/* Memory breakpoint operations for the remote server for GDB. Copyright (C) 2002-2014 Free Software Foundation, Inc. Contributed by MontaVista Software. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include "regcache.h" #include "ax.h" #include const unsigned char *breakpoint_data; int breakpoint_len; #define MAX_BREAKPOINT_LEN 8 /* GDB will never try to install multiple breakpoints at the same address. But, we need to keep track of internal breakpoints too, and so we do need to be able to install multiple breakpoints at the same address transparently. We keep track of two different, and closely related structures. A raw breakpoint, which manages the low level, close to the metal aspect of a breakpoint. It holds the breakpoint address, and a buffer holding a copy of the instructions that would be in memory had not been a breakpoint there (we call that the shadow memory of the breakpoint). We occasionally need to temporarilly uninsert a breakpoint without the client knowing about it (e.g., to step over an internal breakpoint), so we keep an `inserted' state associated with this low level breakpoint structure. There can only be one such object for a given address. Then, we have (a bit higher level) breakpoints. This structure holds a callback to be called whenever a breakpoint is hit, a high-level type, and a link to a low level raw breakpoint. There can be many high-level breakpoints at the same address, and all of them will point to the same raw breakpoint, which is reference counted. */ /* The low level, physical, raw breakpoint. */ struct raw_breakpoint { struct raw_breakpoint *next; /* A reference count. Each high level breakpoint referencing this raw breakpoint accounts for one reference. */ int refcount; /* The breakpoint's insertion address. There can only be one raw breakpoint for a given PC. */ CORE_ADDR pc; /* The breakpoint's shadow memory. */ unsigned char old_data[MAX_BREAKPOINT_LEN]; /* Non-zero if this breakpoint is currently inserted in the inferior. */ int inserted; /* Non-zero if this breakpoint is currently disabled because we no longer detect it as inserted. */ int shlib_disabled; }; /* The type of a breakpoint. */ enum bkpt_type { /* A GDB breakpoint, requested with a Z0 packet. */ gdb_breakpoint, /* A basic-software-single-step breakpoint. */ reinsert_breakpoint, /* Any other breakpoint type that doesn't require specific treatment goes here. E.g., an event breakpoint. */ other_breakpoint, }; struct point_cond_list { /* Pointer to the agent expression that is the breakpoint's conditional. */ struct agent_expr *cond; /* Pointer to the next condition. */ struct point_cond_list *next; }; struct point_command_list { /* Pointer to the agent expression that is the breakpoint's commands. */ struct agent_expr *cmd; /* Flag that is true if this command should run even while GDB is disconnected. */ int persistence; /* Pointer to the next command. */ struct point_command_list *next; }; /* A high level (in gdbserver's perspective) breakpoint. */ struct breakpoint { struct breakpoint *next; /* The breakpoint's type. */ enum bkpt_type type; /* Pointer to the condition list that should be evaluated on the target or NULL if the breakpoint is unconditional or if GDB doesn't want us to evaluate the conditionals on the target's side. */ struct point_cond_list *cond_list; /* Point to the list of commands to run when this is hit. */ struct point_command_list *command_list; /* Link to this breakpoint's raw breakpoint. This is always non-NULL. */ struct raw_breakpoint *raw; /* Function to call when we hit this breakpoint. If it returns 1, the breakpoint shall be deleted; 0 or if this callback is NULL, it will be left inserted. */ int (*handler) (CORE_ADDR); }; int any_persistent_commands () { struct process_info *proc = current_process (); struct breakpoint *bp; struct point_command_list *cl; for (bp = proc->breakpoints; bp != NULL; bp = bp->next) { for (cl = bp->command_list; cl != NULL; cl = cl->next) if (cl->persistence) return 1; } return 0; } static struct raw_breakpoint * find_raw_breakpoint_at (CORE_ADDR where) { struct process_info *proc = current_process (); struct raw_breakpoint *bp; for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next) if (bp->pc == where) return bp; return NULL; } static struct raw_breakpoint * set_raw_breakpoint_at (CORE_ADDR where) { struct process_info *proc = current_process (); struct raw_breakpoint *bp; int err; unsigned char buf[MAX_BREAKPOINT_LEN]; if (breakpoint_data == NULL) error ("Target does not support breakpoints."); bp = find_raw_breakpoint_at (where); if (bp != NULL) { bp->refcount++; return bp; } bp = xcalloc (1, sizeof (*bp)); bp->pc = where; bp->refcount = 1; /* Note that there can be fast tracepoint jumps installed in the same memory range, so to get at the original memory, we need to use read_inferior_memory, which masks those out. */ err = read_inferior_memory (where, buf, breakpoint_len); if (err != 0) { if (debug_threads) debug_printf ("Failed to read shadow memory of" " breakpoint at 0x%s (%s).\n", paddress (where), strerror (err)); free (bp); return NULL; } memcpy (bp->old_data, buf, breakpoint_len); err = (*the_target->write_memory) (where, breakpoint_data, breakpoint_len); if (err != 0) { if (debug_threads) debug_printf ("Failed to insert breakpoint at 0x%s (%s).\n", paddress (where), strerror (err)); free (bp); return NULL; } /* Link the breakpoint in. */ bp->inserted = 1; bp->next = proc->raw_breakpoints; proc->raw_breakpoints = bp; return bp; } /* Notice that breakpoint traps are always installed on top of fast tracepoint jumps. This is even if the fast tracepoint is installed at a later time compared to when the breakpoint was installed. This means that a stopping breakpoint or tracepoint has higher "priority". In turn, this allows having fast and slow tracepoints (and breakpoints) at the same address behave correctly. */ /* A fast tracepoint jump. */ struct fast_tracepoint_jump { struct fast_tracepoint_jump *next; /* A reference count. GDB can install more than one fast tracepoint at the same address (each with its own action list, for example). */ int refcount; /* The fast tracepoint's insertion address. There can only be one of these for a given PC. */ CORE_ADDR pc; /* Non-zero if this fast tracepoint jump is currently inserted in the inferior. */ int inserted; /* The length of the jump instruction. */ int length; /* A poor-man's flexible array member, holding both the jump instruction to insert, and a copy of the instruction that would be in memory had not been a jump there (the shadow memory of the tracepoint jump). */ unsigned char insn_and_shadow[0]; }; /* Fast tracepoint FP's jump instruction to insert. */ #define fast_tracepoint_jump_insn(fp) \ ((fp)->insn_and_shadow + 0) /* The shadow memory of fast tracepoint jump FP. */ #define fast_tracepoint_jump_shadow(fp) \ ((fp)->insn_and_shadow + (fp)->length) /* Return the fast tracepoint jump set at WHERE. */ static struct fast_tracepoint_jump * find_fast_tracepoint_jump_at (CORE_ADDR where) { struct process_info *proc = current_process (); struct fast_tracepoint_jump *jp; for (jp = proc->fast_tracepoint_jumps; jp != NULL; jp = jp->next) if (jp->pc == where) return jp; return NULL; } int fast_tracepoint_jump_here (CORE_ADDR where) { struct fast_tracepoint_jump *jp = find_fast_tracepoint_jump_at (where); return (jp != NULL); } int delete_fast_tracepoint_jump (struct fast_tracepoint_jump *todel) { struct fast_tracepoint_jump *bp, **bp_link; int ret; struct process_info *proc = current_process (); bp = proc->fast_tracepoint_jumps; bp_link = &proc->fast_tracepoint_jumps; while (bp) { if (bp == todel) { if (--bp->refcount == 0) { struct fast_tracepoint_jump *prev_bp_link = *bp_link; unsigned char *buf; /* Unlink it. */ *bp_link = bp->next; /* Since there can be breakpoints inserted in the same address range, we use `write_inferior_memory', which takes care of layering breakpoints on top of fast tracepoints, and on top of the buffer we pass it. This works because we've already unlinked the fast tracepoint jump above. Also note that we need to pass the current shadow contents, because write_inferior_memory updates any shadow memory with what we pass here, and we want that to be a nop. */ buf = alloca (bp->length); memcpy (buf, fast_tracepoint_jump_shadow (bp), bp->length); ret = write_inferior_memory (bp->pc, buf, bp->length); if (ret != 0) { /* Something went wrong, relink the jump. */ *bp_link = prev_bp_link; if (debug_threads) debug_printf ("Failed to uninsert fast tracepoint jump " "at 0x%s (%s) while deleting it.\n", paddress (bp->pc), strerror (ret)); return ret; } free (bp); } return 0; } else { bp_link = &bp->next; bp = *bp_link; } } warning ("Could not find fast tracepoint jump in list."); return ENOENT; } void inc_ref_fast_tracepoint_jump (struct fast_tracepoint_jump *jp) { jp->refcount++; } struct fast_tracepoint_jump * set_fast_tracepoint_jump (CORE_ADDR where, unsigned char *insn, ULONGEST length) { struct process_info *proc = current_process (); struct fast_tracepoint_jump *jp; int err; unsigned char *buf; /* We refcount fast tracepoint jumps. Check if we already know about a jump at this address. */ jp = find_fast_tracepoint_jump_at (where); if (jp != NULL) { jp->refcount++; return jp; } /* We don't, so create a new object. Double the length, because the flexible array member holds both the jump insn, and the shadow. */ jp = xcalloc (1, sizeof (*jp) + (length * 2)); jp->pc = where; jp->length = length; memcpy (fast_tracepoint_jump_insn (jp), insn, length); jp->refcount = 1; buf = alloca (length); /* Note that there can be trap breakpoints inserted in the same address range. To access the original memory contents, we use `read_inferior_memory', which masks out breakpoints. */ err = read_inferior_memory (where, buf, length); if (err != 0) { if (debug_threads) debug_printf ("Failed to read shadow memory of" " fast tracepoint at 0x%s (%s).\n", paddress (where), strerror (err)); free (jp); return NULL; } memcpy (fast_tracepoint_jump_shadow (jp), buf, length); /* Link the jump in. */ jp->inserted = 1; jp->next = proc->fast_tracepoint_jumps; proc->fast_tracepoint_jumps = jp; /* Since there can be trap breakpoints inserted in the same address range, we use use `write_inferior_memory', which takes care of layering breakpoints on top of fast tracepoints, on top of the buffer we pass it. This works because we've already linked in the fast tracepoint jump above. Also note that we need to pass the current shadow contents, because write_inferior_memory updates any shadow memory with what we pass here, and we want that to be a nop. */ err = write_inferior_memory (where, buf, length); if (err != 0) { if (debug_threads) debug_printf ("Failed to insert fast tracepoint jump at 0x%s (%s).\n", paddress (where), strerror (err)); /* Unlink it. */ proc->fast_tracepoint_jumps = jp->next; free (jp); return NULL; } return jp; } void uninsert_fast_tracepoint_jumps_at (CORE_ADDR pc) { struct fast_tracepoint_jump *jp; int err; jp = find_fast_tracepoint_jump_at (pc); if (jp == NULL) { /* This can happen when we remove all breakpoints while handling a step-over. */ if (debug_threads) debug_printf ("Could not find fast tracepoint jump at 0x%s " "in list (uninserting).\n", paddress (pc)); return; } if (jp->inserted) { unsigned char *buf; jp->inserted = 0; /* Since there can be trap breakpoints inserted in the same address range, we use use `write_inferior_memory', which takes care of layering breakpoints on top of fast tracepoints, and on top of the buffer we pass it. This works because we've already marked the fast tracepoint fast tracepoint jump uninserted above. Also note that we need to pass the current shadow contents, because write_inferior_memory updates any shadow memory with what we pass here, and we want that to be a nop. */ buf = alloca (jp->length); memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length); err = write_inferior_memory (jp->pc, buf, jp->length); if (err != 0) { jp->inserted = 1; if (debug_threads) debug_printf ("Failed to uninsert fast tracepoint jump at" " 0x%s (%s).\n", paddress (pc), strerror (err)); } } } void reinsert_fast_tracepoint_jumps_at (CORE_ADDR where) { struct fast_tracepoint_jump *jp; int err; unsigned char *buf; jp = find_fast_tracepoint_jump_at (where); if (jp == NULL) { /* This can happen when we remove breakpoints when a tracepoint hit causes a tracing stop, while handling a step-over. */ if (debug_threads) debug_printf ("Could not find fast tracepoint jump at 0x%s " "in list (reinserting).\n", paddress (where)); return; } if (jp->inserted) error ("Jump already inserted at reinsert time."); jp->inserted = 1; /* Since there can be trap breakpoints inserted in the same address range, we use `write_inferior_memory', which takes care of layering breakpoints on top of fast tracepoints, and on top of the buffer we pass it. This works because we've already marked the fast tracepoint jump inserted above. Also note that we need to pass the current shadow contents, because write_inferior_memory updates any shadow memory with what we pass here, and we want that to be a nop. */ buf = alloca (jp->length); memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length); err = write_inferior_memory (where, buf, jp->length); if (err != 0) { jp->inserted = 0; if (debug_threads) debug_printf ("Failed to reinsert fast tracepoint jump at" " 0x%s (%s).\n", paddress (where), strerror (err)); } } struct breakpoint * set_breakpoint_at (CORE_ADDR where, int (*handler) (CORE_ADDR)) { struct process_info *proc = current_process (); struct breakpoint *bp; struct raw_breakpoint *raw; raw = set_raw_breakpoint_at (where); if (raw == NULL) { /* warn? */ return NULL; } bp = xcalloc (1, sizeof (struct breakpoint)); bp->type = other_breakpoint; bp->raw = raw; bp->handler = handler; bp->next = proc->breakpoints; proc->breakpoints = bp; return bp; } static int delete_raw_breakpoint (struct process_info *proc, struct raw_breakpoint *todel) { struct raw_breakpoint *bp, **bp_link; int ret; bp = proc->raw_breakpoints; bp_link = &proc->raw_breakpoints; while (bp) { if (bp == todel) { if (bp->inserted) { struct raw_breakpoint *prev_bp_link = *bp_link; unsigned char buf[MAX_BREAKPOINT_LEN]; *bp_link = bp->next; /* Since there can be trap breakpoints inserted in the same address range, we use `write_inferior_memory', which takes care of layering breakpoints on top of fast tracepoints, and on top of the buffer we pass it. This works because we've already unlinked the fast tracepoint jump above. Also note that we need to pass the current shadow contents, because write_inferior_memory updates any shadow memory with what we pass here, and we want that to be a nop. */ memcpy (buf, bp->old_data, breakpoint_len); ret = write_inferior_memory (bp->pc, buf, breakpoint_len); if (ret != 0) { /* Something went wrong, relink the breakpoint. */ *bp_link = prev_bp_link; if (debug_threads) debug_printf ("Failed to uninsert raw breakpoint " "at 0x%s (%s) while deleting it.\n", paddress (bp->pc), strerror (ret)); return ret; } } else *bp_link = bp->next; free (bp); return 0; } else { bp_link = &bp->next; bp = *bp_link; } } warning ("Could not find raw breakpoint in list."); return ENOENT; } static int release_breakpoint (struct process_info *proc, struct breakpoint *bp) { int newrefcount; int ret; newrefcount = bp->raw->refcount - 1; if (newrefcount == 0) { ret = delete_raw_breakpoint (proc, bp->raw); if (ret != 0) return ret; } else bp->raw->refcount = newrefcount; free (bp); return 0; } static int delete_breakpoint_1 (struct process_info *proc, struct breakpoint *todel) { struct breakpoint *bp, **bp_link; int err; bp = proc->breakpoints; bp_link = &proc->breakpoints; while (bp) { if (bp == todel) { *bp_link = bp->next; err = release_breakpoint (proc, bp); if (err != 0) return err; bp = *bp_link; return 0; } else { bp_link = &bp->next; bp = *bp_link; } } warning ("Could not find breakpoint in list."); return ENOENT; } int delete_breakpoint (struct breakpoint *todel) { struct process_info *proc = current_process (); return delete_breakpoint_1 (proc, todel); } /* Locate a breakpoint placed at address WHERE and return a pointer to its structure. */ static struct breakpoint * find_gdb_breakpoint_at (CORE_ADDR where) { struct process_info *proc = current_process (); struct breakpoint *bp; for (bp = proc->breakpoints; bp != NULL; bp = bp->next) if (bp->type == gdb_breakpoint && bp->raw->pc == where) return bp; return NULL; } int set_gdb_breakpoint_at (CORE_ADDR where) { struct breakpoint *bp; if (breakpoint_data == NULL) return 1; /* If we see GDB inserting a second breakpoint at the same address, then the first breakpoint must have disappeared due to a shared library unload. On targets where the shared libraries are handled by userspace, like SVR4, for example, GDBserver can't tell if a library was loaded or unloaded. Since we refcount breakpoints, if we didn't do this, we'd just increase the refcount of the previous breakpoint at this address, but the trap was not planted in the inferior anymore, thus the breakpoint would never be hit. */ bp = find_gdb_breakpoint_at (where); if (bp != NULL) { delete_gdb_breakpoint_at (where); /* Might as well validate all other breakpoints. */ validate_breakpoints (); } bp = set_breakpoint_at (where, NULL); if (bp == NULL) return -1; bp->type = gdb_breakpoint; return 0; } int delete_gdb_breakpoint_at (CORE_ADDR addr) { struct breakpoint *bp; int err; if (breakpoint_data == NULL) return 1; bp = find_gdb_breakpoint_at (addr); if (bp == NULL) return -1; /* Before deleting the breakpoint, make sure to free its condition list. */ clear_gdb_breakpoint_conditions (addr); err = delete_breakpoint (bp); if (err) return -1; return 0; } /* Clear all conditions associated with this breakpoint address. */ void clear_gdb_breakpoint_conditions (CORE_ADDR addr) { struct breakpoint *bp = find_gdb_breakpoint_at (addr); struct point_cond_list *cond; if (bp == NULL || bp->cond_list == NULL) return; cond = bp->cond_list; while (cond != NULL) { struct point_cond_list *cond_next; cond_next = cond->next; free (cond->cond->bytes); free (cond->cond); free (cond); cond = cond_next; } bp->cond_list = NULL; } /* Add condition CONDITION to GDBserver's breakpoint BP. */ void add_condition_to_breakpoint (struct breakpoint *bp, struct agent_expr *condition) { struct point_cond_list *new_cond; /* Create new condition. */ new_cond = xcalloc (1, sizeof (*new_cond)); new_cond->cond = condition; /* Add condition to the list. */ new_cond->next = bp->cond_list; bp->cond_list = new_cond; } /* Add a target-side condition CONDITION to the breakpoint at ADDR. */ int add_breakpoint_condition (CORE_ADDR addr, char **condition) { struct breakpoint *bp = find_gdb_breakpoint_at (addr); char *actparm = *condition; struct agent_expr *cond; if (condition == NULL) return 1; if (bp == NULL) return 0; cond = gdb_parse_agent_expr (&actparm); if (cond == NULL) { fprintf (stderr, "Condition evaluation failed. " "Assuming unconditional.\n"); return 0; } add_condition_to_breakpoint (bp, cond); *condition = actparm; return 1; } /* Evaluate condition (if any) at breakpoint BP. Return 1 if true and 0 otherwise. */ int gdb_condition_true_at_breakpoint (CORE_ADDR where) { /* Fetch registers for the current inferior. */ struct breakpoint *bp = find_gdb_breakpoint_at (where); ULONGEST value = 0; struct point_cond_list *cl; int err = 0; struct eval_agent_expr_context ctx; if (bp == NULL) return 0; /* Check if the breakpoint is unconditional. If it is, the condition always evaluates to TRUE. */ if (bp->cond_list == NULL) return 1; ctx.regcache = get_thread_regcache (current_inferior, 1); ctx.tframe = NULL; ctx.tpoint = NULL; /* Evaluate each condition in the breakpoint's list of conditions. Return true if any of the conditions evaluates to TRUE. If we failed to evaluate the expression, TRUE is returned. This forces GDB to reevaluate the conditions. */ for (cl = bp->cond_list; cl && !value && !err; cl = cl->next) { /* Evaluate the condition. */ err = gdb_eval_agent_expr (&ctx, cl->cond, &value); } if (err) return 1; return (value != 0); } /* Add commands COMMANDS to GDBserver's breakpoint BP. */ void add_commands_to_breakpoint (struct breakpoint *bp, struct agent_expr *commands, int persist) { struct point_command_list *new_cmd; /* Create new command. */ new_cmd = xcalloc (1, sizeof (*new_cmd)); new_cmd->cmd = commands; new_cmd->persistence = persist; /* Add commands to the list. */ new_cmd->next = bp->command_list; bp->command_list = new_cmd; } /* Add a target-side command COMMAND to the breakpoint at ADDR. */ int add_breakpoint_commands (CORE_ADDR addr, char **command, int persist) { struct breakpoint *bp = find_gdb_breakpoint_at (addr); char *actparm = *command; struct agent_expr *cmd; if (command == NULL) return 1; if (bp == NULL) return 0; cmd = gdb_parse_agent_expr (&actparm); if (cmd == NULL) { fprintf (stderr, "Command evaluation failed. " "Disabling.\n"); return 0; } add_commands_to_breakpoint (bp, cmd, persist); *command = actparm; return 1; } /* Return true if there are no commands to run at this location, which likely means we want to report back to GDB. */ int gdb_no_commands_at_breakpoint (CORE_ADDR where) { struct breakpoint *bp = find_gdb_breakpoint_at (where); if (bp == NULL) return 0; if (debug_threads) debug_printf ("at 0x%s, bp command_list is 0x%s\n", paddress (where), phex_nz ((uintptr_t) bp->command_list, 0)); return (bp->command_list == NULL); } void run_breakpoint_commands (CORE_ADDR where) { /* Fetch registers for the current inferior. */ struct breakpoint *bp = find_gdb_breakpoint_at (where); ULONGEST value = 0; struct point_command_list *cl; int err = 0; struct eval_agent_expr_context ctx; if (bp == NULL) return; ctx.regcache = get_thread_regcache (current_inferior, 1); ctx.tframe = NULL; ctx.tpoint = NULL; for (cl = bp->command_list; cl && !value && !err; cl = cl->next) { /* Run the command. */ err = gdb_eval_agent_expr (&ctx, cl->cmd, &value); /* If one command has a problem, stop digging the hole deeper. */ if (err) break; } } /* Return 1 if there is a breakpoint inserted in address WHERE and if its condition, if it exists, is true. */ int gdb_breakpoint_here (CORE_ADDR where) { return (find_gdb_breakpoint_at (where) != NULL); } void set_reinsert_breakpoint (CORE_ADDR stop_at) { struct breakpoint *bp; bp = set_breakpoint_at (stop_at, NULL); bp->type = reinsert_breakpoint; } void delete_reinsert_breakpoints (void) { struct process_info *proc = current_process (); struct breakpoint *bp, **bp_link; bp = proc->breakpoints; bp_link = &proc->breakpoints; while (bp) { if (bp->type == reinsert_breakpoint) { *bp_link = bp->next; release_breakpoint (proc, bp); bp = *bp_link; } else { bp_link = &bp->next; bp = *bp_link; } } } static void uninsert_raw_breakpoint (struct raw_breakpoint *bp) { if (bp->inserted) { int err; unsigned char buf[MAX_BREAKPOINT_LEN]; bp->inserted = 0; /* Since there can be fast tracepoint jumps inserted in the same address range, we use `write_inferior_memory', which takes care of layering breakpoints on top of fast tracepoints, and on top of the buffer we pass it. This works because we've already unlinked the fast tracepoint jump above. Also note that we need to pass the current shadow contents, because write_inferior_memory updates any shadow memory with what we pass here, and we want that to be a nop. */ memcpy (buf, bp->old_data, breakpoint_len); err = write_inferior_memory (bp->pc, buf, breakpoint_len); if (err != 0) { bp->inserted = 1; if (debug_threads) debug_printf ("Failed to uninsert raw breakpoint at 0x%s (%s).\n", paddress (bp->pc), strerror (err)); } } } void uninsert_breakpoints_at (CORE_ADDR pc) { struct raw_breakpoint *bp; bp = find_raw_breakpoint_at (pc); if (bp == NULL) { /* This can happen when we remove all breakpoints while handling a step-over. */ if (debug_threads) debug_printf ("Could not find breakpoint at 0x%s " "in list (uninserting).\n", paddress (pc)); return; } if (bp->inserted) uninsert_raw_breakpoint (bp); } void uninsert_all_breakpoints (void) { struct process_info *proc = current_process (); struct raw_breakpoint *bp; for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next) if (bp->inserted) uninsert_raw_breakpoint (bp); } static void reinsert_raw_breakpoint (struct raw_breakpoint *bp) { int err; if (bp->inserted) error ("Breakpoint already inserted at reinsert time."); err = (*the_target->write_memory) (bp->pc, breakpoint_data, breakpoint_len); if (err == 0) bp->inserted = 1; else if (debug_threads) debug_printf ("Failed to reinsert breakpoint at 0x%s (%s).\n", paddress (bp->pc), strerror (err)); } void reinsert_breakpoints_at (CORE_ADDR pc) { struct raw_breakpoint *bp; bp = find_raw_breakpoint_at (pc); if (bp == NULL) { /* This can happen when we remove all breakpoints while handling a step-over. */ if (debug_threads) debug_printf ("Could not find raw breakpoint at 0x%s " "in list (reinserting).\n", paddress (pc)); return; } reinsert_raw_breakpoint (bp); } void reinsert_all_breakpoints (void) { struct process_info *proc = current_process (); struct raw_breakpoint *bp; for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next) if (!bp->inserted) reinsert_raw_breakpoint (bp); } void check_breakpoints (CORE_ADDR stop_pc) { struct process_info *proc = current_process (); struct breakpoint *bp, **bp_link; bp = proc->breakpoints; bp_link = &proc->breakpoints; while (bp) { if (bp->raw->pc == stop_pc) { if (!bp->raw->inserted) { warning ("Hit a removed breakpoint?"); return; } if (bp->handler != NULL && (*bp->handler) (stop_pc)) { *bp_link = bp->next; release_breakpoint (proc, bp); bp = *bp_link; continue; } } bp_link = &bp->next; bp = *bp_link; } } void set_breakpoint_data (const unsigned char *bp_data, int bp_len) { breakpoint_data = bp_data; breakpoint_len = bp_len; } int breakpoint_here (CORE_ADDR addr) { return (find_raw_breakpoint_at (addr) != NULL); } int breakpoint_inserted_here (CORE_ADDR addr) { struct raw_breakpoint *bp; bp = find_raw_breakpoint_at (addr); return (bp != NULL && bp->inserted); } static int validate_inserted_breakpoint (struct raw_breakpoint *bp) { unsigned char *buf; int err; gdb_assert (bp->inserted); buf = alloca (breakpoint_len); err = (*the_target->read_memory) (bp->pc, buf, breakpoint_len); if (err || memcmp (buf, breakpoint_data, breakpoint_len) != 0) { /* Tag it as gone. */ bp->inserted = 0; bp->shlib_disabled = 1; return 0; } return 1; } static void delete_disabled_breakpoints (void) { struct process_info *proc = current_process (); struct breakpoint *bp, *next; for (bp = proc->breakpoints; bp != NULL; bp = next) { next = bp->next; if (bp->raw->shlib_disabled) delete_breakpoint_1 (proc, bp); } } /* Check if breakpoints we inserted still appear to be inserted. They may disappear due to a shared library unload, and worse, a new shared library may be reloaded at the same address as the previously unloaded one. If that happens, we should make sure that the shadow memory of the old breakpoints isn't used when reading or writing memory. */ void validate_breakpoints (void) { struct process_info *proc = current_process (); struct breakpoint *bp; for (bp = proc->breakpoints; bp != NULL; bp = bp->next) { if (bp->raw->inserted) validate_inserted_breakpoint (bp->raw); } delete_disabled_breakpoints (); } void check_mem_read (CORE_ADDR mem_addr, unsigned char *buf, int mem_len) { struct process_info *proc = current_process (); struct raw_breakpoint *bp = proc->raw_breakpoints; struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps; CORE_ADDR mem_end = mem_addr + mem_len; int disabled_one = 0; for (; jp != NULL; jp = jp->next) { CORE_ADDR bp_end = jp->pc + jp->length; CORE_ADDR start, end; int copy_offset, copy_len, buf_offset; gdb_assert (fast_tracepoint_jump_shadow (jp) >= buf + mem_len || buf >= fast_tracepoint_jump_shadow (jp) + (jp)->length); if (mem_addr >= bp_end) continue; if (jp->pc >= mem_end) continue; start = jp->pc; if (mem_addr > start) start = mem_addr; end = bp_end; if (end > mem_end) end = mem_end; copy_len = end - start; copy_offset = start - jp->pc; buf_offset = start - mem_addr; if (jp->inserted) memcpy (buf + buf_offset, fast_tracepoint_jump_shadow (jp) + copy_offset, copy_len); } for (; bp != NULL; bp = bp->next) { CORE_ADDR bp_end = bp->pc + breakpoint_len; CORE_ADDR start, end; int copy_offset, copy_len, buf_offset; gdb_assert (bp->old_data >= buf + mem_len || buf >= &bp->old_data[sizeof (bp->old_data)]); if (mem_addr >= bp_end) continue; if (bp->pc >= mem_end) continue; start = bp->pc; if (mem_addr > start) start = mem_addr; end = bp_end; if (end > mem_end) end = mem_end; copy_len = end - start; copy_offset = start - bp->pc; buf_offset = start - mem_addr; if (bp->inserted) { if (validate_inserted_breakpoint (bp)) memcpy (buf + buf_offset, bp->old_data + copy_offset, copy_len); else disabled_one = 1; } } if (disabled_one) delete_disabled_breakpoints (); } void check_mem_write (CORE_ADDR mem_addr, unsigned char *buf, const unsigned char *myaddr, int mem_len) { struct process_info *proc = current_process (); struct raw_breakpoint *bp = proc->raw_breakpoints; struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps; CORE_ADDR mem_end = mem_addr + mem_len; int disabled_one = 0; /* First fast tracepoint jumps, then breakpoint traps on top. */ for (; jp != NULL; jp = jp->next) { CORE_ADDR jp_end = jp->pc + jp->length; CORE_ADDR start, end; int copy_offset, copy_len, buf_offset; gdb_assert (fast_tracepoint_jump_shadow (jp) >= myaddr + mem_len || myaddr >= fast_tracepoint_jump_shadow (jp) + (jp)->length); gdb_assert (fast_tracepoint_jump_insn (jp) >= buf + mem_len || buf >= fast_tracepoint_jump_insn (jp) + (jp)->length); if (mem_addr >= jp_end) continue; if (jp->pc >= mem_end) continue; start = jp->pc; if (mem_addr > start) start = mem_addr; end = jp_end; if (end > mem_end) end = mem_end; copy_len = end - start; copy_offset = start - jp->pc; buf_offset = start - mem_addr; memcpy (fast_tracepoint_jump_shadow (jp) + copy_offset, myaddr + buf_offset, copy_len); if (jp->inserted) memcpy (buf + buf_offset, fast_tracepoint_jump_insn (jp) + copy_offset, copy_len); } for (; bp != NULL; bp = bp->next) { CORE_ADDR bp_end = bp->pc + breakpoint_len; CORE_ADDR start, end; int copy_offset, copy_len, buf_offset; gdb_assert (bp->old_data >= myaddr + mem_len || myaddr >= &bp->old_data[sizeof (bp->old_data)]); if (mem_addr >= bp_end) continue; if (bp->pc >= mem_end) continue; start = bp->pc; if (mem_addr > start) start = mem_addr; end = bp_end; if (end > mem_end) end = mem_end; copy_len = end - start; copy_offset = start - bp->pc; buf_offset = start - mem_addr; memcpy (bp->old_data + copy_offset, myaddr + buf_offset, copy_len); if (bp->inserted) { if (validate_inserted_breakpoint (bp)) memcpy (buf + buf_offset, breakpoint_data + copy_offset, copy_len); else disabled_one = 1; } } if (disabled_one) delete_disabled_breakpoints (); } /* Delete all breakpoints, and un-insert them from the inferior. */ void delete_all_breakpoints (void) { struct process_info *proc = current_process (); while (proc->breakpoints) delete_breakpoint_1 (proc, proc->breakpoints); } /* Clear the "inserted" flag in all breakpoints. */ void mark_breakpoints_out (struct process_info *proc) { struct raw_breakpoint *raw_bp; for (raw_bp = proc->raw_breakpoints; raw_bp != NULL; raw_bp = raw_bp->next) raw_bp->inserted = 0; } /* Release all breakpoints, but do not try to un-insert them from the inferior. */ void free_all_breakpoints (struct process_info *proc) { mark_breakpoints_out (proc); /* Note: use PROC explicitly instead of deferring to delete_all_breakpoints --- CURRENT_INFERIOR may already have been released when we get here. There should be no call to current_process from here on. */ while (proc->breakpoints) delete_breakpoint_1 (proc, proc->breakpoints); }