/* Native-dependent code for LynxOS. Copyright 1993, 1994 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "target.h" #include "gdbcore.h" #include <sys/ptrace.h> #include <sys/wait.h> #include <sys/fpp.h> static unsigned long registers_addr PARAMS ((int pid)); static void fetch_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR); #define X(ENTRY)(offsetof(struct econtext, ENTRY)) #ifdef I386 /* Mappings from tm-i386v.h */ static int regmap[] = { X(eax), X(ecx), X(edx), X(ebx), X(esp), /* sp */ X(ebp), /* fp */ X(esi), X(edi), X(eip), /* pc */ X(flags), /* ps */ X(cs), X(ss), X(ds), X(es), X(ecode), /* Lynx doesn't give us either fs or gs, so */ X(fault), /* we just substitute these two in the hopes that they are useful. */ }; #endif /* I386 */ #ifdef M68K /* Mappings from tm-m68k.h */ static int regmap[] = { X(regs[0]), /* d0 */ X(regs[1]), /* d1 */ X(regs[2]), /* d2 */ X(regs[3]), /* d3 */ X(regs[4]), /* d4 */ X(regs[5]), /* d5 */ X(regs[6]), /* d6 */ X(regs[7]), /* d7 */ X(regs[8]), /* a0 */ X(regs[9]), /* a1 */ X(regs[10]), /* a2 */ X(regs[11]), /* a3 */ X(regs[12]), /* a4 */ X(regs[13]), /* a5 */ X(regs[14]), /* fp */ offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */ X(status), /* ps */ X(pc), X(fregs[0*3]), /* fp0 */ X(fregs[1*3]), /* fp1 */ X(fregs[2*3]), /* fp2 */ X(fregs[3*3]), /* fp3 */ X(fregs[4*3]), /* fp4 */ X(fregs[5*3]), /* fp5 */ X(fregs[6*3]), /* fp6 */ X(fregs[7*3]), /* fp7 */ X(fcregs[0]), /* fpcontrol */ X(fcregs[1]), /* fpstatus */ X(fcregs[2]), /* fpiaddr */ X(ssw), /* fpcode */ X(fault), /* fpflags */ }; #endif /* M68K */ #ifdef SPARC /* Mappings from tm-sparc.h */ #define FX(ENTRY)(offsetof(struct fcontext, ENTRY)) static int regmap[] = { -1, /* g0 */ X(g1), X(g2), X(g3), X(g4), -1, /* g5->g7 aren't saved by Lynx */ -1, -1, X(o[0]), X(o[1]), X(o[2]), X(o[3]), X(o[4]), X(o[5]), X(o[6]), /* sp */ X(o[7]), /* ra */ -1,-1,-1,-1,-1,-1,-1,-1, /* l0 -> l7 */ -1,-1,-1,-1,-1,-1,-1,-1, /* i0 -> i7 */ FX(f.fregs[0]), /* f0 */ FX(f.fregs[1]), FX(f.fregs[2]), FX(f.fregs[3]), FX(f.fregs[4]), FX(f.fregs[5]), FX(f.fregs[6]), FX(f.fregs[7]), FX(f.fregs[8]), FX(f.fregs[9]), FX(f.fregs[10]), FX(f.fregs[11]), FX(f.fregs[12]), FX(f.fregs[13]), FX(f.fregs[14]), FX(f.fregs[15]), FX(f.fregs[16]), FX(f.fregs[17]), FX(f.fregs[18]), FX(f.fregs[19]), FX(f.fregs[20]), FX(f.fregs[21]), FX(f.fregs[22]), FX(f.fregs[23]), FX(f.fregs[24]), FX(f.fregs[25]), FX(f.fregs[26]), FX(f.fregs[27]), FX(f.fregs[28]), FX(f.fregs[29]), FX(f.fregs[30]), FX(f.fregs[31]), X(y), X(psr), X(wim), X(tbr), X(pc), X(npc), FX(fsr), /* fpsr */ -1, /* cpsr */ }; #endif /* SPARC */ #ifdef rs6000 static int regmap[] = { X(iregs[0]), /* r0 */ X(iregs[1]), X(iregs[2]), X(iregs[3]), X(iregs[4]), X(iregs[5]), X(iregs[6]), X(iregs[7]), X(iregs[8]), X(iregs[9]), X(iregs[10]), X(iregs[11]), X(iregs[12]), X(iregs[13]), X(iregs[14]), X(iregs[15]), X(iregs[16]), X(iregs[17]), X(iregs[18]), X(iregs[19]), X(iregs[20]), X(iregs[21]), X(iregs[22]), X(iregs[23]), X(iregs[24]), X(iregs[25]), X(iregs[26]), X(iregs[27]), X(iregs[28]), X(iregs[29]), X(iregs[30]), X(iregs[31]), X(fregs[0]), /* f0 */ X(fregs[1]), X(fregs[2]), X(fregs[3]), X(fregs[4]), X(fregs[5]), X(fregs[6]), X(fregs[7]), X(fregs[8]), X(fregs[9]), X(fregs[10]), X(fregs[11]), X(fregs[12]), X(fregs[13]), X(fregs[14]), X(fregs[15]), X(fregs[16]), X(fregs[17]), X(fregs[18]), X(fregs[19]), X(fregs[20]), X(fregs[21]), X(fregs[22]), X(fregs[23]), X(fregs[24]), X(fregs[25]), X(fregs[26]), X(fregs[27]), X(fregs[28]), X(fregs[29]), X(fregs[30]), X(fregs[31]), X(srr0), /* IAR (PC) */ X(srr1), /* MSR (PS) */ X(cr), /* CR */ X(lr), /* LR */ X(ctr), /* CTR */ X(xer), /* XER */ X(mq) /* MQ */ }; #endif /* rs6000 */ #ifdef SPARC /* This routine handles some oddball cases for Sparc registers and LynxOS. In partucular, it causes refs to G0, g5->7, and all fp regs to return zero. It also handles knows where to find the I & L regs on the stack. */ void fetch_inferior_registers (regno) int regno; { int whatregs = 0; #define WHATREGS_FLOAT 1 #define WHATREGS_GEN 2 #define WHATREGS_STACK 4 if (regno == -1) whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK; else if (regno >= L0_REGNUM && regno <= I7_REGNUM) whatregs = WHATREGS_STACK; else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32) whatregs = WHATREGS_FLOAT; else whatregs = WHATREGS_GEN; if (whatregs & WHATREGS_GEN) { struct econtext ec; /* general regs */ char buf[MAX_REGISTER_RAW_SIZE]; int retval; int i; errno = 0; retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec, 0); if (errno) perror_with_name ("ptrace(PTRACE_GETREGS)"); memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM)); supply_register (G0_REGNUM, buf); supply_register (TBR_REGNUM, (char *)&ec.tbr); memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &ec.g1, 4 * REGISTER_RAW_SIZE (G1_REGNUM)); for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++) register_valid[i] = 1; supply_register (PS_REGNUM, (char *)&ec.psr); supply_register (Y_REGNUM, (char *)&ec.y); supply_register (PC_REGNUM, (char *)&ec.pc); supply_register (NPC_REGNUM, (char *)&ec.npc); supply_register (WIM_REGNUM, (char *)&ec.wim); memcpy (®isters[REGISTER_BYTE (O0_REGNUM)], ec.o, 8 * REGISTER_RAW_SIZE (O0_REGNUM)); for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++) register_valid[i] = 1; } if (whatregs & WHATREGS_STACK) { CORE_ADDR sp; int i; sp = read_register (SP_REGNUM); target_xfer_memory (sp + FRAME_SAVED_I0, ®isters[REGISTER_BYTE(I0_REGNUM)], 8 * REGISTER_RAW_SIZE (I0_REGNUM), 0); for (i = I0_REGNUM; i <= I7_REGNUM; i++) register_valid[i] = 1; target_xfer_memory (sp + FRAME_SAVED_L0, ®isters[REGISTER_BYTE(L0_REGNUM)], 8 * REGISTER_RAW_SIZE (L0_REGNUM), 0); for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++) register_valid[i] = 1; } if (whatregs & WHATREGS_FLOAT) { struct fcontext fc; /* fp regs */ int retval; int i; errno = 0; retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc, 0); if (errno) perror_with_name ("ptrace(PTRACE_GETFPREGS)"); memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs, 32 * REGISTER_RAW_SIZE (FP0_REGNUM)); for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++) register_valid[i] = 1; supply_register (FPS_REGNUM, (char *)&fc.fsr); } } /* This routine handles storing of the I & L regs for the Sparc. The trick here is that they actually live on the stack. The really tricky part is that when changing the stack pointer, the I & L regs must be written to where the new SP points, otherwise the regs will be incorrect when the process is started up again. We assume that the I & L regs are valid at this point. */ void store_inferior_registers (regno) int regno; { int whatregs = 0; if (regno == -1) whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK; else if (regno >= L0_REGNUM && regno <= I7_REGNUM) whatregs = WHATREGS_STACK; else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32) whatregs = WHATREGS_FLOAT; else if (regno == SP_REGNUM) whatregs = WHATREGS_STACK | WHATREGS_GEN; else whatregs = WHATREGS_GEN; if (whatregs & WHATREGS_GEN) { struct econtext ec; /* general regs */ int retval; ec.tbr = read_register (TBR_REGNUM); memcpy (&ec.g1, ®isters[REGISTER_BYTE (G1_REGNUM)], 4 * REGISTER_RAW_SIZE (G1_REGNUM)); ec.psr = read_register (PS_REGNUM); ec.y = read_register (Y_REGNUM); ec.pc = read_register (PC_REGNUM); ec.npc = read_register (NPC_REGNUM); ec.wim = read_register (WIM_REGNUM); memcpy (ec.o, ®isters[REGISTER_BYTE (O0_REGNUM)], 8 * REGISTER_RAW_SIZE (O0_REGNUM)); errno = 0; retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec, 0); if (errno) perror_with_name ("ptrace(PTRACE_SETREGS)"); } if (whatregs & WHATREGS_STACK) { int regoffset; CORE_ADDR sp; sp = read_register (SP_REGNUM); if (regno == -1 || regno == SP_REGNUM) { if (!register_valid[L0_REGNUM+5]) abort(); target_xfer_memory (sp + FRAME_SAVED_I0, ®isters[REGISTER_BYTE (I0_REGNUM)], 8 * REGISTER_RAW_SIZE (I0_REGNUM), 1); target_xfer_memory (sp + FRAME_SAVED_L0, ®isters[REGISTER_BYTE (L0_REGNUM)], 8 * REGISTER_RAW_SIZE (L0_REGNUM), 1); } else if (regno >= L0_REGNUM && regno <= I7_REGNUM) { if (!register_valid[regno]) abort(); if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7) regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM) + FRAME_SAVED_L0; else regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM) + FRAME_SAVED_I0; target_xfer_memory (sp + regoffset, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno), 1); } } if (whatregs & WHATREGS_FLOAT) { struct fcontext fc; /* fp regs */ int retval; /* We read fcontext first so that we can get good values for fq_t... */ errno = 0; retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc, 0); if (errno) perror_with_name ("ptrace(PTRACE_GETFPREGS)"); memcpy (fc.f.fregs, ®isters[REGISTER_BYTE (FP0_REGNUM)], 32 * REGISTER_RAW_SIZE (FP0_REGNUM)); fc.fsr = read_register (FPS_REGNUM); errno = 0; retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc, 0); if (errno) perror_with_name ("ptrace(PTRACE_SETFPREGS)"); } } #endif /* SPARC */ #if defined (I386) || defined (M68K) || defined (rs6000) /* Return the offset relative to the start of the per-thread data to the saved context block. */ static unsigned long registers_addr(pid) int pid; { CORE_ADDR stblock; int ecpoff = offsetof(st_t, ecp); CORE_ADDR ecp; errno = 0; stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE)0, 0); if (errno) perror_with_name ("ptrace(PTRACE_THREADUSER)"); ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE)ecpoff, 0); if (errno) perror_with_name ("ptrace(PTRACE_PEEKTHREAD)"); return ecp - stblock; } /* Fetch one or more registers from the inferior. REGNO == -1 to get them all. We actually fetch more than requested, when convenient, marking them as valid so we won't fetch them again. */ void fetch_inferior_registers (regno) int regno; { int reglo, reghi; int i; unsigned long ecp; if (regno == -1) { reglo = 0; reghi = NUM_REGS - 1; } else reglo = reghi = regno; ecp = registers_addr (inferior_pid); for (regno = reglo; regno <= reghi; regno++) { char buf[MAX_REGISTER_RAW_SIZE]; int ptrace_fun = PTRACE_PEEKTHREAD; #ifdef M68K ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD; #endif for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) { unsigned int reg; errno = 0; reg = ptrace (ptrace_fun, inferior_pid, (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0); if (errno) perror_with_name ("ptrace(PTRACE_PEEKUSP)"); *(int *)&buf[i] = reg; } supply_register (regno, buf); } } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ /* Registers we shouldn't try to store. */ #if !defined (CANNOT_STORE_REGISTER) #define CANNOT_STORE_REGISTER(regno) 0 #endif void store_inferior_registers (regno) int regno; { int reglo, reghi; int i; unsigned long ecp; if (regno == -1) { reglo = 0; reghi = NUM_REGS - 1; } else reglo = reghi = regno; ecp = registers_addr (inferior_pid); for (regno = reglo; regno <= reghi; regno++) { int ptrace_fun = PTRACE_POKEUSER; if (CANNOT_STORE_REGISTER (regno)) continue; #ifdef M68K ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER; #endif for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) { unsigned int reg; reg = *(unsigned int *)®isters[REGISTER_BYTE (regno) + i]; errno = 0; ptrace (ptrace_fun, inferior_pid, (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg); if (errno) perror_with_name ("ptrace(PTRACE_POKEUSP)"); } } } #endif /* defined (I386) || defined (M68K) || defined (rs6000) */ /* Wait for child to do something. Return pid of child, or -1 in case of error; store status through argument pointer OURSTATUS. */ int child_wait (pid, ourstatus) int pid; struct target_waitstatus *ourstatus; { int save_errno; int thread; union wait status; while (1) { int sig; set_sigint_trap(); /* Causes SIGINT to be passed on to the attached process. */ pid = wait (&status); save_errno = errno; clear_sigint_trap(); if (pid == -1) { if (save_errno == EINTR) continue; fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n", safe_strerror (save_errno)); /* Claim it exited with unknown signal. */ ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN; return -1; } if (pid != PIDGET (inferior_pid)) /* Some other process?!? */ continue; thread = status.w_tid; /* Get thread id from status */ /* Initial thread value can only be acquired via wait, so we have to resort to this hack. */ if (TIDGET (inferior_pid) == 0 && thread != 0) { inferior_pid = BUILDPID (inferior_pid, thread); add_thread (inferior_pid); } pid = BUILDPID (pid, thread); /* We've become a single threaded process again. */ if (thread == 0) inferior_pid = pid; /* Check for thread creation. */ if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP && !in_thread_list (pid)) { int realsig; realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE)0, 0); if (realsig == SIGNEWTHREAD) { /* It's a new thread notification. We don't want to much with realsig -- the code in wait_for_inferior expects SIGTRAP. */ ourstatus->kind = TARGET_WAITKIND_SPURIOUS; ourstatus->value.sig = TARGET_SIGNAL_0; return pid; } else error ("Signal for unknown thread was not SIGNEWTHREAD"); } /* Check for thread termination. */ else if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP && in_thread_list (pid)) { int realsig; realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE)0, 0); if (realsig == SIGTHREADEXIT) { ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE)0, 0); continue; } } #ifdef SPARC /* SPARC Lynx uses an byte reversed wait status; we must use the host macros to access it. These lines just a copy of store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS because target.c can't include the Lynx <sys/wait.h>. */ if (WIFEXITED (status)) { ourstatus->kind = TARGET_WAITKIND_EXITED; ourstatus->value.integer = WEXITSTATUS (status); } else if (!WIFSTOPPED (status)) { ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = target_signal_from_host (WTERMSIG (status)); } else { ourstatus->kind = TARGET_WAITKIND_STOPPED; ourstatus->value.sig = target_signal_from_host (WSTOPSIG (status)); } #else store_waitstatus (ourstatus, status.w_status); #endif return pid; } } /* Return nonzero if the given thread is still alive. */ int child_thread_alive (pid) int pid; { /* Arggh. Apparently pthread_kill only works for threads within the process that calls pthread_kill. We want to avoid the lynx signal extensions as they simply don't map well to the generic gdb interface we want to keep. All we want to do is determine if a particular thread is alive; it appears as if we can just make a harmless thread specific ptrace call to do that. */ return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1); } /* Resume execution of the inferior process. If STEP is nonzero, single-step it. If SIGNAL is nonzero, give it that signal. */ void child_resume (pid, step, signal) int pid; int step; enum target_signal signal; { int func; errno = 0; /* If pid == -1, then we want to step/continue all threads, else we only want to step/continue a single thread. */ if (pid == -1) { pid = inferior_pid; func = step ? PTRACE_SINGLESTEP : PTRACE_CONT; } else func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE; /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where it was. (If GDB wanted it to start some other way, we have already written a new PC value to the child.) If this system does not support PT_STEP, a higher level function will have called single_step() to transmute the step request into a continue request (by setting breakpoints on all possible successor instructions), so we don't have to worry about that here. */ ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal)); if (errno) perror_with_name ("ptrace"); } /* Convert a Lynx process ID to a string. Returns the string in a static buffer. */ char * lynx_pid_to_str (pid) int pid; { static char buf[40]; sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid)); return buf; } /* Extract the register values out of the core file and store them where `read_register' will find them. CORE_REG_SECT points to the register values themselves, read into memory. CORE_REG_SIZE is the size of that area. WHICH says which set of registers we are handling (0 = int, 2 = float on machines where they are discontiguous). REG_ADDR is the offset from u.u_ar0 to the register values relative to core_reg_sect. This is used with old-fashioned core files to locate the registers in a large upage-plus-stack ".reg" section. Original upage address X is at location core_reg_sect+x+reg_addr. */ static void fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) char *core_reg_sect; unsigned core_reg_size; int which; CORE_ADDR reg_addr; { struct st_entry s; unsigned int regno; for (regno = 0; regno < NUM_REGS; regno++) if (regmap[regno] != -1) supply_register (regno, core_reg_sect + offsetof (st_t, ec) + regmap[regno]); #ifdef SPARC /* Fetching this register causes all of the I & L regs to be read from the stack and validated. */ fetch_inferior_registers (I0_REGNUM); #endif } /* Register that we are able to handle lynx core file formats. FIXME: is this really bfd_target_unknown_flavour? */ static struct core_fns lynx_core_fns = { bfd_target_unknown_flavour, fetch_core_registers, NULL }; void _initialize_core_lynx () { add_core_fns (&lynx_core_fns); }