#!/bin/sh -u # Architecture commands for GDB, the GNU debugger. # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. # # This file is part of GDB. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # Make certain that the script is running in an internationalized # environment. LANG=c ; export LANG LC_ALL=c ; export LC_ALL compare_new () { file=$1 if test ! -r ${file} then echo "${file} missing? cp new-${file} ${file}" 1>&2 elif diff -u ${file} new-${file} then echo "${file} unchanged" 1>&2 else echo "${file} has changed? cp new-${file} ${file}" 1>&2 fi } # Format of the input table read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description" do_read () { comment="" class="" while read line do if test "${line}" = "" then continue elif test "${line}" = "#" -a "${comment}" = "" then continue elif expr "${line}" : "#" > /dev/null then comment="${comment} ${line}" else # The semantics of IFS varies between different SH's. Some # treat ``::' as three fields while some treat it as just too. # Work around this by eliminating ``::'' .... line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`" OFS="${IFS}" ; IFS="[:]" eval read ${read} <&2 ; kill $$ ; exit 1 ;; esac case "${class}" in m ) staticdefault="${predefault}" ;; M ) staticdefault="0" ;; * ) test "${staticdefault}" || staticdefault=0 ;; esac # come up with a format, use a few guesses for variables case ":${class}:${fmt}:${print}:" in :[vV]::: ) if [ "${returntype}" = int ] then fmt="%d" print="${macro}" elif [ "${returntype}" = long ] then fmt="%ld" print="${macro}" fi ;; esac test "${fmt}" || fmt="%ld" test "${print}" || print="(long) ${macro}" case "${class}" in F | V | M ) case "${invalid_p}" in "" ) if test -n "${predefault}" then #invalid_p="gdbarch->${function} == ${predefault}" predicate="gdbarch->${function} != ${predefault}" elif class_is_variable_p then predicate="gdbarch->${function} != 0" elif class_is_function_p then predicate="gdbarch->${function} != NULL" fi ;; * ) echo "Predicate function ${function} with invalid_p." 1>&2 kill $$ exit 1 ;; esac esac # PREDEFAULT is a valid fallback definition of MEMBER when # multi-arch is not enabled. This ensures that the # default value, when multi-arch is the same as the # default value when not multi-arch. POSTDEFAULT is # always a valid definition of MEMBER as this again # ensures consistency. if [ -n "${postdefault}" ] then fallbackdefault="${postdefault}" elif [ -n "${predefault}" ] then fallbackdefault="${predefault}" else fallbackdefault="0" fi #NOT YET: See gdbarch.log for basic verification of # database break fi done if [ -n "${class}" ] then true else false fi } fallback_default_p () { [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \ || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ] } class_is_variable_p () { case "${class}" in *v* | *V* ) true ;; * ) false ;; esac } class_is_function_p () { case "${class}" in *f* | *F* | *m* | *M* ) true ;; * ) false ;; esac } class_is_multiarch_p () { case "${class}" in *m* | *M* ) true ;; * ) false ;; esac } class_is_predicate_p () { case "${class}" in *F* | *V* | *M* ) true ;; * ) false ;; esac } class_is_info_p () { case "${class}" in *i* ) true ;; * ) false ;; esac } # dump out/verify the doco for field in ${read} do case ${field} in class ) : ;; # # -> line disable # f -> function # hiding a function # F -> function + predicate # hiding a function + predicate to test function validity # v -> variable # hiding a variable # V -> variable + predicate # hiding a variable + predicate to test variables validity # i -> set from info # hiding something from the ``struct info'' object # m -> multi-arch function # hiding a multi-arch function (parameterised with the architecture) # M -> multi-arch function + predicate # hiding a multi-arch function + predicate to test function validity level ) : ;; # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >= # LEVEL is a predicate on checking that a given method is # initialized (using INVALID_P). macro ) : ;; # The name of the MACRO that this method is to be accessed by. returntype ) : ;; # For functions, the return type; for variables, the data type function ) : ;; # For functions, the member function name; for variables, the # variable name. Member function names are always prefixed with # ``gdbarch_'' for name-space purity. formal ) : ;; # The formal argument list. It is assumed that the formal # argument list includes the actual name of each list element. # A function with no arguments shall have ``void'' as the # formal argument list. actual ) : ;; # The list of actual arguments. The arguments specified shall # match the FORMAL list given above. Functions with out # arguments leave this blank. attrib ) : ;; # Any GCC attributes that should be attached to the function # declaration. At present this field is unused. staticdefault ) : ;; # To help with the GDB startup a static gdbarch object is # created. STATICDEFAULT is the value to insert into that # static gdbarch object. Since this a static object only # simple expressions can be used. # If STATICDEFAULT is empty, zero is used. predefault ) : ;; # An initial value to assign to MEMBER of the freshly # malloc()ed gdbarch object. After initialization, the # freshly malloc()ed object is passed to the target # architecture code for further updates. # If PREDEFAULT is empty, zero is used. # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero # INVALID_P are specified, PREDEFAULT will be used as the # default for the non- multi-arch target. # A zero PREDEFAULT function will force the fallback to call # internal_error(). # Variable declarations can refer to ``gdbarch'' which will # contain the current architecture. Care should be taken. postdefault ) : ;; # A value to assign to MEMBER of the new gdbarch object should # the target architecture code fail to change the PREDEFAULT # value. # If POSTDEFAULT is empty, no post update is performed. # If both INVALID_P and POSTDEFAULT are non-empty then # INVALID_P will be used to determine if MEMBER should be # changed to POSTDEFAULT. # If a non-empty POSTDEFAULT and a zero INVALID_P are # specified, POSTDEFAULT will be used as the default for the # non- multi-arch target (regardless of the value of # PREDEFAULT). # You cannot specify both a zero INVALID_P and a POSTDEFAULT. # Variable declarations can refer to ``gdbarch'' which will # contain the current architecture. Care should be taken. invalid_p ) : ;; # A predicate equation that validates MEMBER. Non-zero is # returned if the code creating the new architecture failed to # initialize MEMBER or the initialized the member is invalid. # If POSTDEFAULT is non-empty then MEMBER will be updated to # that value. If POSTDEFAULT is empty then internal_error() # is called. # If INVALID_P is empty, a check that MEMBER is no longer # equal to PREDEFAULT is used. # The expression ``0'' disables the INVALID_P check making # PREDEFAULT a legitimate value. # See also PREDEFAULT and POSTDEFAULT. fmt ) : ;; # printf style format string that can be used to print out the # MEMBER. Sometimes "%s" is useful. For functions, this is # ignored and the function address is printed. # If FMT is empty, ``%ld'' is used. print ) : ;; # An optional equation that casts MEMBER to a value suitable # for formatting by FMT. # If PRINT is empty, ``(long)'' is used. print_p ) : ;; # An optional indicator for any predicte to wrap around the # print member code. # () -> Call a custom function to do the dump. # exp -> Wrap print up in ``if (${print_p}) ... # ``'' -> No predicate # If PRINT_P is empty, ``1'' is always used. description ) : ;; # Currently unused. *) echo "Bad field ${field}" exit 1;; esac done function_list () { # See below (DOCO) for description of each field cat <printable_name:TARGET_ARCHITECTURE != NULL # i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG # i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN # Number of bits in a char or unsigned char for the target machine. # Just like CHAR_BIT in but describes the target machine. # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: # # Number of bits in a short or unsigned short for the target machine. v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0 # Number of bits in an int or unsigned int for the target machine. v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0 # Number of bits in a long or unsigned long for the target machine. v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0 # Number of bits in a long long or unsigned long long for the target # machine. v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0 # Number of bits in a float for the target machine. v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0 # Number of bits in a double for the target machine. v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0 # Number of bits in a long double for the target machine. v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0 # For most targets, a pointer on the target and its representation as an # address in GDB have the same size and "look the same". For such a # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT # / addr_bit will be set from it. # # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well. # # ptr_bit is the size of a pointer on the target v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0 # addr_bit is the size of a target address as represented in gdb v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT: # Number of bits in a BFD_VMA for the target object file format. v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0 # # One if \`char' acts like \`signed char', zero if \`unsigned char'. v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1:::: # F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0 # UNWIND_SP is a direct replacement for TARGET_READ_SP. F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void # Function for getting target's idea of a frame pointer. FIXME: GDB's # whole scheme for dealing with "frames" and "frame pointers" needs a # serious shakedown. f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0 # M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf # v:2:NUM_REGS:int:num_regs::::0:-1 # This macro gives the number of pseudo-registers that live in the # register namespace but do not get fetched or stored on the target. # These pseudo-registers may be aliases for other registers, # combinations of other registers, or they may be computed by GDB. v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0::: # GDB's standard (or well known) register numbers. These can map onto # a real register or a pseudo (computed) register or not be defined at # all (-1). # SP_REGNUM will hopefully be replaced by UNWIND_SP. v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM. f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0 # Provide a default mapping from a ecoff register number to a gdb REGNUM. f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0 # Provide a default mapping from a DWARF register number to a gdb REGNUM. f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0 # Convert from an sdb register number to an internal gdb register number. # This should be defined in tm.h, if REGISTER_NAMES is not set up # to map one to one onto the sdb register numbers. f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0 f::REGISTER_NAME:const char *:register_name:int regnr:regnr # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE. M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE. F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed # from REGISTER_TYPE. v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the # register offsets computed using just REGISTER_TYPE, this can be # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This # function with predicate has a valid (callable) initial value. As a # consequence, even when the predicate is false, the corresponding # function works. This simplifies the migration process - old code, # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified. F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte # If all registers have identical raw and virtual sizes and those # sizes agree with the value computed from REGISTER_TYPE, # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print # registers. F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size # If all registers have identical raw and virtual sizes and those # sizes agree with the value computed from REGISTER_TYPE, # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print # registers. F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been # replaced by the constant MAX_REGISTER_SIZE. V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been # replaced by the constant MAX_REGISTER_SIZE. V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size # See gdbint.texinfo, and PUSH_DUMMY_CALL. M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete # SAVE_DUMMY_FRAME_TOS. F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete # DEPRECATED_FP_REGNUM. v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete # DEPRECATED_TARGET_READ_FP. F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void # See gdbint.texinfo. See infcall.c. New, all singing all dancing, # replacement for DEPRECATED_PUSH_ARGUMENTS. M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS. F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true. v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0 # Implement PUSH_RETURN_ADDRESS, and then merge in # DEPRECATED_PUSH_RETURN_ADDRESS. F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP. F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val # DEPRECATED_REGISTER_SIZE can be deleted. v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted. v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted. v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset # DEPRECATED_CALL_DUMMY_LENGTH can be deleted. v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length # DEPRECATED_CALL_DUMMY_WORDS can be deleted. v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS. v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST. V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK. F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al. M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME. F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:- # Implement PUSH_DUMMY_CALL, then delete # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED. v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0::: F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args # MAP a GDB RAW register number onto a simulator register number. See # also include/...-sim.h. f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0 # setjmp/longjmp support. F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc # NOTE: cagney/2002-11-24: This function with predicate has a valid # (callable) initial value. As a consequence, even when the predicate # is false, the corresponding function works. This simplifies the # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(), # doesn't need to be modified. F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev # v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion::::::: v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type::::::: F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval # # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al. # For raw <-> cooked register conversions, replaced by pseudo registers. f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al. # For raw <-> cooked register conversions, replaced by pseudo registers. f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al. # For raw <-> cooked register conversions, replaced by pseudo registers. f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0 # f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0 # f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf # f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:- # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS. F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp # f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf # F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0 # F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame # f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0: f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1 # m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0 # v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please # note, per UNWIND_PC's doco, that while the two have similar # interfaces they have very different underlying implementations. F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame # frame-base. Enable frame-base before frame-unwind. F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame # frame-base. Enable frame-base before frame-unwind. F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame # F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp M:::CORE_ADDR:frame_align:CORE_ADDR address:address F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type v:2:PARM_BOUNDARY:int:parm_boundary # v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0 # On some machines there are bits in addresses which are not really # part of the address, but are used by the kernel, the hardware, etc. # for special purposes. ADDR_BITS_REMOVE takes out any such bits so # we get a "real" address such as one would find in a symbol table. # This is used only for addresses of instructions, and even then I'm # not sure it's used in all contexts. It exists to deal with there # being a few stray bits in the PC which would mislead us, not as some # sort of generic thing to handle alignment or segmentation (it's # possible it should be in TARGET_READ_PC instead). f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into # ADDR_BITS_REMOVE. f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if # the target needs software single step. An ISA method to implement it. # # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints # using the breakpoint system instead of blatting memory directly (as with rs6000). # # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can # single step. If not, then implement single step using breakpoints. F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0 # For SVR4 shared libraries, each call goes through a small piece of # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates # to nonzero if we are currently stopped in one of these. f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0 # Some systems also have trampoline code for returning from shared libs. f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0 # Sigtramp is a routine that the kernel calls (which then calls the # signal handler). On most machines it is a library routine that is # linked into the executable. # # This macro, given a program counter value and the name of the # function in which that PC resides (which can be null if the name is # not known), returns nonzero if the PC and name show that we are in # sigtramp. # # On most machines just see if the name is sigtramp (and if we have # no name, assume we are not in sigtramp). # # FIXME: cagney/2002-04-21: The function find_pc_partial_function # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP. # This means PC_IN_SIGTRAMP function can't be implemented by doing its # own local NAME lookup. # # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess. # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other # does not. f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc # A target might have problems with watchpoints as soon as the stack # frame of the current function has been destroyed. This mostly happens # as the first action in a funtion's epilogue. in_function_epilogue_p() # is defined to return a non-zero value if either the given addr is one # instruction after the stack destroying instruction up to the trailing # return instruction or if we can figure out that the stack frame has # already been invalidated regardless of the value of addr. Targets # which don't suffer from that problem could just let this functionality # untouched. m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0 # Given a vector of command-line arguments, return a newly allocated # string which, when passed to the create_inferior function, will be # parsed (on Unix systems, by the shell) to yield the same vector. # This function should call error() if the argument vector is not # representable for this target or if this target does not support # command-line arguments. # ARGC is the number of elements in the vector. # ARGV is an array of strings, one per argument. m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr # Is a register in a group m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0 # Fetch the pointer to the ith function argument. F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type EOF } # # The .log file # exec > new-gdbarch.log function_list | while do_read do cat <&2 kill $$ exit 1 fi if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ] then echo "Error: postdefault is useless when invalid_p=0" 1>&2 kill $$ exit 1 fi if class_is_multiarch_p then if class_is_predicate_p ; then : elif test "x${predefault}" = "x" then echo "Error: pure multi-arch function must have a predefault" 1>&2 kill $$ exit 1 fi fi echo "" done exec 1>&2 compare_new gdbarch.log copyright () { cat < new-gdbarch.h copyright cat <= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE) #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file." #endif EOF # function typedef's printf "\n" printf "\n" printf "/* The following are pre-initialized by GDBARCH. */\n" function_list | while do_read do if class_is_info_p then printf "\n" printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n" printf "#error \"Non multi-arch definition of ${macro}\"\n" printf "#endif\n" printf "#if !defined (${macro})\n" printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n" printf "#endif\n" fi done # function typedef's printf "\n" printf "\n" printf "/* The following are initialized by the target dependent code. */\n" function_list | while do_read do if [ -n "${comment}" ] then echo "${comment}" | sed \ -e '2 s,#,/*,' \ -e '3,$ s,#, ,' \ -e '$ s,$, */,' fi if class_is_multiarch_p then if class_is_predicate_p then printf "\n" printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n" fi else if class_is_predicate_p then printf "\n" printf "#if defined (${macro})\n" printf "/* Legacy for systems yet to multi-arch ${macro} */\n" #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n" printf "#if !defined (${macro}_P)\n" printf "#define ${macro}_P() (1)\n" printf "#endif\n" printf "#endif\n" printf "\n" printf "/* Default predicate for non- multi-arch targets. */\n" printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n" printf "#define ${macro}_P() (0)\n" printf "#endif\n" printf "\n" printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n" printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n" printf "#error \"Non multi-arch definition of ${macro}\"\n" printf "#endif\n" printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n" printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n" printf "#endif\n" fi fi if class_is_variable_p then if fallback_default_p || class_is_predicate_p then printf "\n" printf "/* Default (value) for non- multi-arch platforms. */\n" printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n" echo "#define ${macro} (${fallbackdefault})" \ | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g' printf "#endif\n" fi printf "\n" printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n" printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n" printf "#error \"Non multi-arch definition of ${macro}\"\n" printf "#endif\n" printf "#if !defined (${macro})\n" printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n" printf "#endif\n" fi if class_is_function_p then if class_is_multiarch_p ; then : elif fallback_default_p || class_is_predicate_p then printf "\n" printf "/* Default (function) for non- multi-arch platforms. */\n" printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n" if [ "x${fallbackdefault}" = "x0" ] then if [ "x${actual}" = "x-" ] then printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n" else printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n" fi else # FIXME: Should be passing current_gdbarch through! echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \ | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g' fi printf "#endif\n" fi printf "\n" if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p then printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n" elif class_is_multiarch_p then printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n" else printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n" fi if [ "x${formal}" = "xvoid" ] then printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" else printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n" fi printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n" if class_is_multiarch_p ; then : else printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n" printf "#error \"Non multi-arch definition of ${macro}\"\n" printf "#endif\n" if [ "x${actual}" = "x" ] then d="#define ${macro}() (gdbarch_${function} (current_gdbarch))" elif [ "x${actual}" = "x-" ] then d="#define ${macro} (gdbarch_${function} (current_gdbarch))" else d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))" fi printf "#if !defined (${macro})\n" if [ "x${actual}" = "x" ] then printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n" elif [ "x${actual}" = "x-" ] then printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n" else printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n" fi printf "#endif\n" fi fi done # close it off cat <gdbarch can used to access values from the previously selected architecture for this architecture family. The global \`\`current_gdbarch'' shall not be used. The INIT function shall return any of: NULL - indicating that it doesn't recognize the selected architecture; an existing \`\`struct gdbarch'' from the ARCHES list - indicating that the new architecture is just a synonym for an earlier architecture (see gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch'' - that describes the selected architecture (see gdbarch_alloc()). The DUMP_TDEP function shall print out all target specific values. Care should be taken to ensure that the function works in both the multi-arch and non- multi-arch cases. */ struct gdbarch_list { struct gdbarch *gdbarch; struct gdbarch_list *next; }; struct gdbarch_info { /* Use default: NULL (ZERO). */ const struct bfd_arch_info *bfd_arch_info; /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */ int byte_order; /* Use default: NULL (ZERO). */ bfd *abfd; /* Use default: NULL (ZERO). */ struct gdbarch_tdep_info *tdep_info; /* Use default: GDB_OSABI_UNINITIALIZED (-1). */ enum gdb_osabi osabi; }; typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches); typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file); /* DEPRECATED - use gdbarch_register() */ extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *); extern void gdbarch_register (enum bfd_architecture architecture, gdbarch_init_ftype *, gdbarch_dump_tdep_ftype *); /* Return a freshly allocated, NULL terminated, array of the valid architecture names. Since architectures are registered during the _initialize phase this function only returns useful information once initialization has been completed. */ extern const char **gdbarch_printable_names (void); /* Helper function. Search the list of ARCHES for a GDBARCH that matches the information provided by INFO. */ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform basic initialization using values obtained from the INFO andTDEP parameters. set_gdbarch_*() functions are called to complete the initialization of the object. */ extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); /* Helper function. Free a partially-constructed \`\`struct gdbarch''. It is assumed that the caller freeds the \`\`struct gdbarch_tdep''. */ extern void gdbarch_free (struct gdbarch *); /* Helper function. Allocate memory from the \`\`struct gdbarch'' obstack. The memory is freed when the corresponding architecture is also freed. */ extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size); #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE))) #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE))) /* Helper function. Force an update of the current architecture. The actual architecture selected is determined by INFO, \`\`(gdb) set architecture'' et.al., the existing architecture and BFD's default architecture. INFO should be initialized to zero and then selected fields should be updated. Returns non-zero if the update succeeds */ extern int gdbarch_update_p (struct gdbarch_info info); /* Register per-architecture data-pointer. Reserve space for a per-architecture data-pointer. An identifier for the reserved data-pointer is returned. That identifer should be saved in a local static variable. The per-architecture data-pointer is either initialized explicitly (set_gdbarch_data()) or implicitly (by INIT() via a call to gdbarch_data()). FREE() is ignored. When a previously created architecture is re-selected, the per-architecture data-pointer for that previous architecture is restored. INIT() is not re-called. Multiple registrarants for any architecture are allowed (and strongly encouraged). */ struct gdbarch_data; typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch); typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch, void *pointer); extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init, gdbarch_data_free_ftype *free); extern void set_gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data, void *pointer); extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *); /* Register per-architecture memory region. Provide a memory-region swap mechanism. Per-architecture memory region are created. These memory regions are swapped whenever the architecture is changed. For a new architecture, the memory region is initialized with zero (0) and the INIT function is called. Memory regions are swapped / initialized in the order that they are registered. NULL DATA and/or INIT values can be specified. New code should use register_gdbarch_data(). */ typedef void (gdbarch_swap_ftype) (void); extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init); #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL) /* The target-system-dependent byte order is dynamic */ extern int target_byte_order; #ifndef TARGET_BYTE_ORDER #define TARGET_BYTE_ORDER (target_byte_order + 0) #endif extern int target_byte_order_auto; #ifndef TARGET_BYTE_ORDER_AUTO #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0) #endif /* The target-system-dependent BFD architecture is dynamic */ extern int target_architecture_auto; #ifndef TARGET_ARCHITECTURE_AUTO #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0) #endif extern const struct bfd_arch_info *target_architecture; #ifndef TARGET_ARCHITECTURE #define TARGET_ARCHITECTURE (target_architecture + 0) #endif /* The target-system-dependent disassembler is semi-dynamic */ /* Use gdb_disassemble, and gdbarch_print_insn instead. */ extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*); /* Use set_gdbarch_print_insn instead. */ extern disassemble_info deprecated_tm_print_insn_info; /* Set the dynamic target-system-dependent parameters (architecture, byte-order, ...) using information found in the BFD */ extern void set_gdbarch_from_file (bfd *); /* Initialize the current architecture to the "first" one we find on our list. */ extern void initialize_current_architecture (void); /* For non-multiarched targets, do any initialization of the default gdbarch object necessary after the _initialize_MODULE functions have run. */ extern void initialize_non_multiarch (void); /* gdbarch trace variable */ extern int gdbarch_debug; extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file); #endif EOF exec 1>&2 #../move-if-change new-gdbarch.h gdbarch.h compare_new gdbarch.h # # C file # exec > new-gdbarch.c copyright cat < #include "symtab.h" #include "frame.h" #include "inferior.h" #include "breakpoint.h" #include "gdb_wait.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "gdbthread.h" #include "annotate.h" #include "symfile.h" /* for overlay functions */ #include "value.h" /* For old tm.h/nm.h macros. */ #endif #include "symcat.h" #include "floatformat.h" #include "gdb_assert.h" #include "gdb_string.h" #include "gdb-events.h" #include "reggroups.h" #include "osabi.h" #include "symfile.h" /* For entry_point_address. */ #include "gdb_obstack.h" /* Static function declarations */ static void verify_gdbarch (struct gdbarch *gdbarch); static void alloc_gdbarch_data (struct gdbarch *); static void init_gdbarch_swap (struct gdbarch *); static void clear_gdbarch_swap (struct gdbarch *); static void swapout_gdbarch_swap (struct gdbarch *); static void swapin_gdbarch_swap (struct gdbarch *); /* Non-zero if we want to trace architecture code. */ #ifndef GDBARCH_DEBUG #define GDBARCH_DEBUG 0 #endif int gdbarch_debug = GDBARCH_DEBUG; EOF # gdbarch open the gdbarch object printf "\n" printf "/* Maintain the struct gdbarch object */\n" printf "\n" printf "struct gdbarch\n" printf "{\n" printf " /* Has this architecture been fully initialized? */\n" printf " int initialized_p;\n" printf "\n" printf " /* An obstack bound to the lifetime of the architecture. */\n" printf " struct obstack *obstack;\n" printf "\n" printf " /* basic architectural information */\n" function_list | while do_read do if class_is_info_p then printf " ${returntype} ${function};\n" fi done printf "\n" printf " /* target specific vector. */\n" printf " struct gdbarch_tdep *tdep;\n" printf " gdbarch_dump_tdep_ftype *dump_tdep;\n" printf "\n" printf " /* per-architecture data-pointers */\n" printf " unsigned nr_data;\n" printf " void **data;\n" printf "\n" printf " /* per-architecture swap-regions */\n" printf " struct gdbarch_swap *swap;\n" printf "\n" cat <obstack = obstack; alloc_gdbarch_data (current_gdbarch); current_gdbarch->tdep = tdep; EOF printf "\n" function_list | while do_read do if class_is_info_p then printf " current_gdbarch->${function} = info->${function};\n" fi done printf "\n" printf " /* Force the explicit initialization of these. */\n" function_list | while do_read do if class_is_function_p || class_is_variable_p then if [ -n "${predefault}" -a "x${predefault}" != "x0" ] then printf " current_gdbarch->${function} = ${predefault};\n" fi fi done cat <obstack, size); memset (data, 0, size); return data; } /* Free a gdbarch struct. This should never happen in normal operation --- once you've created a gdbarch, you keep it around. However, if an architecture's init function encounters an error building the structure, it may need to clean up a partially constructed gdbarch. */ void gdbarch_free (struct gdbarch *arch) { struct obstack *obstack; gdb_assert (arch != NULL); gdb_assert (!arch->initialized_p); obstack = arch->obstack; obstack_free (obstack, 0); /* Includes the ARCH. */ xfree (obstack); } EOF # verify a new architecture printf "\n" printf "\n" printf "/* Ensure that all values in a GDBARCH are reasonable. */\n" printf "\n" cat <byte_order == BFD_ENDIAN_UNKNOWN) fprintf_unfiltered (log, "\n\tbyte-order"); if (gdbarch->bfd_arch_info == NULL) fprintf_unfiltered (log, "\n\tbfd_arch_info"); /* Check those that need to be defined for the given multi-arch level. */ EOF function_list | while do_read do if class_is_function_p || class_is_variable_p then if [ "x${invalid_p}" = "x0" ] then printf " /* Skip verify of ${function}, invalid_p == 0 */\n" elif class_is_predicate_p then printf " /* Skip verify of ${function}, has predicate */\n" # FIXME: See do_read for potential simplification elif [ -n "${invalid_p}" -a -n "${postdefault}" ] then printf " if (${invalid_p})\n" printf " gdbarch->${function} = ${postdefault};\n" elif [ -n "${predefault}" -a -n "${postdefault}" ] then printf " if (gdbarch->${function} == ${predefault})\n" printf " gdbarch->${function} = ${postdefault};\n" elif [ -n "${postdefault}" ] then printf " if (gdbarch->${function} == 0)\n" printf " gdbarch->${function} = ${postdefault};\n" elif [ -n "${invalid_p}" ] then printf " if ((GDB_MULTI_ARCH ${gt_level})\n" printf " && (${invalid_p}))\n" printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" elif [ -n "${predefault}" ] then printf " if ((GDB_MULTI_ARCH ${gt_level})\n" printf " && (gdbarch->${function} == ${predefault}))\n" printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" fi fi done cat < 0) internal_error (__FILE__, __LINE__, "verify_gdbarch: the following are invalid ...%s", buf); do_cleanups (cleanups); } EOF # dump the structure printf "\n" printf "\n" cat <${function});\n" continue fi # Print the macro definition. printf "#ifdef ${macro}\n" if [ "x${returntype}" = "xvoid" ] then printf "#if GDB_MULTI_ARCH\n" printf " /* Macro might contain \`[{}]' when not multi-arch */\n" fi if class_is_function_p then printf " fprintf_unfiltered (file,\n" printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n" printf " \"${macro}(${actual})\",\n" printf " XSTRING (${macro} (${actual})));\n" else printf " fprintf_unfiltered (file,\n" printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n" printf " XSTRING (${macro}));\n" fi # Print the architecture vector value if [ "x${returntype}" = "xvoid" ] then printf "#endif\n" fi if [ "x${print_p}" = "x()" ] then printf " gdbarch_dump_${function} (current_gdbarch);\n" elif [ "x${print_p}" = "x0" ] then printf " /* skip print of ${macro}, print_p == 0. */\n" elif [ -n "${print_p}" ] then printf " if (${print_p})\n" printf " fprintf_unfiltered (file,\n" printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}" printf " ${print});\n" elif class_is_function_p then printf " if (GDB_MULTI_ARCH)\n" printf " fprintf_unfiltered (file,\n" printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n" printf " (long) current_gdbarch->${function}\n" printf " /*${macro} ()*/);\n" else printf " fprintf_unfiltered (file,\n" printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}" printf " ${print});\n" fi printf "#endif\n" done cat <dump_tdep != NULL) current_gdbarch->dump_tdep (current_gdbarch, file); } EOF # GET/SET printf "\n" cat <= 2) fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n"); return gdbarch->tdep; } EOF printf "\n" function_list | while do_read do if class_is_predicate_p then printf "\n" printf "int\n" printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n" printf "{\n" printf " gdb_assert (gdbarch != NULL);\n" printf " return ${predicate};\n" printf "}\n" fi if class_is_function_p then printf "\n" printf "${returntype}\n" if [ "x${formal}" = "xvoid" ] then printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" else printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n" fi printf "{\n" printf " gdb_assert (gdbarch != NULL);\n" printf " gdb_assert (gdbarch->${function} != NULL);\n" if class_is_predicate_p && test -n "${predefault}" then # Allow a call to a function with a predicate. printf " /* Do not check predicate: ${predicate}, allow call. */\n" fi printf " if (gdbarch_debug >= 2)\n" printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" if [ "x${actual}" = "x-" -o "x${actual}" = "x" ] then if class_is_multiarch_p then params="gdbarch" else params="" fi else if class_is_multiarch_p then params="gdbarch, ${actual}" else params="${actual}" fi fi if [ "x${returntype}" = "xvoid" ] then printf " gdbarch->${function} (${params});\n" else printf " return gdbarch->${function} (${params});\n" fi printf "}\n" printf "\n" printf "void\n" printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n" printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n" printf "{\n" printf " gdbarch->${function} = ${function};\n" printf "}\n" elif class_is_variable_p then printf "\n" printf "${returntype}\n" printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" printf "{\n" printf " gdb_assert (gdbarch != NULL);\n" if [ "x${invalid_p}" = "x0" ] then printf " /* Skip verify of ${function}, invalid_p == 0 */\n" elif [ -n "${invalid_p}" ] then printf " /* Check variable is valid. */\n" printf " gdb_assert (!(${invalid_p}));\n" elif [ -n "${predefault}" ] then printf " /* Check variable changed from pre-default. */\n" printf " gdb_assert (gdbarch->${function} != ${predefault});\n" fi printf " if (gdbarch_debug >= 2)\n" printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" printf " return gdbarch->${function};\n" printf "}\n" printf "\n" printf "void\n" printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n" printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n" printf "{\n" printf " gdbarch->${function} = ${function};\n" printf "}\n" elif class_is_info_p then printf "\n" printf "${returntype}\n" printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" printf "{\n" printf " gdb_assert (gdbarch != NULL);\n" printf " if (gdbarch_debug >= 2)\n" printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" printf " return gdbarch->${function};\n" printf "}\n" fi done # All the trailing guff cat <next); (*curr) = XMALLOC (struct gdbarch_data_registration); (*curr)->next = NULL; (*curr)->data = XMALLOC (struct gdbarch_data); (*curr)->data->index = gdbarch_data_registry.nr++; (*curr)->data->init = init; (*curr)->data->init_p = 1; return (*curr)->data; } /* Create/delete the gdbarch data vector. */ static void alloc_gdbarch_data (struct gdbarch *gdbarch) { gdb_assert (gdbarch->data == NULL); gdbarch->nr_data = gdbarch_data_registry.nr; gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *); } /* Initialize the current value of the specified per-architecture data-pointer. */ void set_gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data, void *pointer) { gdb_assert (data->index < gdbarch->nr_data); gdb_assert (gdbarch->data[data->index] == NULL); gdbarch->data[data->index] = pointer; } /* Return the current value of the specified per-architecture data-pointer. */ void * gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) { gdb_assert (data->index < gdbarch->nr_data); /* The data-pointer isn't initialized, call init() to get a value but only if the architecture initializaiton has completed. Otherwise punt - hope that the caller knows what they are doing. */ if (gdbarch->data[data->index] == NULL && gdbarch->initialized_p) { /* Be careful to detect an initialization cycle. */ gdb_assert (data->init_p); data->init_p = 0; gdb_assert (data->init != NULL); gdbarch->data[data->index] = data->init (gdbarch); data->init_p = 1; gdb_assert (gdbarch->data[data->index] != NULL); } return gdbarch->data[data->index]; } /* Keep a registry of swapped data required by GDB modules. */ struct gdbarch_swap { void *swap; struct gdbarch_swap_registration *source; struct gdbarch_swap *next; }; struct gdbarch_swap_registration { void *data; unsigned long sizeof_data; gdbarch_swap_ftype *init; struct gdbarch_swap_registration *next; }; struct gdbarch_swap_registry { int nr; struct gdbarch_swap_registration *registrations; }; struct gdbarch_swap_registry gdbarch_swap_registry = { 0, NULL, }; void register_gdbarch_swap (void *data, unsigned long sizeof_data, gdbarch_swap_ftype *init) { struct gdbarch_swap_registration **rego; for (rego = &gdbarch_swap_registry.registrations; (*rego) != NULL; rego = &(*rego)->next); (*rego) = XMALLOC (struct gdbarch_swap_registration); (*rego)->next = NULL; (*rego)->init = init; (*rego)->data = data; (*rego)->sizeof_data = sizeof_data; } static void clear_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap *curr; for (curr = gdbarch->swap; curr != NULL; curr = curr->next) { memset (curr->source->data, 0, curr->source->sizeof_data); } } static void init_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap_registration *rego; struct gdbarch_swap **curr = &gdbarch->swap; for (rego = gdbarch_swap_registry.registrations; rego != NULL; rego = rego->next) { if (rego->data != NULL) { (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap); (*curr)->source = rego; (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data); (*curr)->next = NULL; curr = &(*curr)->next; } if (rego->init != NULL) rego->init (); } } static void swapout_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap *curr; for (curr = gdbarch->swap; curr != NULL; curr = curr->next) memcpy (curr->swap, curr->source->data, curr->source->sizeof_data); } static void swapin_gdbarch_swap (struct gdbarch *gdbarch) { struct gdbarch_swap *curr; for (curr = gdbarch->swap; curr != NULL; curr = curr->next) memcpy (curr->source->data, curr->swap, curr->source->sizeof_data); } /* Keep a registry of the architectures known by GDB. */ struct gdbarch_registration { enum bfd_architecture bfd_architecture; gdbarch_init_ftype *init; gdbarch_dump_tdep_ftype *dump_tdep; struct gdbarch_list *arches; struct gdbarch_registration *next; }; static struct gdbarch_registration *gdbarch_registry = NULL; static void append_name (const char ***buf, int *nr, const char *name) { *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1)); (*buf)[*nr] = name; *nr += 1; } const char ** gdbarch_printable_names (void) { if (GDB_MULTI_ARCH) { /* Accumulate a list of names based on the registed list of architectures. */ enum bfd_architecture a; int nr_arches = 0; const char **arches = NULL; struct gdbarch_registration *rego; for (rego = gdbarch_registry; rego != NULL; rego = rego->next) { const struct bfd_arch_info *ap; ap = bfd_lookup_arch (rego->bfd_architecture, 0); if (ap == NULL) internal_error (__FILE__, __LINE__, "gdbarch_architecture_names: multi-arch unknown"); do { append_name (&arches, &nr_arches, ap->printable_name); ap = ap->next; } while (ap != NULL); } append_name (&arches, &nr_arches, NULL); return arches; } else /* Just return all the architectures that BFD knows. Assume that the legacy architecture framework supports them. */ return bfd_arch_list (); } void gdbarch_register (enum bfd_architecture bfd_architecture, gdbarch_init_ftype *init, gdbarch_dump_tdep_ftype *dump_tdep) { struct gdbarch_registration **curr; const struct bfd_arch_info *bfd_arch_info; /* Check that BFD recognizes this architecture */ bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0); if (bfd_arch_info == NULL) { internal_error (__FILE__, __LINE__, "gdbarch: Attempt to register unknown architecture (%d)", bfd_architecture); } /* Check that we haven't seen this architecture before */ for (curr = &gdbarch_registry; (*curr) != NULL; curr = &(*curr)->next) { if (bfd_architecture == (*curr)->bfd_architecture) internal_error (__FILE__, __LINE__, "gdbarch: Duplicate registraration of architecture (%s)", bfd_arch_info->printable_name); } /* log it */ if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n", bfd_arch_info->printable_name, (long) init); /* Append it */ (*curr) = XMALLOC (struct gdbarch_registration); (*curr)->bfd_architecture = bfd_architecture; (*curr)->init = init; (*curr)->dump_tdep = dump_tdep; (*curr)->arches = NULL; (*curr)->next = NULL; /* When non- multi-arch, install whatever target dump routine we've been provided - hopefully that routine has been written correctly and works regardless of multi-arch. */ if (!GDB_MULTI_ARCH && dump_tdep != NULL && startup_gdbarch.dump_tdep == NULL) startup_gdbarch.dump_tdep = dump_tdep; } void register_gdbarch_init (enum bfd_architecture bfd_architecture, gdbarch_init_ftype *init) { gdbarch_register (bfd_architecture, init, NULL); } /* Look for an architecture using gdbarch_info. Base search on only BFD_ARCH_INFO and BYTE_ORDER. */ struct gdbarch_list * gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info) { for (; arches != NULL; arches = arches->next) { if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info) continue; if (info->byte_order != arches->gdbarch->byte_order) continue; if (info->osabi != arches->gdbarch->osabi) continue; return arches; } return NULL; } /* Update the current architecture. Return ZERO if the update request failed. */ int gdbarch_update_p (struct gdbarch_info info) { struct gdbarch *new_gdbarch; struct gdbarch *old_gdbarch; struct gdbarch_registration *rego; /* Fill in missing parts of the INFO struct using a number of sources: \`\`set ...''; INFOabfd supplied; existing target. */ /* \`\`(gdb) set architecture ...'' */ if (info.bfd_arch_info == NULL && !TARGET_ARCHITECTURE_AUTO) info.bfd_arch_info = TARGET_ARCHITECTURE; if (info.bfd_arch_info == NULL && info.abfd != NULL && bfd_get_arch (info.abfd) != bfd_arch_unknown && bfd_get_arch (info.abfd) != bfd_arch_obscure) info.bfd_arch_info = bfd_get_arch_info (info.abfd); if (info.bfd_arch_info == NULL) info.bfd_arch_info = TARGET_ARCHITECTURE; /* \`\`(gdb) set byte-order ...'' */ if (info.byte_order == BFD_ENDIAN_UNKNOWN && !TARGET_BYTE_ORDER_AUTO) info.byte_order = TARGET_BYTE_ORDER; /* From the INFO struct. */ if (info.byte_order == BFD_ENDIAN_UNKNOWN && info.abfd != NULL) info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE : BFD_ENDIAN_UNKNOWN); /* From the current target. */ if (info.byte_order == BFD_ENDIAN_UNKNOWN) info.byte_order = TARGET_BYTE_ORDER; /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */ if (info.osabi == GDB_OSABI_UNINITIALIZED) info.osabi = gdbarch_lookup_osabi (info.abfd); if (info.osabi == GDB_OSABI_UNINITIALIZED) info.osabi = current_gdbarch->osabi; /* Must have found some sort of architecture. */ gdb_assert (info.bfd_arch_info != NULL); if (gdbarch_debug) { fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.bfd_arch_info %s\n", (info.bfd_arch_info != NULL ? info.bfd_arch_info->printable_name : "(null)")); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.byte_order %d (%s)\n", info.byte_order, (info.byte_order == BFD_ENDIAN_BIG ? "big" : info.byte_order == BFD_ENDIAN_LITTLE ? "little" : "default")); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.osabi %d (%s)\n", info.osabi, gdbarch_osabi_name (info.osabi)); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.abfd 0x%lx\n", (long) info.abfd); fprintf_unfiltered (gdb_stdlog, "gdbarch_update: info.tdep_info 0x%lx\n", (long) info.tdep_info); } /* Find the target that knows about this architecture. */ for (rego = gdbarch_registry; rego != NULL; rego = rego->next) if (rego->bfd_architecture == info.bfd_arch_info->arch) break; if (rego == NULL) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n"); return 0; } /* Swap the data belonging to the old target out setting the installed data to zero. This stops the ->init() function trying to refer to the previous architecture's global data structures. */ swapout_gdbarch_swap (current_gdbarch); clear_gdbarch_swap (current_gdbarch); /* Save the previously selected architecture, setting the global to NULL. This stops ->init() trying to use the previous architecture's configuration. The previous architecture may not even be of the same architecture family. The most recent architecture of the same family is found at the head of the rego->arches list. */ old_gdbarch = current_gdbarch; current_gdbarch = NULL; /* Ask the target for a replacement architecture. */ new_gdbarch = rego->init (info, rego->arches); /* Did the target like it? No. Reject the change and revert to the old architecture. */ if (new_gdbarch == NULL) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n"); swapin_gdbarch_swap (old_gdbarch); current_gdbarch = old_gdbarch; return 0; } /* Did the architecture change? No. Oops, put the old architecture back. */ if (old_gdbarch == new_gdbarch) { if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n", (long) new_gdbarch, new_gdbarch->bfd_arch_info->printable_name); swapin_gdbarch_swap (old_gdbarch); current_gdbarch = old_gdbarch; return 1; } /* Is this a pre-existing architecture? Yes. Move it to the front of the list of architectures (keeping the list sorted Most Recently Used) and then copy it in. */ { struct gdbarch_list **list; for (list = ®o->arches; (*list) != NULL; list = &(*list)->next) { if ((*list)->gdbarch == new_gdbarch) { struct gdbarch_list *this; if (gdbarch_debug) fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n", (long) new_gdbarch, new_gdbarch->bfd_arch_info->printable_name); /* Unlink this. */ this = (*list); (*list) = this->next; /* Insert in the front. */ this->next = rego->arches; rego->arches = this; /* Copy the new architecture in. */ current_gdbarch = new_gdbarch; swapin_gdbarch_swap (new_gdbarch); architecture_changed_event (); return 1; } } } /* Prepend this new architecture to the architecture list (keep the list sorted Most Recently Used). */ { struct gdbarch_list *this = XMALLOC (struct gdbarch_list); this->next = rego->arches; this->gdbarch = new_gdbarch; rego->arches = this; } /* Switch to this new architecture marking it initialized. */ current_gdbarch = new_gdbarch; current_gdbarch->initialized_p = 1; if (gdbarch_debug) { fprintf_unfiltered (gdb_stdlog, "gdbarch_update: New architecture 0x%08lx (%s) selected\\n", (long) new_gdbarch, new_gdbarch->bfd_arch_info->printable_name); } /* Check that the newly installed architecture is valid. Plug in any post init values. */ new_gdbarch->dump_tdep = rego->dump_tdep; verify_gdbarch (new_gdbarch); /* Initialize the per-architecture memory (swap) areas. CURRENT_GDBARCH must be update before these modules are called. */ init_gdbarch_swap (new_gdbarch); /* Initialize the per-architecture data. CURRENT_GDBARCH must be updated before these modules are called. */ architecture_changed_event (); if (gdbarch_debug) gdbarch_dump (current_gdbarch, gdb_stdlog); return 1; } /* Disassembler */ /* Pointer to the target-dependent disassembly function. */ int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *); extern void _initialize_gdbarch (void); void _initialize_gdbarch (void) { struct cmd_list_element *c; add_show_from_set (add_set_cmd ("arch", class_maintenance, var_zinteger, (char *)&gdbarch_debug, "Set architecture debugging.\\n\\ When non-zero, architecture debugging is enabled.", &setdebuglist), &showdebuglist); c = add_set_cmd ("archdebug", class_maintenance, var_zinteger, (char *)&gdbarch_debug, "Set architecture debugging.\\n\\ When non-zero, architecture debugging is enabled.", &setlist); deprecate_cmd (c, "set debug arch"); deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch"); } EOF # close things off exec 1>&2 #../move-if-change new-gdbarch.c gdbarch.c compare_new gdbarch.c