/* tc-d10v.c -- Assembler code for the Mitsubishi D10V Copyright (C) 1996 Free Software Foundation. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" #include "opcode/d10v.h" #include "elf/ppc.h" const char comment_chars[] = ";"; const char line_comment_chars[] = "#"; const char line_separator_chars[] = ""; const char *md_shortopts = "O"; const char EXP_CHARS[] = "eE"; const char FLT_CHARS[] = "dD"; int Optimizing = 0; #define AT_WORD (-1) /* fixups */ #define MAX_INSN_FIXUPS (5) struct d10v_fixup { expressionS exp; int operand; int pcrel; int size; bfd_reloc_code_real_type reloc; }; typedef struct _fixups { int fc; struct d10v_fixup fix[MAX_INSN_FIXUPS]; struct _fixups *next; } Fixups; static Fixups FixUps[2]; static Fixups *fixups; /* local functions */ static int reg_name_search PARAMS ((char *name)); static int register_name PARAMS ((expressionS *expressionP)); static int check_range PARAMS ((unsigned long num, int bits, int flags)); static int postfix PARAMS ((char *p)); static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op)); static int get_operands PARAMS ((expressionS exp[])); static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[])); static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn)); static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx)); static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx)); static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1, struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx)); static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode)); static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type, offsetT value, int left, fixS *fix)); static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1, struct d10v_opcode *opcode2, unsigned long insn2, int exec_type)); struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); static void d10v_dot_word PARAMS ((int)); /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { { "word", d10v_dot_word, 2 }, { NULL, NULL, 0 } }; /* Opcode hash table. */ static struct hash_control *d10v_hash; /* reg_name_search does a binary search of the pre_defined_registers array to see if "name" is a valid regiter name. Returns the register number from the array on success, or -1 on failure. */ static int reg_name_search (name) char *name; { int middle, low, high; int cmp; low = 0; high = reg_name_cnt() - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, pre_defined_registers[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return pre_defined_registers[middle].value; } while (low <= high); return -1; } /* register_name() checks the string at input_line_pointer to see if it is a valid register name */ static int register_name (expressionP) expressionS *expressionP; { int reg_number; char c, *p = input_line_pointer; while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')') p++; c = *p; if (c) *p++ = 0; /* look to see if it's in the register table */ reg_number = reg_name_search (input_line_pointer); if (reg_number >= 0) { expressionP->X_op = O_register; /* temporarily store a pointer to the string here */ expressionP->X_op_symbol = (struct symbol *)input_line_pointer; expressionP->X_add_number = reg_number; input_line_pointer = p; return 1; } if (c) *(p-1) = c; return 0; } static int check_range (num, bits, flags) unsigned long num; int bits; int flags; { long min, max, bit1; int retval=0; /* don't bother checking 16-bit values */ if (bits == 16) return 0; if (flags & OPERAND_SHIFT) { /* all special shift operands are unsigned */ /* and <= 16. We allow 0 for now. */ if (num>16) return 1; else return 0; } if (flags & OPERAND_SIGNED) { max = (1 << (bits - 1))-1; min = - (1 << (bits - 1)); if (((long)num > max) || ((long)num < min)) retval = 1; } else { max = (1 << bits) - 1; min = 0; if ((num > max) || (num < min)) retval = 1; } return retval; } void md_show_usage (stream) FILE *stream; { fprintf(stream, "D10V options:\n\ -O optimize. Will do some operations in parallel.\n"); } int md_parse_option (c, arg) int c; char *arg; { switch (c) { case 'O': /* Optimize. Will attempt to parallelize operations */ Optimizing = 1; break; default: return 0; } return 1; } symbolS * md_undefined_symbol (name) char *name; { return 0; } /* Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ char * md_atof (type, litP, sizeP) int type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[4]; char *t; int i; switch (type) { case 'f': prec = 2; break; case 'd': prec = 4; break; default: *sizeP = 0; return "bad call to md_atof"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * 2; for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } return NULL; } void md_convert_frag (abfd, sec, fragP) bfd *abfd; asection *sec; fragS *fragP; { abort (); } valueT md_section_align (seg, addr) asection *seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); return ((addr + (1 << align) - 1) & (-1 << align)); } void md_begin () { char *prev_name = ""; struct d10v_opcode *opcode; d10v_hash = hash_new(); /* Insert unique names into hash table. The D10v instruction set has many identical opcode names that have different opcodes based on the operands. This hash table then provides a quick index to the first opcode with a particular name in the opcode table. */ for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++) { if (strcmp (prev_name, opcode->name)) { prev_name = (char *)opcode->name; hash_insert (d10v_hash, opcode->name, (char *) opcode); } } fixups = &FixUps[0]; FixUps[0].next = &FixUps[1]; FixUps[1].next = &FixUps[0]; } /* this function removes the postincrement or postdecrement operator ( '+' or '-' ) from an expression */ static int postfix (p) char *p; { while (*p != '-' && *p != '+') { if (*p==0 || *p=='\n' || *p=='\r') break; p++; } if (*p == '-') { *p = ' '; return (-1); } if (*p == '+') { *p = ' '; return (1); } return (0); } static bfd_reloc_code_real_type get_reloc (op) struct d10v_operand *op; { int bits = op->bits; if (bits <= 4) return (0); if (op->flags & OPERAND_ADDR) { if (bits == 8) return (BFD_RELOC_D10V_10_PCREL_R); else return (BFD_RELOC_D10V_18_PCREL); } return (BFD_RELOC_16); } /* get_operands parses a string of operands and returns an array of expressions */ static int get_operands (exp) expressionS exp[]; { char *p = input_line_pointer; int numops = 0; int post = 0; while (*p) { while (*p == ' ' || *p == '\t' || *p == ',') p++; if (*p==0 || *p=='\n' || *p=='\r') break; if (*p == '@') { p++; exp[numops].X_op = O_absent; if (*p == '(') { p++; exp[numops].X_add_number = OPERAND_ATPAR; } else if (*p == '-') { p++; exp[numops].X_add_number = OPERAND_ATMINUS; } else { exp[numops].X_add_number = OPERAND_ATSIGN; post = postfix (p); } numops++; continue; } if (*p == ')') { /* just skip the trailing paren */ p++; continue; } input_line_pointer = p; /* check to see if it might be a register name */ if (!register_name (&exp[numops])) { /* parse as an expression */ expression (&exp[numops]); } if (!strncasecmp (input_line_pointer, "@word", 5)) { if (exp[numops].X_op == O_register) { /* if it looked like a register name but was followed by "@word" */ /* then it was really a symbol, so change it to one */ exp[numops].X_op = O_symbol; exp[numops].X_add_symbol = symbol_find_or_make ((char *)exp[numops].X_op_symbol); exp[numops].X_op_symbol = NULL; } exp[numops].X_add_number = AT_WORD; input_line_pointer += 5; } if (exp[numops].X_op == O_illegal) as_bad ("illegal operand"); else if (exp[numops].X_op == O_absent) as_bad ("missing operand"); numops++; p = input_line_pointer; } switch (post) { case -1: /* postdecrement mode */ exp[numops].X_op = O_absent; exp[numops++].X_add_number = OPERAND_MINUS; break; case 1: /* postincrement mode */ exp[numops].X_op = O_absent; exp[numops++].X_add_number = OPERAND_PLUS; break; } exp[numops].X_op = 0; return (numops); } static unsigned long d10v_insert_operand (insn, op_type, value, left, fix) unsigned long insn; int op_type; offsetT value; int left; fixS *fix; { int shift, bits; shift = d10v_operands[op_type].shift; if (left) shift += 15; bits = d10v_operands[op_type].bits; /* truncate to the proper number of bits */ if (check_range (value, bits, d10v_operands[op_type].flags)) as_bad_where (fix->fx_file, fix->fx_line, "operand out of range: %d", value); value &= 0x7FFFFFFF >> (31 - bits); insn |= (value << shift); return insn; } /* build_insn takes a pointer to the opcode entry in the opcode table and the array of operand expressions and returns the instruction */ static unsigned long build_insn (opcode, opers, insn) struct d10v_opcode *opcode; expressionS *opers; unsigned long insn; { int i, bits, shift, flags, format; unsigned int number; /* the insn argument is only used for the DIVS kludge */ if (insn) format = LONG_R; else { insn = opcode->opcode; format = opcode->format; } for (i=0;opcode->operands[i];i++) { flags = d10v_operands[opcode->operands[i]].flags; bits = d10v_operands[opcode->operands[i]].bits; shift = d10v_operands[opcode->operands[i]].shift; number = opers[i].X_add_number; if (flags & OPERAND_REG) { number &= REGISTER_MASK; if (format == LONG_L) shift += 15; } if (opers[i].X_op != O_register && opers[i].X_op != O_constant) { /* now create a fixup */ if (fixups->fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); if (opers[i].X_op == O_symbol && number == AT_WORD) { number = opers[i].X_add_number = 0; fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18; } else fixups->fix[fixups->fc].reloc = get_reloc((struct d10v_operand *)&d10v_operands[opcode->operands[i]]); if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 || fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18) fixups->fix[fixups->fc].size = 2; else fixups->fix[fixups->fc].size = 4; fixups->fix[fixups->fc].exp = opers[i]; fixups->fix[fixups->fc].operand = opcode->operands[i]; fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false; (fixups->fc)++; } /* truncate to the proper number of bits */ if ((opers[i].X_op == O_constant) && check_range (number, bits, flags)) as_bad("operand out of range: %d",number); number &= 0x7FFFFFFF >> (31 - bits); insn = insn | (number << shift); } /* kludge: for DIVS, we need to put the operands in twice */ /* on the second pass, format is changed to LONG_R to force */ /* the second set of operands to not be shifted over 15 */ if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L)) insn = build_insn (opcode, opers, insn); return insn; } /* write out a long form instruction */ static void write_long (opcode, insn, fx) struct d10v_opcode *opcode; unsigned long insn; Fixups *fx; { int i, where; char *f = frag_more(4); insn |= FM11; number_to_chars_bigendian (f, insn, 4); for (i=0; i < fx->fc; i++) { if (fx->fix[i].reloc) { where = f - frag_now->fr_literal; if (fx->fix[i].size == 2) where += 2; if (fx->fix[i].reloc == BFD_RELOC_D10V_18) fx->fix[i].operand |= 4096; fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp), fx->fix[i].pcrel, fx->fix[i].operand|2048); } } fx->fc = 0; } /* write out a short form instruction by itself */ static void write_1_short (opcode, insn, fx) struct d10v_opcode *opcode; unsigned long insn; Fixups *fx; { char *f = frag_more(4); int i, where; if (opcode->exec_type & PARONLY) as_fatal ("Instruction must be executed in parallel with another instruction."); /* the other container needs to be NOP */ /* according to 4.3.1: for FM=00, sub-instructions performed only by IU cannot be encoded in L-container. */ if (opcode->unit == IU) insn |= FM00 | (NOP << 15); /* right container */ else insn = FM00 | (insn << 15) | NOP; /* left container */ number_to_chars_bigendian (f, insn, 4); for (i=0; i < fx->fc; i++) { if (fx->fix[i].reloc) { where = f - frag_now->fr_literal; if (fx->fix[i].size == 2) where += 2; if (fx->fix[i].reloc == BFD_RELOC_D10V_18) fx->fix[i].operand |= 4096; /* if it's an R reloc, we may have to switch it to L */ if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) ) fx->fix[i].operand |= 1024; fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp), fx->fix[i].pcrel, fx->fix[i].operand|2048); } } fx->fc = 0; } /* write out a short form instruction if possible */ /* return number of instructions not written out */ static int write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx) struct d10v_opcode *opcode1, *opcode2; unsigned long insn1, insn2; int exec_type; Fixups *fx; { unsigned long insn; char *f; int i,j, where; if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY) || (opcode2->exec_type & PARONLY))) as_fatal("Instruction must be executed in parallel"); if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE)) as_fatal ("Long instructions may not be combined."); if(opcode1->exec_type & BRANCH_LINK && opcode2->exec_type != PARONLY) { /* subroutines must be called from 32-bit boundaries */ /* so the return address will be correct */ write_1_short (opcode1, insn1, fx->next); return (1); } switch (exec_type) { case 0: /* order not specified */ if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)) { /* parallel */ if (opcode1->unit == IU) insn = FM00 | (insn2 << 15) | insn1; else if (opcode2->unit == MU) insn = FM00 | (insn2 << 15) | insn1; else { insn = FM00 | (insn1 << 15) | insn2; fx = fx->next; } } else if (opcode1->unit == IU) { /* reverse sequential */ insn = FM10 | (insn2 << 15) | insn1; } else { /* sequential */ insn = FM01 | (insn1 << 15) | insn2; fx = fx->next; } break; case 1: /* parallel */ if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ) as_fatal ("One of these instructions may not be executed in parallel."); if (opcode1->unit == IU) { if (opcode2->unit == IU) as_fatal ("Two IU instructions may not be executed in parallel"); as_warn ("Swapping instruction order"); insn = FM00 | (insn2 << 15) | insn1; } else if (opcode2->unit == MU) { if (opcode1->unit == MU) as_fatal ("Two MU instructions may not be executed in parallel"); as_warn ("Swapping instruction order"); insn = FM00 | (insn2 << 15) | insn1; } else { insn = FM00 | (insn1 << 15) | insn2; fx = fx->next; } break; case 2: /* sequential */ if (opcode1->unit == IU) as_fatal ("IU instruction may not be in the left container"); insn = FM01 | (insn1 << 15) | insn2; fx = fx->next; break; case 3: /* reverse sequential */ if (opcode2->unit == MU) as_fatal ("MU instruction may not be in the right container"); insn = FM10 | (insn1 << 15) | insn2; fx = fx->next; break; default: as_fatal("unknown execution type passed to write_2_short()"); } f = frag_more(4); number_to_chars_bigendian (f, insn, 4); for (j=0; j<2; j++) { for (i=0; i < fx->fc; i++) { if (fx->fix[i].reloc) { where = f - frag_now->fr_literal; if (fx->fix[i].size == 2) where += 2; if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) ) fx->fix[i].operand |= 1024; if (fx->fix[i].reloc == BFD_RELOC_D10V_18) fx->fix[i].operand |= 4096; fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp), fx->fix[i].pcrel, fx->fix[i].operand|2048); } } fx->fc = 0; fx = fx->next; } return (0); } /* Check 2 instructions and determine if they can be safely */ /* executed in parallel. Returns 1 if they can be. */ static int parallel_ok (op1, insn1, op2, insn2, exec_type) struct d10v_opcode *op1, *op2; unsigned long insn1, insn2; int exec_type; { int i, j, flags, mask, shift, regno; unsigned long ins, mod[2], used[2]; struct d10v_opcode *op; if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0 || (op1->unit == BOTH) || (op2->unit == BOTH) || (op1->unit == IU && op2->unit == IU) || (op1->unit == MU && op2->unit == MU)) return 0; /* If the first instruction is a branch and this is auto parallazation, don't combine with any second instruction. */ if (exec_type == 0 && (op1->exec_type & BRANCH) != 0) return 0; /* The idea here is to create two sets of bitmasks (mod and used) */ /* which indicate which registers are modified or used by each instruction. */ /* The operation can only be done in parallel if instruction 1 and instruction 2 */ /* modify different registers, and neither instruction modifies any registers */ /* the other is using. Accesses to control registers, PSW, and memory are treated */ /* as accesses to a single register. So if both instructions write memory or one */ /* instruction writes memory and the other reads, then they cannot be done in parallel. */ /* Likewise, if one instruction mucks with the psw and the other reads the PSW */ /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */ /* the bitmasks (mod and used) look like this (bit 31 = MSB) */ /* r0-r15 0-15 */ /* a0-a1 16-17 */ /* cr (not psw) 18 */ /* psw 19 */ /* mem 20 */ for (j=0;j<2;j++) { if (j == 0) { op = op1; ins = insn1; } else { op = op2; ins = insn2; } mod[j] = used[j] = 0; if (op->exec_type & BRANCH_LINK) mod[j] |= 1 << 13; for (i = 0; op->operands[i]; i++) { flags = d10v_operands[op->operands[i]].flags; shift = d10v_operands[op->operands[i]].shift; mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits); if (flags & OPERAND_REG) { regno = (ins >> shift) & mask; if (flags & OPERAND_ACC) regno += 16; else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */ { if (regno == 0) regno = 19; else regno = 18; } else if (flags & OPERAND_FLAG) regno = 19; if ( flags & OPERAND_DEST ) { mod[j] |= 1 << regno; if (flags & OPERAND_EVEN) mod[j] |= 1 << (regno + 1); } else { used[j] |= 1 << regno ; if (flags & OPERAND_EVEN) used[j] |= 1 << (regno + 1); } } } if (op->exec_type & RMEM) used[j] |= 1 << 20; else if (op->exec_type & WMEM) mod[j] |= 1 << 20; else if (op->exec_type & RF0) used[j] |= 1 << 19; else if (op->exec_type & WF0) mod[j] |= 1 << 19; else if (op->exec_type & WCAR) mod[j] |= 1 << 19; } if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0) return 1; return 0; } /* This is the main entry point for the machine-dependent assembler. str points to a machine-dependent instruction. This function is supposed to emit the frags/bytes it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing and leaves the difficult stuff to do_assemble(). */ static unsigned long prev_insn; static struct d10v_opcode *prev_opcode = 0; static subsegT prev_subseg; static segT prev_seg = 0;; void md_assemble (str) char *str; { struct d10v_opcode *opcode; unsigned long insn; int extype=0; /* execution type; parallel, etc */ static int etype=0; /* saved extype. used for multiline instructions */ char *str2; for (str2 = str; *str2; str2++) *str2 = tolower(*str2); if (etype == 0) { /* look for the special multiple instruction separators */ str2 = strstr (str, "||"); if (str2) extype = 1; else { str2 = strstr (str, "->"); if (str2) extype = 2; else { str2 = strstr (str, "<-"); if (str2) extype = 3; } } /* str2 points to the separator, if one */ if (str2) { *str2 = 0; /* if two instructions are present and we already have one saved then first write it out */ d10v_cleanup(); /* assemble first instruction and save it */ prev_insn = do_assemble (str, &prev_opcode); if (prev_insn == -1) as_fatal ("can't find opcode "); fixups = fixups->next; str = str2 + 2; } } insn = do_assemble (str, &opcode); if (insn == -1) { if (extype) { etype = extype; return; } as_fatal ("can't find opcode "); } if (etype) { extype = etype; etype = 0; } /* if this is a long instruction, write it and any previous short instruction */ if (opcode->format & LONG_OPCODE) { if (extype) as_fatal("Unable to mix instructions as specified"); d10v_cleanup(); write_long (opcode, insn, fixups); prev_opcode = NULL; return; } if (prev_opcode && prev_seg && ((prev_seg != now_seg) || (prev_subseg != now_subseg))) d10v_cleanup(); if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0)) { /* no instructions saved */ prev_opcode = NULL; } else { if (extype) as_fatal("Unable to mix instructions as specified"); /* save off last instruction so it may be packed on next pass */ prev_opcode = opcode; prev_insn = insn; prev_seg = now_seg; prev_subseg = now_subseg; fixups = fixups->next; } } /* do_assemble assembles a single instruction and returns an opcode */ /* it returns -1 (an invalid opcode) on error */ static unsigned long do_assemble (str, opcode) char *str; struct d10v_opcode **opcode; { unsigned char *op_start, *save; unsigned char *op_end; char name[20]; int nlen = 0; expressionS myops[6]; unsigned long insn; /* Drop leading whitespace */ while (*str == ' ') str++; /* find the opcode end */ for (op_start = op_end = (unsigned char *) (str); *op_end && nlen < 20 && !is_end_of_line[*op_end] && *op_end != ' '; op_end++) { name[nlen] = op_start[nlen]; nlen++; } name[nlen] = 0; if (nlen == 0) return (-1); /* find the first opcode with the proper name */ *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name); if (*opcode == NULL) as_fatal ("unknown opcode: %s",name); save = input_line_pointer; input_line_pointer = op_end; *opcode = find_opcode (*opcode, myops); if (*opcode == 0) return -1; input_line_pointer = save; insn = build_insn ((*opcode), myops, 0); return (insn); } /* find_opcode() gets a pointer to an entry in the opcode table. */ /* It must look at all opcodes with the same name and use the operands */ /* to choose the correct opcode. */ static struct d10v_opcode * find_opcode (opcode, myops) struct d10v_opcode *opcode; expressionS myops[]; { int i, match, done, numops; struct d10v_opcode *next_opcode; /* get all the operands and save them as expressions */ numops = get_operands (myops); /* now see if the operand is a fake. If so, find the correct size */ /* instruction, if possible */ if (opcode->format == OPCODE_FAKE) { int opnum = opcode->operands[0]; if (myops[opnum].X_op == O_register) { myops[opnum].X_op = O_symbol; myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol); myops[opnum].X_add_number = 0; myops[opnum].X_op_symbol = NULL; } if (myops[opnum].X_op == O_constant || (myops[opnum].X_op == O_symbol && S_IS_DEFINED(myops[opnum].X_add_symbol) && (S_GET_SEGMENT(myops[opnum].X_add_symbol) == now_seg))) { next_opcode=opcode+1; for (i=0; opcode->operands[i+1]; i++) { int bits = d10v_operands[next_opcode->operands[opnum]].bits; int flags = d10v_operands[next_opcode->operands[opnum]].flags; if (flags & OPERAND_ADDR) bits += 2; if (myops[opnum].X_op == O_constant) { if (!check_range (myops[opnum].X_add_number, bits, flags)) return next_opcode; } else { fragS *f; long value; /* calculate the current address by running through the previous frags */ /* and adding our current offset */ for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next) value += f->fr_fix; if (flags & OPERAND_ADDR) value = S_GET_VALUE(myops[opnum].X_add_symbol) - value - (obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal); else value = S_GET_VALUE(myops[opnum].X_add_symbol); if (myops[opnum].X_add_number == AT_WORD) { if (bits > 4) { bits += 2; if (!check_range (value, bits, flags)) return next_opcode; } } else if (!check_range (value, bits, flags)) return next_opcode; } next_opcode++; } as_fatal ("value out of range"); } else { /* not a constant, so use a long instruction */ return opcode+2; } } else { match = 0; /* now search the opcode table table for one with operands */ /* that matches what we've got */ while (!match) { match = 1; for (i = 0; opcode->operands[i]; i++) { int flags = d10v_operands[opcode->operands[i]].flags; int X_op = myops[i].X_op; int num = myops[i].X_add_number; if (X_op==0) { match=0; break; } if (flags & OPERAND_REG) { if ((X_op != O_register) || ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) || ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) || ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL))) { match=0; break; } } if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) || ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) || ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) || ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) || ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN)))) { match=0; break; } } /* we're only done if the operands matched so far AND there are no more to check */ if (match && myops[i].X_op==0) break; else match = 0; next_opcode = opcode+1; if (next_opcode->opcode == 0) break; if (strcmp(next_opcode->name, opcode->name)) break; opcode = next_opcode; } } if (!match) { as_bad ("bad opcode or operands"); return (0); } /* Check that all registers that are required to be even are. */ /* Also, if any operands were marked as registers, but were really symbols */ /* fix that here. */ for (i=0; opcode->operands[i]; i++) { if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) && (myops[i].X_add_number & 1)) as_fatal("Register number must be EVEN"); if (myops[i].X_op == O_register) { if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG)) { myops[i].X_op = O_symbol; myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol); myops[i].X_add_number = 0; myops[i].X_op_symbol = NULL; } } } return opcode; } /* if while processing a fixup, a reloc really needs to be created */ /* then it is done here */ arelent * tc_gen_reloc (seg, fixp) asection *seg; fixS *fixp; { arelent *reloc; reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, "reloc %d not supported by object file format", (int)fixp->fx_r_type); return NULL; } reloc->addend = fixp->fx_addnumber; return reloc; } int md_estimate_size_before_relax (fragp, seg) fragS *fragp; asection *seg; { abort (); return 0; } long md_pcrel_from_section (fixp, sec) fixS *fixp; segT sec; { if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy)) return 0; return fixp->fx_frag->fr_address + fixp->fx_where; } int md_apply_fix3 (fixp, valuep, seg) fixS *fixp; valueT *valuep; segT seg; { char *where; unsigned long insn; long value; int op_type; int left=0; if (fixp->fx_addsy == (symbolS *) NULL) { value = *valuep; fixp->fx_done = 1; } else if (fixp->fx_pcrel) value = *valuep; else { value = fixp->fx_offset; if (fixp->fx_subsy != (symbolS *) NULL) { if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section) value -= S_GET_VALUE (fixp->fx_subsy); else { /* We don't actually support subtracting a symbol. */ as_bad_where (fixp->fx_file, fixp->fx_line, "expression too complex"); } } } op_type = fixp->fx_r_type; if (op_type & 2048) { op_type -= 2048; if (op_type & 1024) { op_type -= 1024; fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L; left = 1; } else if (op_type & 4096) { op_type -= 4096; fixp->fx_r_type = BFD_RELOC_D10V_18; } else fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]); } /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. */ where = fixp->fx_frag->fr_literal + fixp->fx_where; insn = bfd_getb32 ((unsigned char *) where); switch (fixp->fx_r_type) { case BFD_RELOC_D10V_10_PCREL_L: case BFD_RELOC_D10V_10_PCREL_R: case BFD_RELOC_D10V_18_PCREL: case BFD_RELOC_D10V_18: /* instruction addresses are always right-shifted by 2 */ value >>= 2; if (fixp->fx_size == 2) bfd_putb16 ((bfd_vma) value, (unsigned char *) where); else { insn = d10v_insert_operand (insn, op_type, (offsetT)value, left, fixp); bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); } break; case BFD_RELOC_32: bfd_putb32 ((bfd_vma) value, (unsigned char *) where); break; case BFD_RELOC_16: bfd_putb16 ((bfd_vma) value, (unsigned char *) where); break; default: as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type); } return 0; } /* d10v_cleanup() is called after the assembler has finished parsing the input file or after a label is defined. Because the D10V assembler sometimes saves short instructions to see if it can package them with the next instruction, there may be a short instruction that still needs written. */ int d10v_cleanup () { segT seg; subsegT subseg; if (prev_opcode) { seg = now_seg; subseg = now_subseg; subseg_set (prev_seg, prev_subseg); write_1_short (prev_opcode, prev_insn, fixups->next); subseg_set (seg, subseg); prev_opcode = NULL; } return 1; } /* Like normal .word, except support @word */ /* clobbers input_line_pointer, checks end-of-line. */ static void d10v_dot_word (nbytes) register int nbytes; /* 1=.byte, 2=.word, 4=.long */ { expressionS exp; bfd_reloc_code_real_type reloc; char *p; int offset; if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } do { expression (&exp); if (!strncasecmp (input_line_pointer, "@word", 5)) { exp.X_add_number = 0; input_line_pointer += 5; p = frag_more (2); fix_new_exp (frag_now, p - frag_now->fr_literal, 2, &exp, 0, BFD_RELOC_D10V_18); } else emit_expr (&exp, 2); } while (*input_line_pointer++ == ','); input_line_pointer--; /* Put terminator back into stream. */ demand_empty_rest_of_line (); } /* Mitsubishi asked that we support some old syntax that apparently */ /* had immediate operands starting with '#'. This is in some of their */ /* sample code but is not documented (although it appears in some */ /* examples in their assembler manual). For now, we'll solve this */ /* compatibility problem by simply ignoring any '#' at the beginning */ /* of an operand. */ /* operands that begin with '#' should fall through to here */ /* from expr.c */ void md_operand (expressionP) expressionS *expressionP; { if (*input_line_pointer == '#') { input_line_pointer++; expression (expressionP); } }