set size $_cu_offset_size } _op .${size}byte $value } DW_FORM_ref1 - DW_FORM_flag - DW_FORM_data1 { _op .byte $value } DW_FORM_sdata { _op .sleb128 $value } DW_FORM_ref_udata - DW_FORM_udata { _op .uleb128 $value } DW_FORM_addr { variable _cu_addr_size _op .${_cu_addr_size}byte $value } DW_FORM_data2 - DW_FORM_ref2 { _op .2byte $value } DW_FORM_data8 - DW_FORM_ref8 - DW_FORM_ref_sig8 { _op .8byte $value } DW_FORM_strp { variable _strings variable _cu_offset_size if {![info exists _strings($value)]} { set _strings($value) [new_label strp] _defer_output .debug_string { define_label $_strings($value) _op .ascii [_quote $value] } } _op .${_cu_offset_size}byte $_strings($value) "strp: $value" } SPECIAL_expr { set l1 [new_label "expr_start"] set l2 [new_label "expr_end"] _op .uleb128 "$l2 - $l1" "expression" define_label $l1 _location $value define_label $l2 } DW_FORM_block1 { set len [string length $value] if {$len > 255} { error "DW_FORM_block1 length too long" } _op .byte $len _op .ascii [_nz_quote $value] } DW_FORM_block2 - DW_FORM_block4 - DW_FORM_block - DW_FORM_ref2 - DW_FORM_indirect - DW_FORM_sec_offset - DW_FORM_exprloc - DW_FORM_GNU_addr_index - DW_FORM_GNU_str_index - DW_FORM_GNU_ref_alt - DW_FORM_GNU_strp_alt - default { error "unhandled form $form" } } } proc _guess_form {value varname} { upvar $varname new_value switch -exact -- [string range $value 0 0] { @ { # Constant reference. variable _constants set new_value $_constants([string range $value 1 end]) # Just the simplest. return DW_FORM_sdata } : { # Label reference. variable _cu_label set new_value "[string range $value 1 end] - $_cu_label" return DW_FORM_ref4 } default { return DW_FORM_string } } } # Map NAME to its canonical form. proc _map_name {name ary} { variable $ary if {[info exists ${ary}($name)]} { set name [set ${ary}($name)] } return $name } proc _handle_attribute { attr_name attr_value attr_form } { variable _abbrev_section variable _constants _handle_DW_FORM $attr_form $attr_value _defer_output $_abbrev_section { _op .uleb128 $_constants($attr_name) $attr_name _op .uleb128 $_constants($attr_form) $attr_form } } # Handle macro attribute MACRO_AT_range. proc _handle_macro_at_range { attr_value } { if {[llength $attr_value] != 2} { error "usage: MACRO_AT_range { func file }" } set func [lindex $attr_value 0] set src [lindex $attr_value 1] set result [function_range $func $src] _handle_attribute DW_AT_low_pc [lindex $result 0] \ DW_FORM_addr _handle_attribute DW_AT_high_pc \ "[lindex $result 0] + [lindex $result 1]" DW_FORM_addr } # Handle macro attribute MACRO_AT_func. proc _handle_macro_at_func { attr_value } { if {[llength $attr_value] != 2} { error "usage: MACRO_AT_func { func file }" } _handle_attribute DW_AT_name [lindex $attr_value 0] DW_FORM_string _handle_macro_at_range $attr_value } proc _handle_DW_TAG {tag_name {attrs {}} {children {}}} { variable _abbrev_section variable _abbrev_num variable _constants set has_children [expr {[string length $children] > 0}] set my_abbrev [incr _abbrev_num] # We somewhat wastefully emit a new abbrev entry for each tag. # There's no reason for this other than laziness. _defer_output $_abbrev_section { _op .uleb128 $my_abbrev "Abbrev start" _op .uleb128 $_constants($tag_name) $tag_name _op .byte $has_children "has_children" } _op .uleb128 $my_abbrev "Abbrev ($tag_name)" foreach attr $attrs { set attr_name [_map_name [lindex $attr 0] _AT] set attr_value [uplevel 2 [list subst [lindex $attr 1]]] if { [string equal "MACRO_AT_func" $attr_name] } { _handle_macro_at_func $attr_value } elseif { [string equal "MACRO_AT_range" $attr_name] } { _handle_macro_at_range $attr_value } else { if {[llength $attr] > 2} { set attr_form [lindex $attr 2] } else { # If the value looks like an integer, a form is required. if [string is integer $attr_value] { error "Integer value requires a form" } set attr_form [_guess_form $attr_value attr_value] } set attr_form [_map_name $attr_form _FORM] _handle_attribute $attr_name $attr_value $attr_form } } _defer_output $_abbrev_section { # Terminator. _op .byte 0x0 Terminator _op .byte 0x0 Terminator } if {$has_children} { uplevel 2 $children # Terminate children. _op .byte 0x0 "Terminate children" } } proc _emit {string} { variable _output_file variable _defer variable _deferred_output if {$_defer == ""} { puts $_output_file $string } else { append _deferred_output($_defer) ${string}\n } } proc _section {name {flags ""} {type ""}} { if {$flags == "" && $type == ""} { _emit " .section $name" } elseif {$type == ""} { _emit " .section $name, \"$flags\"" } else { _emit " .section $name, \"$flags\", %$type" } } # SECTION_SPEC is a list of arguments to _section. proc _defer_output {section_spec body} { variable _defer variable _deferred_output set old_defer $_defer set _defer [lindex $section_spec 0] if {![info exists _deferred_output($_defer)]} { set _deferred_output($_defer) "" eval _section $section_spec } uplevel $body set _defer $old_defer } proc _defer_to_string {body} { variable _defer variable _deferred_output set old_defer $_defer set _defer temp set _deferred_output($_defer) "" uplevel $body set result $_deferred_output($_defer) unset _deferred_output($_defer) set _defer $old_defer return $result } proc _write_deferred_output {} { variable _output_file variable _deferred_output foreach section [array names _deferred_output] { # The data already has a newline. puts -nonewline $_output_file $_deferred_output($section) } # Save some memory. unset _deferred_output } proc _op {name value {comment ""}} { set text " ${name} ${value}" if {$comment != ""} { # Try to make stuff line up nicely. while {[string length $text] < 40} { append text " " } append text "/* ${comment} */" } _emit $text } proc _compute_label {name} { return ".L${name}" } # Return a name suitable for use as a label. If BASE_NAME is # specified, it is incorporated into the label name; this is to # make debugging the generated assembler easier. If BASE_NAME is # not specified a generic default is used. This proc does not # define the label; see 'define_label'. 'new_label' attempts to # ensure that label names are unique. proc new_label {{base_name label}} { variable _label_num return [_compute_label ${base_name}[incr _label_num]] } # Define a label named NAME. Ordinarily, NAME comes from a call # to 'new_label', but this is not required. proc define_label {name} { _emit "${name}:" } # Declare a global label. This is typically used to refer to # labels defined in other files, for example a function defined in # a .c file. proc extern {args} { foreach name $args { _op .global $name } } # A higher-level interface to label handling. # # ARGS is a list of label descriptors. Each one is either a # single element, or a list of two elements -- a name and some # text. For each descriptor, 'new_label' is invoked. If the list # form is used, the second element in the list is passed as an # argument. The label name is used to define a variable in the # enclosing scope; this can be used to refer to the label later. # The label name is also used to define a new proc whose name is # the label name plus a trailing ":". This proc takes a body as # an argument and can be used to define the label at that point; # then the body, if any, is evaluated in the caller's context. # # For example: # # declare_labels int_label # something { ... $int_label } ;# refer to the label # int_label: constant { ... } ;# define the label proc declare_labels {args} { foreach arg $args { set name [lindex $arg 0] set text [lindex $arg 1] upvar $name label_var if {$text == ""} { set label_var [new_label] } else { set label_var [new_label $text] } proc ${name}: {args} [format { define_label %s uplevel $args } $label_var] } } # This is a miniature assembler for location expressions. It is # suitable for use in the attributes to a DIE. Its output is # prefixed with "=" to make it automatically use DW_FORM_block. # BODY is split by lines, and each line is taken to be a list. # (FIXME should use 'info complete' here.) # Each list's first element is the opcode, either short or long # forms are accepted. # FIXME argument handling # FIXME move docs proc _location {body} { variable _constants variable _cu_label variable _cu_addr_size variable _cu_offset_size foreach line [split $body \n] { # Ignore blank lines, and allow embedded comments. if {[lindex $line 0] == "" || [regexp -- {^[ \t]*#} $line]} { continue } set opcode [_map_name [lindex $line 0] _OP] _op .byte $_constants($opcode) $opcode switch -exact -- $opcode { DW_OP_addr { _op .${_cu_addr_size}byte [lindex $line 1] } DW_OP_pick - DW_OP_const1u - DW_OP_const1s { _op .byte [lindex $line 1] } DW_OP_const2u - DW_OP_const2s { _op .2byte [lindex $line 1] } DW_OP_const4u - DW_OP_const4s { _op .4byte [lindex $line 1] } DW_OP_const8u - DW_OP_const8s { _op .8byte [lindex $line 1] } DW_OP_constu { _op .uleb128 [lindex $line 1] } DW_OP_consts { _op .sleb128 [lindex $line 1] } DW_OP_plus_uconst { _op .uleb128 [lindex $line 1] } DW_OP_piece { _op .uleb128 [lindex $line 1] } DW_OP_bit_piece { _op .uleb128 [lindex $line 1] _op .uleb128 [lindex $line 2] } DW_OP_skip - DW_OP_bra { _op .2byte [lindex $line 1] } DW_OP_GNU_implicit_pointer { if {[llength $line] != 3} { error "usage: DW_OP_GNU_implicit_pointer LABEL OFFSET" } # Here label is a section offset. set label [lindex $line 1] _op .${_cu_offset_size}byte $label _op .sleb128 [lindex $line 2] } DW_OP_deref_size { if {[llength $line] != 2} { error "usage: DW_OP_deref_size SIZE" } _op .byte [lindex $line 1] } default { if {[llength $line] > 1} { error "Unimplemented: operands in location for $opcode" } } } } } # Emit a DWARF CU. # OPTIONS is a list with an even number of elements containing # option-name and option-value pairs. # Current options are: # is_64 0|1 - boolean indicating if you want to emit 64-bit DWARF # default = 0 (32-bit) # version n - DWARF version number to emit # default = 4 # addr_size n - the size of addresses, 32, 64, or default # default = default # fission 0|1 - boolean indicating if generating Fission debug info # default = 0 # BODY is Tcl code that emits the DIEs which make up the body of # the CU. It is evaluated in the caller's context. proc cu {options body} { variable _cu_count variable _abbrev_section variable _abbrev_num variable _cu_label variable _cu_version variable _cu_addr_size variable _cu_offset_size # Establish the defaults. set is_64 0 set _cu_version 4 set _cu_addr_size default set fission 0 set section ".debug_info" set _abbrev_section ".debug_abbrev" foreach { name value } $options { switch -exact -- $name { is_64 { set is_64 $value } version { set _cu_version $value } addr_size { set _cu_addr_size $value } fission { set fission $value } default { error "unknown option $name" } } } if {$_cu_addr_size == "default"} { if {[is_64_target]} { set _cu_addr_size 8 } else { set _cu_addr_size 4 } } set _cu_offset_size [expr { $is_64 ? 8 : 4 }] if { $fission } { set section ".debug_info.dwo" set _abbrev_section ".debug_abbrev.dwo" } _section $section set cu_num [incr _cu_count] set my_abbrevs [_compute_label "abbrev${cu_num}_begin"] set _abbrev_num 1 set _cu_label [_compute_label "cu${cu_num}_begin"] set start_label [_compute_label "cu${cu_num}_start"] set end_label [_compute_label "cu${cu_num}_end"] define_label $_cu_label if {$is_64} { _op .4byte 0xffffffff _op .8byte "$end_label - $start_label" } else { _op .4byte "$end_label - $start_label" } define_label $start_label _op .2byte $_cu_version Version _op .${_cu_offset_size}byte $my_abbrevs Abbrevs _op .byte $_cu_addr_size "Pointer size" _defer_output $_abbrev_section { define_label $my_abbrevs } uplevel $body _defer_output $_abbrev_section { # Emit the terminator. _op .byte 0x0 Terminator _op .byte 0x0 Terminator } define_label $end_label } # Emit a DWARF TU. # OPTIONS is a list with an even number of elements containing # option-name and option-value pairs. # Current options are: # is_64 0|1 - boolean indicating if you want to emit 64-bit DWARF # default = 0 (32-bit) # version n - DWARF version number to emit # default = 4 # addr_size n - the size of addresses, 32, 64, or default # default = default # fission 0|1 - boolean indicating if generating Fission debug info # default = 0 # SIGNATURE is the 64-bit signature of the type. # TYPE_LABEL is the label of the type defined by this TU, # or "" if there is no type (i.e., type stubs in Fission). # BODY is Tcl code that emits the DIEs which make up the body of # the TU. It is evaluated in the caller's context. proc tu {options signature type_label body} { variable _cu_count variable _abbrev_section variable _abbrev_num variable _cu_label variable _cu_version variable _cu_addr_size variable _cu_offset_size # Establish the defaults. set is_64 0 set _cu_version 4 set _cu_addr_size default set fission 0 set section ".debug_types" set _abbrev_section ".debug_abbrev" foreach { name value } $options { switch -exact -- $name { is_64 { set is_64 $value } version { set _cu_version $value } addr_size { set _cu_addr_size $value } fission { set fission $value } default { error "unknown option $name" } } } if {$_cu_addr_size == "default"} { if {[is_64_target]} { set _cu_addr_size 8 } else { set _cu_addr_size 4 } } set _cu_offset_size [expr { $is_64 ? 8 : 4 }] if { $fission } { set section ".debug_types.dwo" set _abbrev_section ".debug_abbrev.dwo" } _section $section set cu_num [incr _cu_count] set my_abbrevs [_compute_label "abbrev${cu_num}_begin"] set _abbrev_num 1 set _cu_label [_compute_label "cu${cu_num}_begin"] set start_label [_compute_label "cu${cu_num}_start"] set end_label [_compute_label "cu${cu_num}_end"] define_label $_cu_label if {$is_64} { _op .4byte 0xffffffff _op .8byte "$end_label - $start_label" } else { _op .4byte "$end_label - $start_label" } define_label $start_label _op .2byte $_cu_version Version _op .${_cu_offset_size}byte $my_abbrevs Abbrevs _op .byte $_cu_addr_size "Pointer size" _op .8byte $signature Signature if { $type_label != "" } { uplevel declare_labels $type_label upvar $type_label my_type_label if {$is_64} { _op .8byte "$my_type_label - $_cu_label" } else { _op .4byte "$my_type_label - $_cu_label" } } else { if {$is_64} { _op .8byte 0 } else { _op .4byte 0 } } _defer_output $_abbrev_section { define_label $my_abbrevs } uplevel $body _defer_output $_abbrev_section { # Emit the terminator. _op .byte 0x0 Terminator _op .byte 0x0 Terminator } define_label $end_label } proc _empty_array {name} { upvar $name the_array catch {unset the_array} set the_array(_) {} unset the_array(_) } # Emit a .gnu_debugaltlink section with the given file name and # build-id. The buildid should be represented as a hexadecimal # string, like "ffeeddcc". proc gnu_debugaltlink {filename buildid} { _defer_output .gnu_debugaltlink { _op .ascii [_quote $filename] foreach {a b} [split $buildid {}] { _op .byte 0x$a$b } } } proc _note {type name hexdata} { set namelen [expr [string length $name] + 1] # Name size. _op .4byte $namelen # Data size. _op .4byte [expr [string length $hexdata] / 2] # Type. _op .4byte $type # The name. _op .ascii [_quote $name] # Alignment. set align 2 set total [expr {($namelen + (1 << $align) - 1) & (-1 << $align)}] for {set i $namelen} {$i < $total} {incr i} { _op .byte 0 } # The data. foreach {a b} [split $hexdata {}] { _op .byte 0x$a$b } } # Emit a note section holding the given build-id. proc build_id {buildid} { _defer_output {.note.gnu.build-id a note} { # From elf/common.h. set NT_GNU_BUILD_ID 3 _note $NT_GNU_BUILD_ID GNU $buildid } } # The top-level interface to the DWARF assembler. # FILENAME is the name of the file where the generated assembly # code is written. # BODY is Tcl code to emit the assembly. It is evaluated via # "eval" -- not uplevel as you might expect, because it is # important to run the body in the Dwarf namespace. # # A typical invocation is something like: # Dwarf::assemble $file { # cu 0 2 8 { # compile_unit { # ... # } # } # cu 0 2 8 { # ... # } # } proc assemble {filename body} { variable _initialized variable _output_file variable _deferred_output variable _defer variable _label_num variable _strings variable _cu_count if {!$_initialized} { _read_constants set _initialized 1 } set _output_file [open $filename w] set _cu_count 0 _empty_array _deferred_output set _defer "" set _label_num 0 _empty_array _strings # Not "uplevel" here, because we want to evaluate in this # namespace. This is somewhat bad because it means we can't # readily refer to outer variables. eval $body _write_deferred_output catch {close $_output_file} set _output_file {} } }