/* tc-ppc.c -- Assemble for the PowerPC or POWER (RS/6000) Copyright (C) 1994 Free Software Foundation, Inc. Written by Ian Lance Taylor, Cygnus Support. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" #include "opcode/ppc.h" #ifdef OBJ_ELF #include "elf/ppc.h" #endif #ifdef TE_PE #include "coff/pe.h" #endif /* This is the assembler for the PowerPC or POWER (RS/6000) chips. */ /* Tell the main code what the endianness is. */ extern int target_big_endian; /* Whether or not, we've set target_big_endian. */ static int set_target_endian = 0; static void ppc_set_cpu PARAMS ((void)); static unsigned long ppc_insert_operand PARAMS ((unsigned long insn, const struct powerpc_operand *operand, offsetT val, char *file, unsigned int line)); static void ppc_macro PARAMS ((char *str, const struct powerpc_macro *macro)); static void ppc_byte PARAMS ((int)); static int ppc_is_toc_sym PARAMS ((symbolS *sym)); static void ppc_tc PARAMS ((int)); #ifdef OBJ_XCOFF static void ppc_comm PARAMS ((int)); static void ppc_bb PARAMS ((int)); static void ppc_bf PARAMS ((int)); static void ppc_biei PARAMS ((int)); static void ppc_bs PARAMS ((int)); static void ppc_eb PARAMS ((int)); static void ppc_ef PARAMS ((int)); static void ppc_es PARAMS ((int)); static void ppc_csect PARAMS ((int)); static void ppc_function PARAMS ((int)); static void ppc_extern PARAMS ((int)); static void ppc_lglobl PARAMS ((int)); static void ppc_stabx PARAMS ((int)); static void ppc_rename PARAMS ((int)); static void ppc_toc PARAMS ((int)); #endif #ifdef OBJ_ELF static bfd_reloc_code_real_type ppc_elf_suffix PARAMS ((char **)); static void ppc_elf_cons PARAMS ((int)); static void ppc_elf_validate_fix PARAMS ((fixS *, segT)); #endif #ifdef TE_PE static void ppc_set_current_section PARAMS ((segT)); static void ppc_previous PARAMS ((int)); static void ppc_pdata PARAMS ((int)); static void ppc_ydata PARAMS ((int)); static void ppc_reldata PARAMS ((int)); static void ppc_rdata PARAMS ((int)); static void ppc_ualong PARAMS ((int)); static void ppc_znop PARAMS ((int)); static void ppc_pe_comm PARAMS ((int)); static void ppc_pe_section PARAMS ((int)); static void ppc_pe_function PARAMS ((int)); static void ppc_pe_tocd PARAMS ((int)); #endif /* Generic assembler global variables which must be defined by all targets. */ /* Characters which always start a comment. */ const char comment_chars[] = "#"; /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = "#"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { /* Pseudo-ops which must be overridden. */ { "byte", ppc_byte, 0 }, #ifdef OBJ_XCOFF /* Pseudo-ops specific to the RS/6000 XCOFF format. Some of these legitimately belong in the obj-*.c file. However, XCOFF is based on COFF, and is only implemented for the RS/6000. We just use obj-coff.c, and add what we need here. */ { "comm", ppc_comm, 0 }, { "lcomm", ppc_comm, 1 }, { "bb", ppc_bb, 0 }, { "bf", ppc_bf, 0 }, { "bi", ppc_biei, 0 }, { "bs", ppc_bs, 0 }, { "csect", ppc_csect, 0 }, { "eb", ppc_eb, 0 }, { "ef", ppc_ef, 0 }, { "ei", ppc_biei, 1 }, { "es", ppc_es, 0 }, { "extern", ppc_extern, 0 }, { "function", ppc_function, 0 }, { "lglobl", ppc_lglobl, 0 }, { "rename", ppc_rename, 0 }, { "stabx", ppc_stabx, 0 }, { "toc", ppc_toc, 0 }, #endif #ifdef OBJ_ELF { "long", ppc_elf_cons, 4 }, { "word", ppc_elf_cons, 2 }, { "short", ppc_elf_cons, 2 }, #endif #ifdef TE_PE /* Pseudo-ops specific to the Windows NT PowerPC PE (coff) format */ { "previous", ppc_previous, 0 }, { "pdata", ppc_pdata, 0 }, { "ydata", ppc_ydata, 0 }, { "reldata", ppc_reldata, 0 }, { "rdata", ppc_rdata, 0 }, { "ualong", ppc_ualong, 0 }, { "znop", ppc_znop, 0 }, { "comm", ppc_pe_comm, 0 }, { "lcomm", ppc_pe_comm, 1 }, { "section", ppc_pe_section, 0 }, { "function", ppc_pe_function,0 }, { "tocd", ppc_pe_tocd, 0 }, #endif /* This pseudo-op is used even when not generating XCOFF output. */ { "tc", ppc_tc, 0 }, { NULL, NULL, 0 } }; #ifdef TE_PE /* The Windows NT PowerPC assembler uses predefined names. */ /* In general, there are lots of them, in an attempt to be compatible */ /* with a number of other Windows NT assemblers. */ /* Structure to hold information about predefined registers. */ struct pd_reg { char *name; int value; }; /* List of registers that are pre-defined: Each general register has predefined names of the form: 1. r which has the value . 2. r. which has the value . Each floating point register has predefined names of the form: 1. f which has the value . 2. f. which has the value . Each condition register has predefined names of the form: 1. cr which has the value . 2. cr. which has the value . There are individual registers as well: sp or r.sp has the value 1 rtoc or r.toc has the value 2 fpscr has the value 0 xer has the value 1 lr has the value 8 ctr has the value 9 pmr has the value 0 dar has the value 19 dsisr has the value 18 dec has the value 22 sdr1 has the value 25 srr0 has the value 26 srr1 has the value 27 The table is sorted. Suitable for searching by a binary search. */ static const struct pd_reg pre_defined_registers[] = { { "cr.0", 0 }, /* Condition Registers */ { "cr.1", 1 }, { "cr.2", 2 }, { "cr.3", 3 }, { "cr.4", 4 }, { "cr.5", 5 }, { "cr.6", 6 }, { "cr.7", 7 }, { "cr0", 0 }, { "cr1", 1 }, { "cr2", 2 }, { "cr3", 3 }, { "cr4", 4 }, { "cr5", 5 }, { "cr6", 6 }, { "cr7", 7 }, { "ctr", 9 }, { "dar", 19 }, /* Data Access Register */ { "dec", 22 }, /* Decrementer */ { "dsisr", 18 }, /* Data Storage Interrupt Status Register */ { "f.0", 0 }, /* Floating point registers */ { "f.1", 1 }, { "f.10", 10 }, { "f.11", 11 }, { "f.12", 12 }, { "f.13", 13 }, { "f.14", 14 }, { "f.15", 15 }, { "f.16", 16 }, { "f.17", 17 }, { "f.18", 18 }, { "f.19", 19 }, { "f.2", 2 }, { "f.20", 20 }, { "f.21", 21 }, { "f.22", 22 }, { "f.23", 23 }, { "f.24", 24 }, { "f.25", 25 }, { "f.26", 26 }, { "f.27", 27 }, { "f.28", 28 }, { "f.29", 29 }, { "f.3", 3 }, { "f.30", 30 }, { "f.31", 31 }, { "f.4", 4 }, { "f.5", 5 }, { "f.6", 6 }, { "f.7", 7 }, { "f.8", 8 }, { "f.9", 9 }, { "f0", 0 }, { "f1", 1 }, { "f10", 10 }, { "f11", 11 }, { "f12", 12 }, { "f13", 13 }, { "f14", 14 }, { "f15", 15 }, { "f16", 16 }, { "f17", 17 }, { "f18", 18 }, { "f19", 19 }, { "f2", 2 }, { "f20", 20 }, { "f21", 21 }, { "f22", 22 }, { "f23", 23 }, { "f24", 24 }, { "f25", 25 }, { "f26", 26 }, { "f27", 27 }, { "f28", 28 }, { "f29", 29 }, { "f3", 3 }, { "f30", 30 }, { "f31", 31 }, { "f4", 4 }, { "f5", 5 }, { "f6", 6 }, { "f7", 7 }, { "f8", 8 }, { "f9", 9 }, { "fpscr", 0 }, { "lr", 8 }, /* Link Register */ { "pmr", 0 }, { "r.0", 0 }, /* General Purpose Registers */ { "r.1", 1 }, { "r.10", 10 }, { "r.11", 11 }, { "r.12", 12 }, { "r.13", 13 }, { "r.14", 14 }, { "r.15", 15 }, { "r.16", 16 }, { "r.17", 17 }, { "r.18", 18 }, { "r.19", 19 }, { "r.2", 2 }, { "r.20", 20 }, { "r.21", 21 }, { "r.22", 22 }, { "r.23", 23 }, { "r.24", 24 }, { "r.25", 25 }, { "r.26", 26 }, { "r.27", 27 }, { "r.28", 28 }, { "r.29", 29 }, { "r.3", 3 }, { "r.30", 30 }, { "r.31", 31 }, { "r.4", 4 }, { "r.5", 5 }, { "r.6", 6 }, { "r.7", 7 }, { "r.8", 8 }, { "r.9", 9 }, { "r.sp", 1 }, /* Stack Pointer */ { "r.toc", 2 }, /* Pointer to the table of contents */ { "r0", 0 }, /* More general purpose registers */ { "r1", 1 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "r16", 16 }, { "r17", 17 }, { "r18", 18 }, { "r19", 19 }, { "r2", 2 }, { "r20", 20 }, { "r21", 21 }, { "r22", 22 }, { "r23", 23 }, { "r24", 24 }, { "r25", 25 }, { "r26", 26 }, { "r27", 27 }, { "r28", 28 }, { "r29", 29 }, { "r3", 3 }, { "r30", 30 }, { "r31", 31 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "rtoc", 2 }, /* Table of contents */ { "sdr1", 25 }, /* Storage Description Register 1 */ { "sp", 1 }, { "srr0", 26 }, /* Machine Status Save/Restore Register 0 */ { "srr1", 27 }, /* Machine Status Save/Restore Register 1 */ { "xer", 1 }, }; #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg)) /* Given NAME, find the register number associated with that name, return the integer value associated with the given name or -1 on failure. */ static int reg_name_search PARAMS ( (char * name) ); static int reg_name_search (name) char *name; { int middle, low, high; int cmp; low = 0; high = REG_NAME_CNT - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, pre_defined_registers[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return pre_defined_registers[middle].value; } while (low <= high); return -1; } #endif /* Local variables. */ /* The type of processor we are assembling for. This is one or more of the PPC_OPCODE flags defined in opcode/ppc.h. */ static int ppc_cpu = 0; /* The size of the processor we are assembling for. This is either PPC_OPCODE_32 or PPC_OPCODE_64. */ static int ppc_size = PPC_OPCODE_32; /* Opcode hash table. */ static struct hash_control *ppc_hash; /* Macro hash table. */ static struct hash_control *ppc_macro_hash; #ifdef OBJ_ELF /* Whether to warn about non PC relative relocations that aren't in the .got2 section. */ static boolean mrelocatable = false; /* Flags to set in the elf header */ static flagword ppc_flags = 0; #endif #ifdef OBJ_XCOFF /* The RS/6000 assembler uses the .csect pseudo-op to generate code using a bunch of different sections. These assembler sections, however, are all encompassed within the .text or .data sections of the final output file. We handle this by using different subsegments within these main segments. */ /* Next subsegment to allocate within the .text segment. */ static subsegT ppc_text_subsegment = 2; /* Linked list of csects in the text section. */ static symbolS *ppc_text_csects; /* Next subsegment to allocate within the .data segment. */ static subsegT ppc_data_subsegment = 2; /* Linked list of csects in the data section. */ static symbolS *ppc_data_csects; /* The current csect. */ static symbolS *ppc_current_csect; /* The RS/6000 assembler uses a TOC which holds addresses of functions and variables. Symbols are put in the TOC with the .tc pseudo-op. A special relocation is used when accessing TOC entries. We handle the TOC as a subsegment within the .data segment. We set it up if we see a .toc pseudo-op, and save the csect symbol here. */ static symbolS *ppc_toc_csect; /* The first frag in the TOC subsegment. */ static fragS *ppc_toc_frag; /* The first frag in the first subsegment after the TOC in the .data segment. NULL if there are no subsegments after the TOC. */ static fragS *ppc_after_toc_frag; /* The current static block. */ static symbolS *ppc_current_block; /* The COFF debugging section; set by md_begin. This is not the .debug section, but is instead the secret BFD section which will cause BFD to set the section number of a symbol to N_DEBUG. */ static asection *ppc_coff_debug_section; /* The size of the .debug section. */ static bfd_size_type ppc_debug_name_section_size; #endif /* OBJ_XCOFF */ #ifdef TE_PE /* Various sections that we need for PE coff support. */ static segT ydata_section; static segT pdata_section; static segT reldata_section; static segT rdata_section; static segT tocdata_section; /* The current section and the previous section. See ppc_previous. */ static segT ppc_previous_section; static segT ppc_current_section; #endif /* TE_PE */ #ifdef OBJ_ELF symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE" */ #endif /* OBJ_ELF */ #ifndef WORKING_DOT_WORD const int md_short_jump_size = 4; const int md_long_jump_size = 4; #endif #ifdef OBJ_ELF CONST char *md_shortopts = "um:VQ:"; #else CONST char *md_shortopts = "um:"; #endif struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case 'u': /* -u means that any undefined symbols should be treated as external, which is the default for gas anyhow. */ break; case 'm': /* -mpwrx and -mpwr2 mean to assemble for the IBM POWER/2 (RIOS2). */ if (strcmp (arg, "pwrx") == 0 || strcmp (arg, "pwr2") == 0) ppc_cpu = PPC_OPCODE_POWER | PPC_OPCODE_POWER2; /* -mpwr means to assemble for the IBM POWER (RIOS1). */ else if (strcmp (arg, "pwr") == 0) ppc_cpu = PPC_OPCODE_POWER; /* -m601 means to assemble for the Motorola PowerPC 601. FIXME: We ignore the option for now, but we should really use it to permit instructions defined on the 601 that are not part of the standard PowerPC architecture (mostly holdovers from the POWER). */ else if (strcmp (arg, "601") == 0) ppc_cpu = PPC_OPCODE_PPC | PPC_OPCODE_601; /* -mppc, -mppc32, -m603, and -m604 mean to assemble for the Motorola PowerPC 603/604. */ else if (strcmp (arg, "ppc") == 0 || strcmp (arg, "ppc32") == 0 || strcmp (arg, "403") == 0 || strcmp (arg, "603") == 0 || strcmp (arg, "604") == 0) ppc_cpu = PPC_OPCODE_PPC; /* -mppc64 and -m620 mean to assemble for the 64-bit PowerPC 620. */ else if (strcmp (arg, "ppc64") == 0 || strcmp (arg, "620") == 0) { ppc_cpu = PPC_OPCODE_PPC; ppc_size = PPC_OPCODE_64; } /* -mcom means assemble for the common intersection between Power and PowerPC. At present, we just allow the union, rather than the intersection. */ else if (strcmp (arg, "com") == 0) ppc_cpu = PPC_OPCODE_POWER | PPC_OPCODE_PPC; /* -many means to assemble for any architecture (PWR/PWRX/PPC). */ else if (strcmp (arg, "any") == 0) ppc_cpu = PPC_OPCODE_POWER | PPC_OPCODE_POWER2 | PPC_OPCODE_PPC; #ifdef OBJ_ELF /* -mrelocatable/-mrelocatable-lib -- warn about initializations that require relocation */ else if (strcmp (arg, "relocatable") == 0) { mrelocatable = true; ppc_flags |= EF_PPC_RELOCATABLE; } else if (strcmp (arg, "relocatable-lib") == 0) { mrelocatable = true; ppc_flags |= EF_PPC_RELOCATABLE_LIB; } /* -memb, set embedded bit */ else if (strcmp (arg, "emb") == 0) ppc_flags |= EF_PPC_EMB; /* -mlittle/-mbig set the endianess */ else if (strcmp (arg, "little") == 0 || strcmp (arg, "little-endian") == 0) { target_big_endian = 0; set_target_endian = 1; } else if (strcmp (arg, "big") == 0 || strcmp (arg, "big-endian") == 0) { target_big_endian = 1; set_target_endian = 1; } #endif else { as_bad ("invalid switch -m%s", arg); return 0; } break; #ifdef OBJ_ELF /* -V: SVR4 argument to print version ID. */ case 'V': print_version_id (); break; /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section should be emitted or not. FIXME: Not implemented. */ case 'Q': break; #endif default: return 0; } return 1; } void md_show_usage (stream) FILE *stream; { fprintf(stream, "\ PowerPC options:\n\ -u ignored\n\ -mpwrx, -mpwr2 generate code for IBM POWER/2 (RIOS2)\n\ -mpwr generate code for IBM POWER (RIOS1)\n\ -m601 generate code for Motorola PowerPC 601\n\ -mppc, -mppc32, -m403, -m603, -m604\n\ generate code for Motorola PowerPC 603/604\n\ -mppc64, -m620 generate code for Motorola PowerPC 620\n\ -mcom generate code Power/PowerPC common instructions\n -many generate code for any architecture (PWR/PWRX/PPC)\n"); #ifdef OBJ_ELF fprintf(stream, "\ -mrelocatable support for GCC's -mrelocatble option\n\ -mrelocatable-lib support for GCC's -mrelocatble-lib option\n\ -memb set PPC_EMB bit in ELF flags\n\ -mlittle, -mlittle-endian\n\ generate code for a little endian machine\n\ -mbig, -mbig-endian generate code for a big endian machine\n\ -V print assembler version number\n\ -Qy, -Qn ignored\n"); #endif } /* Set ppc_cpu if it is not already set. */ static void ppc_set_cpu () { const char *default_cpu = TARGET_CPU; if (ppc_cpu == 0) { if (strcmp (default_cpu, "rs6000") == 0) ppc_cpu = PPC_OPCODE_POWER; else if (strcmp (default_cpu, "powerpc") == 0 || strcmp (default_cpu, "powerpcle") == 0) ppc_cpu = PPC_OPCODE_PPC; else as_fatal ("Unknown default cpu = %s", default_cpu); } } /* Figure out the BFD architecture to use. */ enum bfd_architecture ppc_arch () { ppc_set_cpu (); if ((ppc_cpu & PPC_OPCODE_PPC) != 0) return bfd_arch_powerpc; else if ((ppc_cpu & PPC_OPCODE_POWER) != 0) return bfd_arch_rs6000; else { as_fatal ("Neither Power nor PowerPC opcodes were selected."); return bfd_arch_unknown; } } /* This function is called when the assembler starts up. It is called after the options have been parsed and the output file has been opened. */ void md_begin () { register const struct powerpc_opcode *op; const struct powerpc_opcode *op_end; const struct powerpc_macro *macro; const struct powerpc_macro *macro_end; ppc_set_cpu (); #ifdef OBJ_ELF /* Set the ELF flags if desired. */ if (ppc_flags) bfd_set_private_flags (stdoutput, ppc_flags); #endif /* Insert the opcodes into a hash table. */ ppc_hash = hash_new (); op_end = powerpc_opcodes + powerpc_num_opcodes; for (op = powerpc_opcodes; op < op_end; op++) { know ((op->opcode & op->mask) == op->opcode); if ((op->flags & ppc_cpu) != 0 && ((op->flags & (PPC_OPCODE_32 | PPC_OPCODE_64)) == 0 || (op->flags & (PPC_OPCODE_32 | PPC_OPCODE_64)) == ppc_size)) { const char *retval; retval = hash_insert (ppc_hash, op->name, (PTR) op); if (retval != (const char *) NULL) { /* We permit a duplication of the mfdec instruction on the 601, because it seems to have one value on the 601 and a different value on other PowerPC processors. It's easier to permit a duplication than to define a new instruction type flag. When using -many, the comparison instructions are a harmless special case. */ if (strcmp (retval, "exists") != 0 || (((ppc_cpu & PPC_OPCODE_601) == 0 || strcmp (op->name, "mfdec") != 0) && (ppc_cpu != (PPC_OPCODE_POWER | PPC_OPCODE_POWER2 | PPC_OPCODE_PPC) || (strcmp (op->name, "cmpli") != 0 && strcmp (op->name, "cmpi") != 0 && strcmp (op->name, "cmp") != 0 && strcmp (op->name, "cmpl") != 0)))) abort (); } } } /* Insert the macros into a hash table. */ ppc_macro_hash = hash_new (); macro_end = powerpc_macros + powerpc_num_macros; for (macro = powerpc_macros; macro < macro_end; macro++) { if ((macro->flags & ppc_cpu) != 0) { const char *retval; retval = hash_insert (ppc_macro_hash, macro->name, (PTR) macro); if (retval != (const char *) NULL) abort (); } } /* Tell the main code what the endianness is if it is not overidden by the user. */ if (!set_target_endian) { set_target_endian = 1; target_big_endian = PPC_BIG_ENDIAN; } #ifdef OBJ_XCOFF ppc_coff_debug_section = coff_section_from_bfd_index (stdoutput, N_DEBUG); /* Create dummy symbols to serve as initial csects. This forces the text csects to precede the data csects. These symbols will not be output. */ ppc_text_csects = symbol_make ("dummy\001"); ppc_text_csects->sy_tc.within = ppc_text_csects; ppc_data_csects = symbol_make ("dummy\001"); ppc_data_csects->sy_tc.within = ppc_data_csects; #endif #ifdef TE_PE ppc_current_section = text_section; ppc_previous_section = 0; #endif } /* Insert an operand value into an instruction. */ static unsigned long ppc_insert_operand (insn, operand, val, file, line) unsigned long insn; const struct powerpc_operand *operand; offsetT val; char *file; unsigned int line; { if (operand->bits != 32) { long min, max; offsetT test; if ((operand->flags & PPC_OPERAND_SIGNED) != 0) { if ((operand->flags & PPC_OPERAND_SIGNOPT) != 0 && ppc_size == PPC_OPCODE_32) max = (1 << operand->bits) - 1; else max = (1 << (operand->bits - 1)) - 1; min = - (1 << (operand->bits - 1)); } else { max = (1 << operand->bits) - 1; min = 0; } if ((operand->flags & PPC_OPERAND_NEGATIVE) != 0) test = - val; else test = val; if (test < (offsetT) min || test > (offsetT) max) { const char *err = "operand out of range (%s not between %ld and %ld)"; char buf[100]; sprint_value (buf, test); if (file == (char *) NULL) as_warn (err, buf, min, max); else as_warn_where (file, line, err, buf, min, max); } } if (operand->insert) { const char *errmsg; errmsg = NULL; insn = (*operand->insert) (insn, (long) val, &errmsg); if (errmsg != (const char *) NULL) as_warn (errmsg); } else insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift); return insn; } #ifdef OBJ_ELF /* Parse @got, etc. and return the desired relocation. */ static bfd_reloc_code_real_type ppc_elf_suffix (str_p) char **str_p; { struct map_bfd { char *string; int length; bfd_reloc_code_real_type reloc; }; char ident[20]; char *str = *str_p; char *str2; int ch; int len; struct map_bfd *ptr; #define MAP(str,reloc) { str, sizeof(str)-1, reloc } static struct map_bfd mapping[] = { MAP ("got", BFD_RELOC_PPC_TOC16), MAP ("l", BFD_RELOC_LO16), MAP ("h", BFD_RELOC_HI16), MAP ("ha", BFD_RELOC_HI16_S), MAP ("brtaken", BFD_RELOC_PPC_B16_BRTAKEN), MAP ("brntaken", BFD_RELOC_PPC_B16_BRNTAKEN), MAP ("got@l", BFD_RELOC_LO16_GOTOFF), MAP ("got@h", BFD_RELOC_HI16_GOTOFF), MAP ("got@ha", BFD_RELOC_HI16_S_GOTOFF), MAP ("fixup", BFD_RELOC_CTOR), /* warnings with -mrelocatable */ MAP ("pltrel24", BFD_RELOC_24_PLT_PCREL), MAP ("copy", BFD_RELOC_PPC_COPY), MAP ("globdat", BFD_RELOC_PPC_GLOB_DAT), MAP ("local24pc", BFD_RELOC_PPC_LOCAL24PC), MAP ("plt", BFD_RELOC_32_PLTOFF), MAP ("pltrel", BFD_RELOC_32_PLT_PCREL), MAP ("plt@l", BFD_RELOC_LO16_PLTOFF), MAP ("plt@h", BFD_RELOC_HI16_PLTOFF), MAP ("plt@ha", BFD_RELOC_HI16_S_PLTOFF), MAP ("sdarel", BFD_RELOC_GPREL16), MAP ("sectoff", BFD_RELOC_32_BASEREL), MAP ("sectoff@l", BFD_RELOC_LO16_BASEREL), MAP ("sectoff@h", BFD_RELOC_HI16_BASEREL), MAP ("sectoff@ha", BFD_RELOC_HI16_S_BASEREL), { (char *)0, 0, BFD_RELOC_UNUSED } }; if (*str++ != '@') return BFD_RELOC_UNUSED; for (ch = *str, str2 = ident; str2 < ident + sizeof(ident) - 1 && isalnum (ch) || ch == '@'; ch = *++str) { *str2++ = (islower (ch)) ? ch : tolower (ch); } *str2 = '\0'; len = str2 - ident; ch = ident[0]; for (ptr = &mapping[0]; ptr->length > 0; ptr++) if (ch == ptr->string[0] && len == ptr->length && memcmp (ident, ptr->string, ptr->length) == 0) { *str_p = str; return ptr->reloc; } return BFD_RELOC_UNUSED; } /* Like normal .long/.short/.word, except support @got, etc. */ /* clobbers input_line_pointer, checks */ /* end-of-line. */ static void ppc_elf_cons (nbytes) register int nbytes; /* 1=.byte, 2=.word, 4=.long */ { expressionS exp; bfd_reloc_code_real_type reloc; if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } do { expression (&exp); if (exp.X_op == O_symbol && *input_line_pointer == '@' && (reloc = ppc_elf_suffix (&input_line_pointer)) != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, reloc); int size = bfd_get_reloc_size (reloc_howto); if (size > nbytes) as_bad ("%s relocations do not fit in %d bytes\n", reloc_howto->name, nbytes); else { register char *p = frag_more ((int) nbytes); int offset = nbytes - size; fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, reloc); } } else emit_expr (&exp, (unsigned int) nbytes); } while (*input_line_pointer++ == ','); input_line_pointer--; /* Put terminator back into stream. */ demand_empty_rest_of_line (); } /* Validate any relocations emitted for -mrelocatable, possibly adding fixups for word relocations in writable segments, so we can adjust them at runtime. */ static void ppc_elf_validate_fix (fixp, seg) fixS *fixp; segT seg; { if (mrelocatable && !fixp->fx_done && !fixp->fx_pcrel && fixp->fx_r_type <= BFD_RELOC_UNUSED && strcmp (segment_name (seg), ".got2") != 0 && strcmp (segment_name (seg), ".dtors") != 0 && strcmp (segment_name (seg), ".ctors") != 0 && strcmp (segment_name (seg), ".fixup") != 0 && strcmp (segment_name (seg), ".stab") != 0) { if ((seg->flags & (SEC_READONLY | SEC_CODE)) != 0 || fixp->fx_r_type != BFD_RELOC_CTOR) { as_warn_where (fixp->fx_file, fixp->fx_line, "Relocation cannot be done when using -mrelocatable"); } } } #endif /* OBJ_ELF */ #ifdef TE_PE /* * Summary of register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in its * original state. */ static int register_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char c; /* Find the spelling of the operand */ name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (name); /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; *input_line_pointer = c; /* put back the delimiting char */ return 1; } else { /* reset the line as if we had not done anything */ *input_line_pointer = c; /* put back the delimiting char */ input_line_pointer = name; /* reset input_line pointer */ return 0; } } /* * Summary of parse_toc_entry(). * * in: Input_line_pointer points to the '[' in one of: * * [toc] [tocv] [toc32] [toc64] * * Anything else is an error of one kind or another. * * out: * return value: success or failure * toc_kind: kind of toc reference * input_line_pointer: * success: first char after the ']' * failure: unchanged * * settings: * * [toc] - rv == success, toc_kind = default_toc * [tocv] - rv == success, toc_kind = data_in_toc * [toc32] - rv == success, toc_kind = must_be_32 * [toc64] - rv == success, toc_kind = must_be_64 * */ enum toc_size_qualifier { default_toc, /* The toc cell constructed should be the system default size */ data_in_toc, /* This is a direct reference to a toc cell */ must_be_32, /* The toc cell constructed must be 32 bits wide */ must_be_64 /* The toc cell constructed must be 64 bits wide */ }; static int parse_toc_entry(toc_kind) enum toc_size_qualifier *toc_kind; { char *start; char *toc_spec; char c; enum toc_size_qualifier t; /* save the input_line_pointer */ start = input_line_pointer; /* skip over the '[' , and whitespace */ ++input_line_pointer; SKIP_WHITESPACE (); /* find the spelling of the operand */ toc_spec = input_line_pointer; c = get_symbol_end (); if (strcmp(toc_spec, "toc") == 0) { t = default_toc; } else if (strcmp(toc_spec, "tocv") == 0) { t = data_in_toc; } else if (strcmp(toc_spec, "toc32") == 0) { t = must_be_32; } else if (strcmp(toc_spec, "toc64") == 0) { t = must_be_64; } else { as_bad ("syntax error: invalid toc specifier `%s'", toc_spec); *input_line_pointer = c; /* put back the delimiting char */ input_line_pointer = start; /* reset input_line pointer */ return 0; } /* now find the ']' */ *input_line_pointer = c; /* put back the delimiting char */ SKIP_WHITESPACE (); /* leading whitespace could be there. */ c = *input_line_pointer++; /* input_line_pointer->past char in c. */ if (c != ']') { as_bad ("syntax error: expected `]', found `%c'", c); input_line_pointer = start; /* reset input_line pointer */ return 0; } *toc_kind = t; /* set return value */ return 1; } #endif /* We need to keep a list of fixups. We can't simply generate them as we go, because that would require us to first create the frag, and that would screw up references to ``.''. */ struct ppc_fixup { expressionS exp; int opindex; bfd_reloc_code_real_type reloc; }; #define MAX_INSN_FIXUPS (5) /* This routine is called for each instruction to be assembled. */ void md_assemble (str) char *str; { char *s; const struct powerpc_opcode *opcode; unsigned long insn; const unsigned char *opindex_ptr; int skip_optional; int need_paren; int next_opindex; struct ppc_fixup fixups[MAX_INSN_FIXUPS]; int fc; char *f; int i; #ifdef OBJ_ELF bfd_reloc_code_real_type reloc; #endif /* Get the opcode. */ for (s = str; *s != '\0' && ! isspace (*s); s++) ; if (*s != '\0') *s++ = '\0'; /* Look up the opcode in the hash table. */ opcode = (const struct powerpc_opcode *) hash_find (ppc_hash, str); if (opcode == (const struct powerpc_opcode *) NULL) { const struct powerpc_macro *macro; macro = (const struct powerpc_macro *) hash_find (ppc_macro_hash, str); if (macro == (const struct powerpc_macro *) NULL) as_bad ("Unrecognized opcode: `%s'", str); else ppc_macro (s, macro); return; } insn = opcode->opcode; str = s; while (isspace (*str)) ++str; /* PowerPC operands are just expressions. The only real issue is that a few operand types are optional. All cases which might use an optional operand separate the operands only with commas (in some cases parentheses are used, as in ``lwz 1,0(1)'' but such cases never have optional operands). There is never more than one optional operand for an instruction. So, before we start seriously parsing the operands, we check to see if we have an optional operand, and, if we do, we count the number of commas to see whether the operand should be omitted. */ skip_optional = 0; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct powerpc_operand *operand; operand = &powerpc_operands[*opindex_ptr]; if ((operand->flags & PPC_OPERAND_OPTIONAL) != 0) { unsigned int opcount; /* There is an optional operand. Count the number of commas in the input line. */ if (*str == '\0') opcount = 0; else { opcount = 1; s = str; while ((s = strchr (s, ',')) != (char *) NULL) { ++opcount; ++s; } } /* If there are fewer operands in the line then are called for by the instruction, we want to skip the optional operand. */ if (opcount < strlen (opcode->operands)) skip_optional = 1; break; } } /* Gather the operands. */ need_paren = 0; next_opindex = 0; fc = 0; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct powerpc_operand *operand; const char *errmsg; char *hold; expressionS ex; char endc; if (next_opindex == 0) operand = &powerpc_operands[*opindex_ptr]; else { operand = &powerpc_operands[next_opindex]; next_opindex = 0; } errmsg = NULL; /* If this is a fake operand, then we do not expect anything from the input. */ if ((operand->flags & PPC_OPERAND_FAKE) != 0) { insn = (*operand->insert) (insn, 0L, &errmsg); if (errmsg != (const char *) NULL) as_warn (errmsg); continue; } /* If this is an optional operand, and we are skipping it, just insert a zero. */ if ((operand->flags & PPC_OPERAND_OPTIONAL) != 0 && skip_optional) { if (operand->insert) { insn = (*operand->insert) (insn, 0L, &errmsg); if (errmsg != (const char *) NULL) as_warn (errmsg); } if ((operand->flags & PPC_OPERAND_NEXT) != 0) next_opindex = *opindex_ptr + 1; continue; } /* Gather the operand. */ hold = input_line_pointer; input_line_pointer = str; #ifdef TE_PE if (*input_line_pointer == '[') { /* We are expecting something like the second argument here: lwz r4,[toc].GS.0.static_int(rtoc) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ The argument following the `]' must be a symbol name, and the register must be the toc register: 'rtoc' or '2' The effect is to 0 as the displacement field in the instruction, and issue an IMAGE_REL_PPC_TOCREL16 (or the appropriate variation) reloc against it based on the symbol. The linker will build the toc, and insert the resolved toc offset. Note: o The size of the toc entry is currently assumed to be 32 bits. This should not be assumed to be a hard coded number. o In an effort to cope with a change from 32 to 64 bits, there are also toc entries that are specified to be either 32 or 64 bits: lwz r4,[toc32].GS.0.static_int(rtoc) lwz r4,[toc64].GS.0.static_int(rtoc) These demand toc entries of the specified size, and the instruction probably requires it. */ int valid_toc; enum toc_size_qualifier toc_kind; bfd_reloc_code_real_type toc_reloc; /* go parse off the [tocXX] part */ valid_toc = parse_toc_entry(&toc_kind); if (!valid_toc) { /* Note: message has already been issued. */ /* FIXME: what sort of recovery should we do? */ /* demand_rest_of_line(); return; ? */ } /* Now get the symbol following the ']' */ expression(&ex); switch (toc_kind) { case default_toc: /* In this case, we may not have seen the symbol yet, since */ /* it is allowed to appear on a .extern or .globl or just be */ /* a label in the .data section. */ toc_reloc = BFD_RELOC_PPC_TOC16; break; case data_in_toc: /* 1. The symbol must be defined and either in the toc */ /* section, or a global. */ /* 2. The reloc generated must have the TOCDEFN flag set in */ /* upper bit mess of the reloc type. */ /* FIXME: It's a little confusing what the tocv qualifier can */ /* be used for. At the very least, I've seen three */ /* uses, only one of which I'm sure I can explain. */ if (ex.X_op == O_symbol) { assert (ex.X_add_symbol != NULL); if (ex.X_add_symbol->bsym->section != tocdata_section) { as_warn("[tocv] symbol is not a toc symbol"); } } toc_reloc = BFD_RELOC_PPC_TOC16; break; case must_be_32: /* FIXME: these next two specifically specify 32/64 bit toc */ /* entries. We don't support them today. Is this the */ /* right way to say that? */ toc_reloc = BFD_RELOC_UNUSED; as_bad ("Unimplemented toc32 expression modifier"); break; case must_be_64: /* FIXME: see above */ toc_reloc = BFD_RELOC_UNUSED; as_bad ("Unimplemented toc64 expression modifier"); break; default: fprintf(stderr, "Unexpected return value [%d] from parse_toc_entry!\n", toc_kind); abort(); break; } /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].reloc = toc_reloc; fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; ++fc; /* Ok. We've set up the fixup for the instruction. Now make it look like the constant 0 was found here */ ex.X_unsigned = 1; ex.X_op = O_constant; ex.X_add_number = 0; ex.X_add_symbol = NULL; ex.X_op_symbol = NULL; } else { if (!register_name(&ex)) { expression (&ex); } } str = input_line_pointer; input_line_pointer = hold; #else expression (&ex); str = input_line_pointer; input_line_pointer = hold; #endif if (ex.X_op == O_illegal) as_bad ("illegal operand"); else if (ex.X_op == O_absent) as_bad ("missing operand"); else if (ex.X_op == O_constant) { #ifdef OBJ_ELF /* Allow @HA, @L, @H on constants. */ char *orig_str = str; if ((reloc = ppc_elf_suffix (&str)) != BFD_RELOC_UNUSED) switch (reloc) { default: str = orig_str; break; case BFD_RELOC_LO16: ex.X_add_number = ((ex.X_add_number & 0xffff) ^ 0x8000) - 0x8000; break; case BFD_RELOC_HI16: ex.X_add_number = (ex.X_add_number >> 16) & 0xffff; break; case BFD_RELOC_HI16_S: ex.X_add_number = ((ex.X_add_number >> 16) & 0xffff) + ((ex.X_add_number >> 15) & 1); break; } #endif insn = ppc_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); } #ifdef TE_PE else if (ex.X_op == O_register) { insn = ppc_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); } #endif #ifdef OBJ_ELF else if ((reloc = ppc_elf_suffix (&str)) != BFD_RELOC_UNUSED) { /* For the absoulte forms of branchs, convert the PC relative form back into the absolute. */ if ((operand->flags & PPC_OPERAND_ABSOLUTE) != 0) switch (reloc) { case BFD_RELOC_PPC_B26: reloc = BFD_RELOC_PPC_BA26; break; case BFD_RELOC_PPC_B16: reloc = BFD_RELOC_PPC_BA16; break; case BFD_RELOC_PPC_B16_BRTAKEN: reloc = BFD_RELOC_PPC_BA16_BRTAKEN; break; case BFD_RELOC_PPC_B16_BRNTAKEN: reloc = BFD_RELOC_PPC_BA16_BRNTAKEN; break; } /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = 0; fixups[fc].reloc = reloc; ++fc; } #endif /* OBJ_ELF */ else { /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = BFD_RELOC_UNUSED; ++fc; } if (need_paren) { endc = ')'; need_paren = 0; } else if ((operand->flags & PPC_OPERAND_PARENS) != 0) { endc = '('; need_paren = 1; } else endc = ','; /* The call to expression should have advanced str past any whitespace. */ if (*str != endc && (endc != ',' || *str != '\0')) { as_bad ("syntax error; found `%c' but expected `%c'", *str, endc); break; } if (*str != '\0') ++str; } while (isspace (*str)) ++str; if (*str != '\0') as_bad ("junk at end of line: `%s'", str); /* Write out the instruction. */ f = frag_more (4); md_number_to_chars (f, insn, 4); /* Create any fixups. At this point we do not use a bfd_reloc_code_real_type, but instead just use the BFD_RELOC_UNUSED plus the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ for (i = 0; i < fc; i++) { const struct powerpc_operand *operand; operand = &powerpc_operands[fixups[i].opindex]; if (fixups[i].reloc != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc); int size; int offset; fixS *fixP; if (!reloc_howto) abort (); size = bfd_get_reloc_size (reloc_howto); offset = target_big_endian ? (4 - size) : 0; if (size < 1 || size > 4) abort(); fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset, size, &fixups[i].exp, reloc_howto->pc_relative, fixups[i].reloc); /* Turn off complaints that the addend is too large for things like foo+100000@ha. */ switch (fixups[i].reloc) { case BFD_RELOC_LO16: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: fixP->fx_no_overflow = 1; break; default: break; } } else fix_new_exp (frag_now, f - frag_now->fr_literal, 4, &fixups[i].exp, (operand->flags & PPC_OPERAND_RELATIVE) != 0, ((bfd_reloc_code_real_type) (fixups[i].opindex + (int) BFD_RELOC_UNUSED))); } } #ifndef WORKING_DOT_WORD /* Handle long and short jumps */ void md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { abort (); } void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) char *ptr; addressT from_addr, to_addr; fragS *frag; symbolS *to_symbol; { abort (); } #endif /* Handle a macro. Gather all the operands, transform them as described by the macro, and call md_assemble recursively. All the operands are separated by commas; we don't accept parentheses around operands here. */ static void ppc_macro (str, macro) char *str; const struct powerpc_macro *macro; { char *operands[10]; unsigned int count; char *s; unsigned int len; const char *format; int arg; char *send; char *complete; /* Gather the users operands into the operands array. */ count = 0; s = str; while (1) { if (count >= sizeof operands / sizeof operands[0]) break; operands[count++] = s; s = strchr (s, ','); if (s == (char *) NULL) break; *s++ = '\0'; } if (count != macro->operands) { as_bad ("wrong number of operands"); return; } /* Work out how large the string must be (the size is unbounded because it includes user input). */ len = 0; format = macro->format; while (*format != '\0') { if (*format != '%') { ++len; ++format; } else { arg = strtol (format + 1, &send, 10); know (send != format && arg >= 0 && arg < count); len += strlen (operands[arg]); format = send; } } /* Put the string together. */ complete = s = (char *) alloca (len + 1); format = macro->format; while (*format != '\0') { if (*format != '%') *s++ = *format++; else { arg = strtol (format + 1, &send, 10); strcpy (s, operands[arg]); s += strlen (s); format = send; } } *s = '\0'; /* Assemble the constructed instruction. */ md_assemble (complete); } /* Pseudo-op handling. */ /* The .byte pseudo-op. This is similar to the normal .byte pseudo-op, but it can also take a single ASCII string. */ static void ppc_byte (ignore) int ignore; { if (*input_line_pointer != '\"') { cons (1); return; } /* Gather characters. A real double quote is doubled. Unusual characters are not permitted. */ ++input_line_pointer; while (1) { char c; c = *input_line_pointer++; if (c == '\"') { if (*input_line_pointer != '\"') break; ++input_line_pointer; } FRAG_APPEND_1_CHAR (c); } demand_empty_rest_of_line (); } #ifdef OBJ_XCOFF /* XCOFF specific pseudo-op handling. */ /* The .comm and .lcomm pseudo-ops for XCOFF. XCOFF puts common symbols in the .bss segment as though they were local common symbols, and uses a different smclas. */ static void ppc_comm (lcomm) int lcomm; { asection *current_seg = now_seg; subsegT current_subseg = now_subseg; char *name; char endc; char *end_name; offsetT size; offsetT align; symbolS *lcomm_sym = NULL; symbolS *sym; char *pfrag; name = input_line_pointer; endc = get_symbol_end (); end_name = input_line_pointer; *end_name = endc; if (*input_line_pointer != ',') { as_bad ("missing size"); ignore_rest_of_line (); return; } ++input_line_pointer; size = get_absolute_expression (); if (size < 0) { as_bad ("negative size"); ignore_rest_of_line (); return; } if (! lcomm) { /* The third argument to .comm is the alignment. */ if (*input_line_pointer != ',') align = 3; else { ++input_line_pointer; align = get_absolute_expression (); if (align <= 0) { as_warn ("ignoring bad alignment"); align = 3; } } } else { char *lcomm_name; char lcomm_endc; if (size <= 1) align = 0; else if (size <= 2) align = 1; else if (size <= 4) align = 2; else align = 3; /* The third argument to .lcomm appears to be the real local common symbol to create. References to the symbol named in the first argument are turned into references to the third argument. */ if (*input_line_pointer != ',') { as_bad ("missing real symbol name"); ignore_rest_of_line (); return; } ++input_line_pointer; lcomm_name = input_line_pointer; lcomm_endc = get_symbol_end (); lcomm_sym = symbol_find_or_make (lcomm_name); *input_line_pointer = lcomm_endc; } *end_name = '\0'; sym = symbol_find_or_make (name); *end_name = endc; if (S_IS_DEFINED (sym) || S_GET_VALUE (sym) != 0) { as_bad ("attempt to redefine symbol"); ignore_rest_of_line (); return; } record_alignment (bss_section, align); if (! lcomm || ! S_IS_DEFINED (lcomm_sym)) { symbolS *def_sym; offsetT def_size; if (! lcomm) { def_sym = sym; def_size = size; S_SET_EXTERNAL (sym); } else { lcomm_sym->sy_tc.output = 1; def_sym = lcomm_sym; def_size = 0; } subseg_set (bss_section, 1); frag_align (align, 0); def_sym->sy_frag = frag_now; pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, def_sym, def_size, (char *) NULL); *pfrag = 0; S_SET_SEGMENT (def_sym, bss_section); def_sym->sy_tc.align = align; } else if (lcomm) { /* Align the size of lcomm_sym. */ lcomm_sym->sy_frag->fr_offset = ((lcomm_sym->sy_frag->fr_offset + (1 << align) - 1) &~ ((1 << align) - 1)); if (align > lcomm_sym->sy_tc.align) lcomm_sym->sy_tc.align = align; } if (lcomm) { /* Make sym an offset from lcomm_sym. */ S_SET_SEGMENT (sym, bss_section); sym->sy_frag = lcomm_sym->sy_frag; S_SET_VALUE (sym, lcomm_sym->sy_frag->fr_offset); lcomm_sym->sy_frag->fr_offset += size; } subseg_set (current_seg, current_subseg); demand_empty_rest_of_line (); } /* The .csect pseudo-op. This switches us into a different subsegment. The first argument is a symbol whose value is the start of the .csect. In COFF, csect symbols get special aux entries defined by the x_csect field of union internal_auxent. The optional second argument is the alignment (the default is 2). */ static void ppc_csect (ignore) int ignore; { char *name; char endc; symbolS *sym; name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; if (S_IS_DEFINED (sym)) subseg_set (S_GET_SEGMENT (sym), sym->sy_tc.subseg); else { symbolS **list_ptr; int after_toc; symbolS *list; /* This is a new csect. We need to look at the symbol class to figure out whether it should go in the text section or the data section. */ after_toc = 0; switch (sym->sy_tc.class) { case XMC_PR: case XMC_RO: case XMC_DB: case XMC_GL: case XMC_XO: case XMC_SV: case XMC_TI: case XMC_TB: S_SET_SEGMENT (sym, text_section); sym->sy_tc.subseg = ppc_text_subsegment; ++ppc_text_subsegment; list_ptr = &ppc_text_csects; break; case XMC_RW: case XMC_TC0: case XMC_TC: case XMC_DS: case XMC_UA: case XMC_BS: case XMC_UC: if (ppc_toc_csect->sy_tc.subseg + 1 == ppc_data_subsegment) after_toc = 1; S_SET_SEGMENT (sym, data_section); sym->sy_tc.subseg = ppc_data_subsegment; ++ppc_data_subsegment; list_ptr = &ppc_data_csects; break; default: abort (); } subseg_new (segment_name (S_GET_SEGMENT (sym)), sym->sy_tc.subseg); if (after_toc) ppc_after_toc_frag = frag_now; sym->sy_frag = frag_now; S_SET_VALUE (sym, (valueT) frag_now_fix ()); sym->sy_tc.align = 2; sym->sy_tc.output = 1; sym->sy_tc.within = sym; for (list = *list_ptr; list->sy_tc.next != (symbolS *) NULL; list = list->sy_tc.next) ; list->sy_tc.next = sym; symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, list->sy_tc.within, &symbol_rootP, &symbol_lastP); } if (*input_line_pointer == ',') { ++input_line_pointer; sym->sy_tc.align = get_absolute_expression (); } ppc_current_csect = sym; demand_empty_rest_of_line (); } /* The .extern pseudo-op. We create an undefined symbol. */ static void ppc_extern (ignore) int ignore; { char *name; char endc; name = input_line_pointer; endc = get_symbol_end (); (void) symbol_find_or_make (name); *input_line_pointer = endc; demand_empty_rest_of_line (); } /* The .lglobl pseudo-op. I think the RS/6000 assembler only needs this because it can't handle undefined symbols. I think we can just ignore it. */ static void ppc_lglobl (ignore) int ignore; { s_ignore (0); } /* The .rename pseudo-op. The RS/6000 assembler can rename symbols, although I don't know why it bothers. */ static void ppc_rename (ignore) int ignore; { char *name; char endc; symbolS *sym; int len; name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; if (*input_line_pointer != ',') { as_bad ("missing rename string"); ignore_rest_of_line (); return; } ++input_line_pointer; sym->sy_tc.real_name = demand_copy_C_string (&len); demand_empty_rest_of_line (); } /* The .stabx pseudo-op. This is similar to a normal .stabs pseudo-op, but slightly different. A sample is .stabx "main:F-1",.main,142,0 The first argument is the symbol name to create. The second is the value, and the third is the storage class. The fourth seems to be always zero, and I am assuming it is the type. */ static void ppc_stabx (ignore) int ignore; { char *name; int len; symbolS *sym; expressionS exp; name = demand_copy_C_string (&len); if (*input_line_pointer != ',') { as_bad ("missing value"); return; } ++input_line_pointer; sym = symbol_make (name); (void) expression (&exp); switch (exp.X_op) { case O_illegal: case O_absent: case O_big: as_bad ("illegal .stabx expression; zero assumed"); exp.X_add_number = 0; /* Fall through. */ case O_constant: S_SET_VALUE (sym, (valueT) exp.X_add_number); sym->sy_frag = &zero_address_frag; break; case O_symbol: if (S_GET_SEGMENT (exp.X_add_symbol) == undefined_section) sym->sy_value = exp; else { S_SET_VALUE (sym, exp.X_add_number + S_GET_VALUE (exp.X_add_symbol)); sym->sy_frag = exp.X_add_symbol->sy_frag; } break; default: /* The value is some complex expression. This will probably fail at some later point, but this is probably the right thing to do here. */ sym->sy_value = exp; break; } S_SET_SEGMENT (sym, ppc_coff_debug_section); sym->bsym->flags |= BSF_DEBUGGING; if (*input_line_pointer != ',') { as_bad ("missing class"); return; } ++input_line_pointer; S_SET_STORAGE_CLASS (sym, get_absolute_expression ()); if (*input_line_pointer != ',') { as_bad ("missing type"); return; } ++input_line_pointer; S_SET_DATA_TYPE (sym, get_absolute_expression ()); sym->sy_tc.output = 1; if (S_GET_STORAGE_CLASS (sym) == C_STSYM) sym->sy_tc.within = ppc_current_block; if (exp.X_op != O_symbol || ! S_IS_EXTERNAL (exp.X_add_symbol) || S_GET_SEGMENT (exp.X_add_symbol) != bss_section) ppc_frob_label (sym); else { symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, exp.X_add_symbol, &symbol_rootP, &symbol_lastP); if (ppc_current_csect->sy_tc.within == exp.X_add_symbol) ppc_current_csect->sy_tc.within = sym; } if (strlen (name) > SYMNMLEN) { /* For some reason, each name is preceded by a two byte length and followed by a null byte. */ ppc_debug_name_section_size += strlen (name) + 3; } demand_empty_rest_of_line (); } /* The .function pseudo-op. This takes several arguments. The first argument seems to be the external name of the symbol. The second argment seems to be the label for the start of the function. gcc uses the same name for both. I have no idea what the third and fourth arguments are meant to be. The optional fifth argument is an expression for the size of the function. In COFF this symbol gets an aux entry like that used for a csect. */ static void ppc_function (ignore) int ignore; { char *name; char endc; char *s; symbolS *ext_sym; symbolS *lab_sym; name = input_line_pointer; endc = get_symbol_end (); /* Ignore any [PR] suffix. */ name = ppc_canonicalize_symbol_name (name); s = strchr (name, '['); if (s != (char *) NULL && strcmp (s + 1, "PR]") == 0) *s = '\0'; ext_sym = symbol_find_or_make (name); *input_line_pointer = endc; if (*input_line_pointer != ',') { as_bad ("missing symbol name"); ignore_rest_of_line (); return; } ++input_line_pointer; name = input_line_pointer; endc = get_symbol_end (); lab_sym = symbol_find_or_make (name); *input_line_pointer = endc; if (ext_sym != lab_sym) { ext_sym->sy_value.X_op = O_symbol; ext_sym->sy_value.X_add_symbol = lab_sym; ext_sym->sy_value.X_op_symbol = NULL; ext_sym->sy_value.X_add_number = 0; } if (ext_sym->sy_tc.class == -1) ext_sym->sy_tc.class = XMC_PR; ext_sym->sy_tc.output = 1; if (*input_line_pointer == ',') { expressionS ignore; /* Ignore the third argument. */ ++input_line_pointer; expression (&ignore); if (*input_line_pointer == ',') { /* Ignore the fourth argument. */ ++input_line_pointer; expression (&ignore); if (*input_line_pointer == ',') { /* The fifth argument is the function size. */ ++input_line_pointer; ext_sym->sy_tc.size = symbol_new ("L0\001", absolute_section, (valueT) 0, &zero_address_frag); pseudo_set (ext_sym->sy_tc.size); } } } S_SET_DATA_TYPE (ext_sym, DT_FCN << N_BTSHFT); SF_SET_FUNCTION (ext_sym); SF_SET_PROCESS (ext_sym); coff_add_linesym (ext_sym); demand_empty_rest_of_line (); } /* The .bf pseudo-op. This is just like a COFF C_FCN symbol named ".bf". */ static void ppc_bf (ignore) int ignore; { symbolS *sym; sym = symbol_make (".bf"); S_SET_SEGMENT (sym, text_section); sym->sy_frag = frag_now; S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_FCN); coff_line_base = get_absolute_expression (); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, coff_line_base); sym->sy_tc.output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .ef pseudo-op. This is just like a COFF C_FCN symbol named ".ef", except that the line number is absolute, not relative to the most recent ".bf" symbol. */ static void ppc_ef (ignore) int ignore; { symbolS *sym; sym = symbol_make (".ef"); S_SET_SEGMENT (sym, text_section); sym->sy_frag = frag_now; S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_FCN); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, get_absolute_expression ()); sym->sy_tc.output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .bi and .ei pseudo-ops. These take a string argument and generates a C_BINCL or C_EINCL symbol, which goes at the start of the symbol list. */ static void ppc_biei (ei) int ei; { char *name; int len; symbolS *sym; symbolS *look; name = demand_copy_C_string (&len); /* The value of these symbols is actually file offset. Here we set the value to the index into the line number entries. In ppc_frob_symbols we set the fix_line field, which will cause BFD to do the right thing. */ sym = symbol_make (name); S_SET_SEGMENT (sym, now_seg); S_SET_VALUE (sym, coff_n_line_nos); sym->bsym->flags |= BSF_DEBUGGING; /* obj-coff.c currently only handles line numbers correctly in the .text section. */ assert (now_seg == text_section); S_SET_STORAGE_CLASS (sym, ei ? C_EINCL : C_BINCL); sym->sy_tc.output = 1; for (look = symbol_rootP; (look != (symbolS *) NULL && (S_GET_STORAGE_CLASS (look) == C_FILE || S_GET_STORAGE_CLASS (look) == C_BINCL || S_GET_STORAGE_CLASS (look) == C_EINCL)); look = symbol_next (look)) ; if (look != (symbolS *) NULL) { symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_insert (sym, look, &symbol_rootP, &symbol_lastP); } demand_empty_rest_of_line (); } /* The .bs pseudo-op. This generates a C_BSTAT symbol named ".bs". There is one argument, which is a csect symbol. The value of the .bs symbol is the index of this csect symbol. */ static void ppc_bs (ignore) int ignore; { char *name; char endc; symbolS *csect; symbolS *sym; if (ppc_current_block != NULL) as_bad ("nested .bs blocks"); name = input_line_pointer; endc = get_symbol_end (); csect = symbol_find_or_make (name); *input_line_pointer = endc; sym = symbol_make (".bs"); S_SET_SEGMENT (sym, now_seg); S_SET_STORAGE_CLASS (sym, C_BSTAT); sym->bsym->flags |= BSF_DEBUGGING; sym->sy_tc.output = 1; sym->sy_tc.within = csect; ppc_frob_label (sym); ppc_current_block = sym; demand_empty_rest_of_line (); } /* The .es pseudo-op. Generate a C_ESTART symbol named .es. */ static void ppc_es (ignore) int ignore; { symbolS *sym; if (ppc_current_block == NULL) as_bad (".es without preceding .bs"); sym = symbol_make (".es"); S_SET_SEGMENT (sym, now_seg); S_SET_STORAGE_CLASS (sym, C_ESTAT); sym->bsym->flags |= BSF_DEBUGGING; sym->sy_tc.output = 1; ppc_frob_label (sym); ppc_current_block = NULL; demand_empty_rest_of_line (); } /* The .bb pseudo-op. Generate a C_BLOCK symbol named .bb, with a line number. */ static void ppc_bb (ignore) int ignore; { symbolS *sym; sym = symbol_make (".bb"); S_SET_SEGMENT (sym, text_section); sym->sy_frag = frag_now; S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_BLOCK); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, get_absolute_expression ()); sym->sy_tc.output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .eb pseudo-op. Generate a C_BLOCK symbol named .eb, with a line number. */ static void ppc_eb (ignore) int ignore; { symbolS *sym; sym = symbol_make (".eb"); S_SET_SEGMENT (sym, text_section); sym->sy_frag = frag_now; S_SET_VALUE (sym, frag_now_fix ()); S_SET_STORAGE_CLASS (sym, C_FCN); S_SET_NUMBER_AUXILIARY (sym, 1); SA_SET_SYM_LNNO (sym, get_absolute_expression ()); sym->sy_tc.output = 1; ppc_frob_label (sym); demand_empty_rest_of_line (); } /* The .toc pseudo-op. Switch to the .toc subsegment. */ static void ppc_toc (ignore) int ignore; { if (ppc_toc_csect != (symbolS *) NULL) subseg_set (data_section, ppc_toc_csect->sy_tc.subseg); else { subsegT subseg; symbolS *sym; symbolS *list; subseg = ppc_data_subsegment; ++ppc_data_subsegment; subseg_new (segment_name (data_section), subseg); ppc_toc_frag = frag_now; sym = symbol_find_or_make ("TOC[TC0]"); sym->sy_frag = frag_now; S_SET_SEGMENT (sym, data_section); S_SET_VALUE (sym, (valueT) frag_now_fix ()); sym->sy_tc.subseg = subseg; sym->sy_tc.output = 1; sym->sy_tc.within = sym; ppc_toc_csect = sym; for (list = ppc_data_csects; list->sy_tc.next != (symbolS *) NULL; list = list->sy_tc.next) ; list->sy_tc.next = sym; symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, list->sy_tc.within, &symbol_rootP, &symbol_lastP); } ppc_current_csect = ppc_toc_csect; demand_empty_rest_of_line (); } #endif /* OBJ_XCOFF */ /* The .tc pseudo-op. This is used when generating either XCOFF or ELF. This takes two or more arguments. When generating XCOFF output, the first argument is the name to give to this location in the toc; this will be a symbol with class TC. The rest of the arguments are 4 byte values to actually put at this location in the TOC; often there is just one more argument, a relocateable symbol reference. When not generating XCOFF output, the arguments are the same, but the first argument is simply ignored. */ static void ppc_tc (ignore) int ignore; { #ifdef OBJ_XCOFF /* Define the TOC symbol name. */ { char *name; char endc; symbolS *sym; if (ppc_toc_csect == (symbolS *) NULL || ppc_toc_csect != ppc_current_csect) { as_bad (".tc not in .toc section"); ignore_rest_of_line (); return; } name = input_line_pointer; endc = get_symbol_end (); sym = symbol_find_or_make (name); *input_line_pointer = endc; if (S_IS_DEFINED (sym)) { symbolS *label; label = ppc_current_csect->sy_tc.within; if (label->sy_tc.class != XMC_TC0) { as_warn (".tc with no label"); ignore_rest_of_line (); return; } S_SET_SEGMENT (label, S_GET_SEGMENT (sym)); label->sy_frag = sym->sy_frag; S_SET_VALUE (label, S_GET_VALUE (sym)); while (! is_end_of_line[(unsigned char) *input_line_pointer]) ++input_line_pointer; return; } S_SET_SEGMENT (sym, now_seg); sym->sy_frag = frag_now; S_SET_VALUE (sym, (valueT) frag_now_fix ()); sym->sy_tc.class = XMC_TC; sym->sy_tc.output = 1; ppc_frob_label (sym); } #else /* ! defined (OBJ_XCOFF) */ /* Skip the TOC symbol name. */ while (is_part_of_name (*input_line_pointer) || *input_line_pointer == '[' || *input_line_pointer == ']' || *input_line_pointer == '{' || *input_line_pointer == '}') ++input_line_pointer; /* Align to a four byte boundary. */ frag_align (2, 0); record_alignment (now_seg, 2); #endif /* ! defined (OBJ_XCOFF) */ if (*input_line_pointer != ',') demand_empty_rest_of_line (); else { ++input_line_pointer; cons (4); } } #ifdef TE_PE /* Pseudo-ops specific to the Windows NT PowerPC PE (coff) format */ /* Set the current section. */ static void ppc_set_current_section (new) segT new; { ppc_previous_section = ppc_current_section; ppc_current_section = new; } /* pseudo-op: .previous behaviour: toggles the current section with the previous section. errors: None warnings: "No previous section" */ static void ppc_previous(ignore) int ignore; { symbolS *tmp; if (ppc_previous_section == NULL) { as_warn("No previous section to return to. Directive ignored."); return; } subseg_set(ppc_previous_section, 0); ppc_set_current_section(ppc_previous_section); } /* pseudo-op: .pdata behaviour: predefined read only data section double word aligned errors: None warnings: None initial: .section .pdata "adr3" a - don't know -- maybe a misprint d - initialized data r - readable 3 - double word aligned (that would be 4 byte boundary) commentary: Tag index tables (also known as the function table) for exception handling, debugging, etc. */ static void ppc_pdata(ignore) int ignore; { if (pdata_section == 0) { pdata_section = subseg_new (".pdata", 0); bfd_set_section_flags (stdoutput, pdata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, pdata_section, 3); } else { pdata_section = subseg_new(".pdata", 0); } ppc_set_current_section(pdata_section); } /* pseudo-op: .ydata behaviour: predefined read only data section double word aligned errors: None warnings: None initial: .section .ydata "drw3" a - don't know -- maybe a misprint d - initialized data r - readable 3 - double word aligned (that would be 4 byte boundary) commentary: Tag tables (also known as the scope table) for exception handling, debugging, etc. */ static void ppc_ydata(ignore) int ignore; { if (ydata_section == 0) { ydata_section = subseg_new (".ydata", 0); bfd_set_section_flags (stdoutput, ydata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, ydata_section, 3); } else { ydata_section = subseg_new (".ydata", 0); } ppc_set_current_section(ydata_section); } /* pseudo-op: .reldata behaviour: predefined read write data section double word aligned (4-byte) FIXME: relocation is applied to it FIXME: what's the difference between this and .data? errors: None warnings: None initial: .section .reldata "drw3" d - initialized data r - readable w - writeable 3 - double word aligned (that would be 8 byte boundary) commentary: Like .data, but intended to hold data subject to relocation, such as function descriptors, etc. */ static void ppc_reldata(ignore) int ignore; { if (reldata_section == 0) { reldata_section = subseg_new (".reldata", 0); bfd_set_section_flags (stdoutput, reldata_section, ( SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA )); bfd_set_section_alignment (stdoutput, reldata_section, 3); } else { reldata_section = subseg_new (".reldata", 0); } ppc_set_current_section(reldata_section); } /* pseudo-op: .rdata behaviour: predefined read only data section double word aligned errors: None warnings: None initial: .section .rdata "dr3" d - initialized data r - readable 3 - double word aligned (that would be 4 byte boundary) */ static void ppc_rdata(ignore) int ignore; { if (rdata_section == 0) { rdata_section = subseg_new (".rdata", 0); bfd_set_section_flags (stdoutput, rdata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, rdata_section, 2); } else { rdata_section = subseg_new (".rdata", 0); } ppc_set_current_section(rdata_section); } /* pseudo-op: .ualong behaviour: much like .int, with the exception that no alignment is performed. FIXME: test the alignment statement errors: None warnings: None */ static void ppc_ualong(ignore) int ignore; { /* try for long */ cons ( 4 ); } /* pseudo-op: .znop behaviour: Issue a nop instruction Issue a IMAGE_REL_PPC_IFGLUE relocation against it, using the supplied symbol name. errors: None warnings: Missing symbol name */ static void ppc_znop(ignore) int ignore; { unsigned long insn; const struct powerpc_opcode *opcode; expressionS ex; char *f; symbolS *sym; /* Strip out the symbol name */ char *symbol_name; char c; char *name; unsigned int exp; flagword flags; asection *sec; symbol_name = input_line_pointer; c = get_symbol_end (); name = xmalloc (input_line_pointer - symbol_name + 1); strcpy (name, symbol_name); sym = symbol_find_or_make (name); *input_line_pointer = c; SKIP_WHITESPACE (); /* Look up the opcode in the hash table. */ opcode = (const struct powerpc_opcode *) hash_find (ppc_hash, "nop"); /* stick in the nop */ insn = opcode->opcode; /* Write out the instruction. */ f = frag_more (4); md_number_to_chars (f, insn, 4); fix_new (frag_now, f - frag_now->fr_literal, 4, sym, 0, 0, BFD_RELOC_16_GOT_PCREL); } /* pseudo-op: behaviour: errors: warnings: */ static void ppc_pe_comm(lcomm) int lcomm; { register char *name; register char c; register char *p; offsetT temp; register symbolS *symbolP; offsetT align; name = input_line_pointer; c = get_symbol_end (); /* just after name is now '\0' */ p = input_line_pointer; *p = c; SKIP_WHITESPACE (); if (*input_line_pointer != ',') { as_bad ("Expected comma after symbol-name: rest of line ignored."); ignore_rest_of_line (); return; } input_line_pointer++; /* skip ',' */ if ((temp = get_absolute_expression ()) < 0) { as_warn (".COMMon length (%ld.) <0! Ignored.", (long) temp); ignore_rest_of_line (); return; } if (! lcomm) { /* The third argument to .comm is the alignment. */ if (*input_line_pointer != ',') align = 3; else { ++input_line_pointer; align = get_absolute_expression (); if (align <= 0) { as_warn ("ignoring bad alignment"); align = 3; } } } *p = 0; symbolP = symbol_find_or_make (name); *p = c; if (S_IS_DEFINED (symbolP)) { as_bad ("Ignoring attempt to re-define symbol `%s'.", S_GET_NAME (symbolP)); ignore_rest_of_line (); return; } if (S_GET_VALUE (symbolP)) { if (S_GET_VALUE (symbolP) != (valueT) temp) as_bad ("Length of .comm \"%s\" is already %ld. Not changed to %ld.", S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) temp); } else { S_SET_VALUE (symbolP, (valueT) temp); S_SET_EXTERNAL (symbolP); } demand_empty_rest_of_line (); } /* * implement the .section pseudo op: * .section name {, "flags"} * ^ ^ * | +--- optional flags: 'b' for bss * | 'i' for info * +-- section name 'l' for lib * 'n' for noload * 'o' for over * 'w' for data * 'd' (apparently m88k for data) * 'x' for text * But if the argument is not a quoted string, treat it as a * subsegment number. * * FIXME: this is a copy of the section processing from obj-coff.c, with * additions/changes for the moto-pas assembler support. There are three * categories: * * FIXME: I just noticed this. This doesn't work at all really. It it * setting bits that bfd probably neither understands or uses. The * correct approach (?) will have to incorporate extra fields attached * to the section to hold the system specific stuff. (krk) * * Section Contents: * 'a' - unknown - referred to in documentation, but no definition supplied * 'c' - section has code * 'd' - section has initialized data * 'u' - section has uninitialized data * 'i' - section contains directives (info) * 'n' - section can be discarded * 'R' - remove section at link time * * Section Protection: * 'r' - section is readable * 'w' - section is writeable * 'x' - section is executable * 's' - section is sharable * * Section Alignment: * '0' - align to byte boundary * '1' - align to halfword undary * '2' - align to word boundary * '3' - align to doubleword boundary * '4' - align to quadword boundary * '5' - align to 32 byte boundary * '6' - align to 64 byte boundary * */ void ppc_pe_section (ignore) int ignore; { /* Strip out the section name */ char *section_name; char c; char *name; unsigned int exp; flagword flags; segT sec; int align; align = 4; /* default alignment to 16 byte boundary */ section_name = input_line_pointer; c = get_symbol_end (); name = xmalloc (input_line_pointer - section_name + 1); strcpy (name, section_name); *input_line_pointer = c; SKIP_WHITESPACE (); exp = 0; flags = SEC_NO_FLAGS; if (*input_line_pointer == ',') { ++input_line_pointer; SKIP_WHITESPACE (); if (*input_line_pointer != '"') exp = get_absolute_expression (); else { ++input_line_pointer; while (*input_line_pointer != '"' && ! is_end_of_line[(unsigned char) *input_line_pointer]) { switch (*input_line_pointer) { /* Section Contents */ case 'a': /* unknown */ as_warn ("Unsupported section attribute -- 'a'"); break; case 'c': /* code section */ flags |= SEC_CODE; break; case 'd': /* section has initialized data */ flags |= SEC_DATA; break; case 'u': /* section has uninitialized data */ /* FIXME: This is IMAGE_SCN_CNT_UNINITIALIZED_DATA in winnt.h */ flags |= SEC_ROM; break; case 'i': /* section contains directives (info) */ /* FIXME: This is IMAGE_SCN_LNK_INFO in winnt.h */ flags |= SEC_HAS_CONTENTS; break; case 'n': /* section can be discarded */ flags &=~ SEC_LOAD; break; case 'R': /* Remove section at link time */ flags |= SEC_NEVER_LOAD; break; /* Section Protection */ case 'r': /* section is readable */ flags |= IMAGE_SCN_MEM_READ; break; case 'w': /* section is writeable */ flags |= IMAGE_SCN_MEM_WRITE; break; case 'x': /* section is executable */ flags |= IMAGE_SCN_MEM_EXECUTE; break; case 's': /* section is sharable */ flags |= IMAGE_SCN_MEM_SHARED; break; /* Section Alignment */ case '0': /* align to byte boundary */ flags |= IMAGE_SCN_ALIGN_1BYTES; align = 0; break; case '1': /* align to halfword boundary */ flags |= IMAGE_SCN_ALIGN_2BYTES; align = 1; break; case '2': /* align to word boundary */ flags |= IMAGE_SCN_ALIGN_4BYTES; align = 2; break; case '3': /* align to doubleword boundary */ flags |= IMAGE_SCN_ALIGN_8BYTES; align = 3; break; case '4': /* align to quadword boundary */ flags |= IMAGE_SCN_ALIGN_16BYTES; align = 4; break; case '5': /* align to 32 byte boundary */ flags |= IMAGE_SCN_ALIGN_32BYTES; align = 5; break; case '6': /* align to 64 byte boundary */ flags |= IMAGE_SCN_ALIGN_64BYTES; align = 6; break; default: as_warn("unknown section attribute '%c'", *input_line_pointer); break; } ++input_line_pointer; } if (*input_line_pointer == '"') ++input_line_pointer; } } sec = subseg_new (name, (subsegT) exp); ppc_set_current_section(sec); if (flags != SEC_NO_FLAGS) { if (! bfd_set_section_flags (stdoutput, sec, flags)) as_warn ("error setting flags for \"%s\": %s", bfd_section_name (stdoutput, sec), bfd_errmsg (bfd_get_error ())); } bfd_set_section_alignment(stdoutput, sec, align); } static void ppc_pe_function (ignore) int ignore; { char *name; char endc; symbolS *ext_sym; name = input_line_pointer; endc = get_symbol_end (); ext_sym = symbol_find_or_make (name); *input_line_pointer = endc; S_SET_DATA_TYPE (ext_sym, DT_FCN << N_BTSHFT); SF_SET_FUNCTION (ext_sym); SF_SET_PROCESS (ext_sym); coff_add_linesym (ext_sym); demand_empty_rest_of_line (); } static void ppc_pe_tocd (ignore) int ignore; { if (tocdata_section == 0) { tocdata_section = subseg_new (".tocd", 0); /* FIXME: section flags won't work */ bfd_set_section_flags (stdoutput, tocdata_section, (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY | SEC_DATA )); bfd_set_section_alignment (stdoutput, tocdata_section, 2); } else { rdata_section = subseg_new (".tocd", 0); } ppc_set_current_section(tocdata_section); demand_empty_rest_of_line (); } /* Don't adjust TOC relocs to use the section symbol. */ int ppc_pe_fix_adjustable (fix) fixS *fix; { return fix->fx_r_type != BFD_RELOC_PPC_TOC16; } #endif #ifdef OBJ_XCOFF /* XCOFF specific symbol and file handling. */ /* Canonicalize the symbol name. We use the to force the suffix, if any, to use square brackets, and to be in upper case. */ char * ppc_canonicalize_symbol_name (name) char *name; { char *s; for (s = name; *s != '\0' && *s != '{' && *s != '['; s++) ; if (*s != '\0') { char brac; if (*s == '[') brac = ']'; else { *s = '['; brac = '}'; } for (s++; *s != '\0' && *s != brac; s++) if (islower (*s)) *s = toupper (*s); if (*s == '\0' || s[1] != '\0') as_bad ("bad symbol suffix"); *s = ']'; } return name; } /* Set the class of a symbol based on the suffix, if any. This is called whenever a new symbol is created. */ void ppc_symbol_new_hook (sym) symbolS *sym; { const char *s; sym->sy_tc.next = NULL; sym->sy_tc.output = 0; sym->sy_tc.class = -1; sym->sy_tc.real_name = NULL; sym->sy_tc.subseg = 0; sym->sy_tc.align = 0; sym->sy_tc.size = NULL; sym->sy_tc.within = NULL; s = strchr (S_GET_NAME (sym), '['); if (s == (const char *) NULL) { /* There is no suffix. */ return; } ++s; switch (s[0]) { case 'B': if (strcmp (s, "BS]") == 0) sym->sy_tc.class = XMC_BS; break; case 'D': if (strcmp (s, "DB]") == 0) sym->sy_tc.class = XMC_DB; else if (strcmp (s, "DS]") == 0) sym->sy_tc.class = XMC_DS; break; case 'G': if (strcmp (s, "GL]") == 0) sym->sy_tc.class = XMC_GL; break; case 'P': if (strcmp (s, "PR]") == 0) sym->sy_tc.class = XMC_PR; break; case 'R': if (strcmp (s, "RO]") == 0) sym->sy_tc.class = XMC_RO; else if (strcmp (s, "RW]") == 0) sym->sy_tc.class = XMC_RW; break; case 'S': if (strcmp (s, "SV]") == 0) sym->sy_tc.class = XMC_SV; break; case 'T': if (strcmp (s, "TC]") == 0) sym->sy_tc.class = XMC_TC; else if (strcmp (s, "TI]") == 0) sym->sy_tc.class = XMC_TI; else if (strcmp (s, "TB]") == 0) sym->sy_tc.class = XMC_TB; else if (strcmp (s, "TC0]") == 0 || strcmp (s, "T0]") == 0) sym->sy_tc.class = XMC_TC0; break; case 'U': if (strcmp (s, "UA]") == 0) sym->sy_tc.class = XMC_UA; else if (strcmp (s, "UC]") == 0) sym->sy_tc.class = XMC_UC; break; case 'X': if (strcmp (s, "XO]") == 0) sym->sy_tc.class = XMC_XO; break; } if (sym->sy_tc.class == -1) as_bad ("Unrecognized symbol suffix"); } /* Set the class of a label based on where it is defined. This handles symbols without suffixes. Also, move the symbol so that it follows the csect symbol. */ void ppc_frob_label (sym) symbolS *sym; { if (ppc_current_csect != (symbolS *) NULL) { if (sym->sy_tc.class == -1) sym->sy_tc.class = ppc_current_csect->sy_tc.class; symbol_remove (sym, &symbol_rootP, &symbol_lastP); symbol_append (sym, ppc_current_csect->sy_tc.within, &symbol_rootP, &symbol_lastP); ppc_current_csect->sy_tc.within = sym; } } /* Change the name of a symbol just before writing it out. Set the real name if the .rename pseudo-op was used. Otherwise, remove any class suffix. Return 1 if the symbol should not be included in the symbol table. */ int ppc_frob_symbol (sym) symbolS *sym; { static symbolS *ppc_last_function; static symbolS *set_end; /* Discard symbols that should not be included in the output symbol table. */ if (! sym->sy_used_in_reloc && ((sym->bsym->flags & BSF_SECTION_SYM) != 0 || (! S_IS_EXTERNAL (sym) && ! sym->sy_tc.output && S_GET_STORAGE_CLASS (sym) != C_FILE))) return 1; if (sym->sy_tc.real_name != (char *) NULL) S_SET_NAME (sym, sym->sy_tc.real_name); else { const char *name; const char *s; name = S_GET_NAME (sym); s = strchr (name, '['); if (s != (char *) NULL) { unsigned int len; char *snew; len = s - name; snew = xmalloc (len + 1); memcpy (snew, name, len); snew[len] = '\0'; S_SET_NAME (sym, snew); } } if (set_end != (symbolS *) NULL) { SA_SET_SYM_ENDNDX (set_end, sym); set_end = NULL; } if (SF_GET_FUNCTION (sym)) { if (ppc_last_function != (symbolS *) NULL) as_warn ("two .function pseudo-ops with no intervening .ef"); ppc_last_function = sym; if (sym->sy_tc.size != (symbolS *) NULL) { resolve_symbol_value (sym->sy_tc.size); SA_SET_SYM_FSIZE (sym, (long) S_GET_VALUE (sym->sy_tc.size)); } } else if (S_GET_STORAGE_CLASS (sym) == C_FCN && strcmp (S_GET_NAME (sym), ".ef") == 0) { if (ppc_last_function == (symbolS *) NULL) as_warn (".ef with no preceding .function"); else { set_end = ppc_last_function; ppc_last_function = NULL; /* We don't have a C_EFCN symbol, but we need to force the COFF backend to believe that it has seen one. */ coff_last_function = NULL; } } if (! S_IS_EXTERNAL (sym) && (sym->bsym->flags & BSF_SECTION_SYM) == 0 && S_GET_STORAGE_CLASS (sym) != C_FILE && S_GET_STORAGE_CLASS (sym) != C_FCN && S_GET_STORAGE_CLASS (sym) != C_BSTAT && S_GET_STORAGE_CLASS (sym) != C_ESTAT && S_GET_STORAGE_CLASS (sym) != C_BINCL && S_GET_STORAGE_CLASS (sym) != C_EINCL && S_GET_SEGMENT (sym) != ppc_coff_debug_section) S_SET_STORAGE_CLASS (sym, C_HIDEXT); if ((S_GET_STORAGE_CLASS (sym) == C_EXT || S_GET_STORAGE_CLASS (sym) == C_HIDEXT) && S_GET_SEGMENT (sym) != absolute_section) { int i; union internal_auxent *a; /* Create a csect aux. */ i = S_GET_NUMBER_AUXILIARY (sym); S_SET_NUMBER_AUXILIARY (sym, i + 1); a = &coffsymbol (sym->bsym)->native[i + 1].u.auxent; if (sym->sy_tc.class == XMC_TC0) { /* This is the TOC table. */ know (strcmp (S_GET_NAME (sym), "TOC") == 0); a->x_csect.x_scnlen.l = 0; a->x_csect.x_smtyp = (2 << 3) | XTY_SD; } else if (sym->sy_tc.subseg != 0) { /* This is a csect symbol. x_scnlen is the size of the csect. */ if (sym->sy_tc.next == (symbolS *) NULL) a->x_csect.x_scnlen.l = (bfd_section_size (stdoutput, S_GET_SEGMENT (sym)) - S_GET_VALUE (sym)); else { resolve_symbol_value (sym->sy_tc.next); a->x_csect.x_scnlen.l = (S_GET_VALUE (sym->sy_tc.next) - S_GET_VALUE (sym)); } a->x_csect.x_smtyp = (sym->sy_tc.align << 3) | XTY_SD; } else if (S_GET_SEGMENT (sym) == bss_section) { /* This is a common symbol. */ a->x_csect.x_scnlen.l = sym->sy_frag->fr_offset; a->x_csect.x_smtyp = (sym->sy_tc.align << 3) | XTY_CM; if (S_IS_EXTERNAL (sym)) sym->sy_tc.class = XMC_RW; else sym->sy_tc.class = XMC_BS; } else if (! S_IS_DEFINED (sym)) { /* This is an external symbol. */ a->x_csect.x_scnlen.l = 0; a->x_csect.x_smtyp = XTY_ER; } else if (sym->sy_tc.class == XMC_TC) { symbolS *next; /* This is a TOC definition. x_scnlen is the size of the TOC entry. */ next = symbol_next (sym); while (next->sy_tc.class == XMC_TC0) next = symbol_next (next); if (next == (symbolS *) NULL || next->sy_tc.class != XMC_TC) { if (ppc_after_toc_frag == (fragS *) NULL) a->x_csect.x_scnlen.l = (bfd_section_size (stdoutput, data_section) - S_GET_VALUE (sym)); else a->x_csect.x_scnlen.l = (ppc_after_toc_frag->fr_address - S_GET_VALUE (sym)); } else { resolve_symbol_value (next); a->x_csect.x_scnlen.l = (S_GET_VALUE (next) - S_GET_VALUE (sym)); } a->x_csect.x_smtyp = (2 << 3) | XTY_SD; } else { symbolS *csect; /* This is a normal symbol definition. x_scnlen is the symbol index of the containing csect. */ if (S_GET_SEGMENT (sym) == text_section) csect = ppc_text_csects; else if (S_GET_SEGMENT (sym) == data_section) csect = ppc_data_csects; else abort (); /* Skip the initial dummy symbol. */ csect = csect->sy_tc.next; if (csect == (symbolS *) NULL) a->x_csect.x_scnlen.l = 0; else { while (csect->sy_tc.next != (symbolS *) NULL) { resolve_symbol_value (csect->sy_tc.next); if (S_GET_VALUE (csect->sy_tc.next) > S_GET_VALUE (sym)) break; csect = csect->sy_tc.next; } a->x_csect.x_scnlen.p = coffsymbol (csect->bsym)->native; coffsymbol (sym->bsym)->native[i + 1].fix_scnlen = 1; } a->x_csect.x_smtyp = XTY_LD; } a->x_csect.x_parmhash = 0; a->x_csect.x_snhash = 0; if (sym->sy_tc.class == -1) a->x_csect.x_smclas = XMC_PR; else a->x_csect.x_smclas = sym->sy_tc.class; a->x_csect.x_stab = 0; a->x_csect.x_snstab = 0; } else if (S_GET_STORAGE_CLASS (sym) == C_BSTAT) { /* We want the value to be the symbol index of the referenced csect symbol. BFD will do that for us if we set the right flags. */ S_SET_VALUE (sym, (valueT) coffsymbol (sym->sy_tc.within->bsym)->native); coffsymbol (sym->bsym)->native->fix_value = 1; } else if (S_GET_STORAGE_CLASS (sym) == C_STSYM) { symbolS *block; symbolS *csect; /* The value is the offset from the enclosing csect. */ block = sym->sy_tc.within; csect = block->sy_tc.within; resolve_symbol_value (csect); S_SET_VALUE (sym, S_GET_VALUE (sym) - S_GET_VALUE (csect)); } else if (S_GET_STORAGE_CLASS (sym) == C_BINCL || S_GET_STORAGE_CLASS (sym) == C_EINCL) { /* We want the value to be a file offset into the line numbers. BFD will do that for us if we set the right flags. We have already set the value correctly. */ coffsymbol (sym->bsym)->native->fix_line = 1; } return 0; } /* Set the VMA for a section. This is called on all the sections in turn. */ void ppc_frob_section (sec) asection *sec; { static bfd_size_type vma = 0; bfd_set_section_vma (stdoutput, sec, vma); vma += bfd_section_size (stdoutput, sec); } /* Adjust the file by adding a .debug section if needed. */ void ppc_frob_file () { if (ppc_debug_name_section_size > 0) { asection *sec; sec = bfd_make_section (stdoutput, ".debug"); if (sec == (asection *) NULL || ! bfd_set_section_size (stdoutput, sec, ppc_debug_name_section_size) || ! bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_LOAD)) as_fatal ("can't make .debug section"); } } #endif /* OBJ_XCOFF */ /* Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litp. The number of LITTLENUMS emitted is stored in *sizep . An error message is returned, or NULL on OK. */ char * md_atof (type, litp, sizep) int type; char *litp; int *sizep; { int prec; LITTLENUM_TYPE words[4]; char *t; int i; switch (type) { case 'f': prec = 2; break; case 'd': prec = 4; break; default: *sizep = 0; return "bad call to md_atof"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizep = prec * 2; if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litp, (valueT) words[i], 2); litp += 2; } } else { for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litp, (valueT) words[i], 2); litp += 2; } } return NULL; } /* Write a value out to the object file, using the appropriate endianness. */ void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } /* Align a section (I don't know why this is machine dependent). */ valueT md_section_align (seg, addr) asection *seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); return ((addr + (1 << align) - 1) & (-1 << align)); } /* We don't have any form of relaxing. */ int md_estimate_size_before_relax (fragp, seg) fragS *fragp; asection *seg; { abort (); return 0; } /* Convert a machine dependent frag. We never generate these. */ void md_convert_frag (abfd, sec, fragp) bfd *abfd; asection *sec; fragS *fragp; { abort (); } /* We have no need to default values of symbols. */ /*ARGSUSED*/ symbolS * md_undefined_symbol (name) char *name; { return 0; } /* Functions concerning relocs. */ /* The location from which a PC relative jump should be calculated, given a PC relative reloc. */ long md_pcrel_from (fixp) fixS *fixp; { #ifdef OBJ_ELF if (fixp->fx_addsy != (symbolS *) NULL && (! S_IS_DEFINED (fixp->fx_addsy) || TC_FORCE_RELOCATION (fixp))) return 0; #endif return fixp->fx_frag->fr_address + fixp->fx_where; } #ifdef OBJ_XCOFF /* This is called to see whether a fixup should be adjusted to use a section symbol. We take the opportunity to change a fixup against a symbol in the TOC subsegment into a reloc against the corresponding .tc symbol. */ int ppc_fix_adjustable (fix) fixS *fix; { valueT val; resolve_symbol_value (fix->fx_addsy); val = S_GET_VALUE (fix->fx_addsy); if (ppc_toc_csect != (symbolS *) NULL && fix->fx_addsy != (symbolS *) NULL && fix->fx_addsy != ppc_toc_csect && S_GET_SEGMENT (fix->fx_addsy) == data_section && val >= ppc_toc_frag->fr_address && (ppc_after_toc_frag == (fragS *) NULL || val < ppc_after_toc_frag->fr_address)) { symbolS *sy; for (sy = symbol_next (ppc_toc_csect); sy != (symbolS *) NULL; sy = symbol_next (sy)) { if (sy->sy_tc.class == XMC_TC0) continue; if (sy->sy_tc.class != XMC_TC) break; resolve_symbol_value (sy); if (val == S_GET_VALUE (sy)) { fix->fx_addsy = sy; fix->fx_addnumber = val - ppc_toc_frag->fr_address; return 0; } } as_bad_where (fix->fx_file, fix->fx_line, "symbol in .toc does not match any .tc"); } /* Possibly adjust the reloc to be against the csect. */ if (fix->fx_addsy != (symbolS *) NULL && fix->fx_addsy->sy_tc.subseg == 0 && fix->fx_addsy->sy_tc.class != XMC_TC0 && fix->fx_addsy->sy_tc.class != XMC_TC && S_GET_SEGMENT (fix->fx_addsy) != bss_section) { symbolS *csect; if (S_GET_SEGMENT (fix->fx_addsy) == text_section) csect = ppc_text_csects; else if (S_GET_SEGMENT (fix->fx_addsy) == data_section) csect = ppc_data_csects; else abort (); /* Skip the initial dummy symbol. */ csect = csect->sy_tc.next; if (csect != (symbolS *) NULL) { while (csect->sy_tc.next != (symbolS *) NULL && (csect->sy_tc.next->sy_frag->fr_address <= fix->fx_addsy->sy_frag->fr_address)) csect = csect->sy_tc.next; fix->fx_offset += (S_GET_VALUE (fix->fx_addsy) - csect->sy_frag->fr_address); fix->fx_addsy = csect; } } /* Adjust a reloc against a .lcomm symbol to be against the base .lcomm. */ if (fix->fx_addsy != (symbolS *) NULL && S_GET_SEGMENT (fix->fx_addsy) == bss_section && ! S_IS_EXTERNAL (fix->fx_addsy)) { resolve_symbol_value (fix->fx_addsy->sy_frag->fr_symbol); fix->fx_offset += (S_GET_VALUE (fix->fx_addsy) - S_GET_VALUE (fix->fx_addsy->sy_frag->fr_symbol)); fix->fx_addsy = fix->fx_addsy->sy_frag->fr_symbol; } return 0; } #endif /* See whether a symbol is in the TOC section. */ static int ppc_is_toc_sym (sym) symbolS *sym; { #ifdef OBJ_XCOFF return sym->sy_tc.class == XMC_TC; #else return strcmp (segment_name (S_GET_SEGMENT (sym)), ".got") == 0; #endif } /* Apply a fixup to the object code. This is called for all the fixups we generated by the call to fix_new_exp, above. In the call above we used a reloc code which was the largest legal reloc code plus the operand index. Here we undo that to recover the operand index. At this point all symbol values should be fully resolved, and we attempt to completely resolve the reloc. If we can not do that, we determine the correct reloc code and put it back in the fixup. */ int md_apply_fix3 (fixp, valuep, seg) fixS *fixp; valueT *valuep; segT seg; { valueT value; /* FIXME FIXME FIXME: The value we are passed in *valuep includes the symbol values. Since we are using BFD_ASSEMBLER, if we are doing this relocation the code in write.c is going to call bfd_perform_relocation, which is also going to use the symbol value. That means that if the reloc is fully resolved we want to use *valuep since bfd_perform_relocation is not being used. However, if the reloc is not fully resolved we do not want to use *valuep, and must use fx_offset instead. However, if the reloc is PC relative, we do want to use *valuep since it includes the result of md_pcrel_from. This is confusing. */ if (fixp->fx_addsy == (symbolS *) NULL) { value = *valuep; fixp->fx_done = 1; } else if (fixp->fx_pcrel) value = *valuep; else { value = fixp->fx_offset; if (fixp->fx_subsy != (symbolS *) NULL) { if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section) value -= S_GET_VALUE (fixp->fx_subsy); else { /* We can't actually support subtracting a symbol. */ as_bad_where (fixp->fx_file, fixp->fx_line, "expression too complex"); } } } if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct powerpc_operand *operand; char *where; unsigned long insn; opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED; operand = &powerpc_operands[opindex]; #ifdef OBJ_XCOFF /* It appears that an instruction like l 9,LC..1(30) when LC..1 is not a TOC symbol does not generate a reloc. It uses the offset of LC..1 within its csect. However, .long LC..1 will generate a reloc. I can't find any documentation on how these cases are to be distinguished, so this is a wild guess. These cases are generated by gcc -mminimal-toc. */ if ((operand->flags & PPC_OPERAND_PARENS) != 0 && operand->bits == 16 && operand->shift == 0 && operand->insert == NULL && fixp->fx_addsy != NULL && fixp->fx_addsy->sy_tc.subseg != 0 && fixp->fx_addsy->sy_tc.class != XMC_TC && fixp->fx_addsy->sy_tc.class != XMC_TC0 && S_GET_SEGMENT (fixp->fx_addsy) != bss_section) { value = fixp->fx_offset; fixp->fx_done = 1; } #endif /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. */ where = fixp->fx_frag->fr_literal + fixp->fx_where; if (target_big_endian) insn = bfd_getb32 ((unsigned char *) where); else insn = bfd_getl32 ((unsigned char *) where); insn = ppc_insert_operand (insn, operand, (offsetT) value, fixp->fx_file, fixp->fx_line); if (target_big_endian) bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); else bfd_putl32 ((bfd_vma) insn, (unsigned char *) where); if (fixp->fx_done) { /* Nothing else to do here. */ return 1; } /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. FIXME: We need to handle the DS field at the very least. FIXME: Selecting the reloc type is a bit haphazard; perhaps there should be a new field in the operand table. */ if ((operand->flags & PPC_OPERAND_RELATIVE) != 0 && operand->bits == 26 && operand->shift == 0) fixp->fx_r_type = BFD_RELOC_PPC_B26; else if ((operand->flags & PPC_OPERAND_RELATIVE) != 0 && operand->bits == 16 && operand->shift == 0) fixp->fx_r_type = BFD_RELOC_PPC_B16; else if ((operand->flags & PPC_OPERAND_ABSOLUTE) != 0 && operand->bits == 26 && operand->shift == 0) fixp->fx_r_type = BFD_RELOC_PPC_BA26; else if ((operand->flags & PPC_OPERAND_ABSOLUTE) != 0 && operand->bits == 16 && operand->shift == 0) fixp->fx_r_type = BFD_RELOC_PPC_BA16; else if ((operand->flags & PPC_OPERAND_PARENS) != 0 && operand->bits == 16 && operand->shift == 0 && operand->insert == NULL && fixp->fx_addsy != NULL && ppc_is_toc_sym (fixp->fx_addsy)) { fixp->fx_size = 2; if (target_big_endian) fixp->fx_where += 2; fixp->fx_r_type = BFD_RELOC_PPC_TOC16; } else { as_bad_where (fixp->fx_file, fixp->fx_line, "unresolved expression that must be resolved"); fixp->fx_done = 1; return 1; } } else { #ifdef OBJ_ELF ppc_elf_validate_fix (fixp, seg); #endif switch (fixp->fx_r_type) { case BFD_RELOC_32: case BFD_RELOC_CTOR: if (fixp->fx_pcrel) { fixp->fx_r_type = BFD_RELOC_32_PCREL; value += fixp->fx_frag->fr_address + fixp->fx_where; } /* fall through */ case BFD_RELOC_32_PCREL: md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value, 4); break; case BFD_RELOC_LO16: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: case BFD_RELOC_PPC_TOC16: case BFD_RELOC_16: case BFD_RELOC_GPREL16: case BFD_RELOC_16_GOT_PCREL: if (fixp->fx_pcrel) abort (); md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value, 2); break; case BFD_RELOC_8: if (fixp->fx_pcrel) abort (); md_number_to_chars (fixp->fx_frag->fr_literal + fixp->fx_where, value, 1); break; default: abort (); } } #ifdef OBJ_ELF fixp->fx_addnumber = value; #else if (fixp->fx_r_type != BFD_RELOC_PPC_TOC16) fixp->fx_addnumber = 0; else { #ifdef TE_PE fixp->fx_addnumber = 0; #else /* We want to use the offset within the data segment of the symbol, not the actual VMA of the symbol. */ fixp->fx_addnumber = - bfd_get_section_vma (stdoutput, S_GET_SEGMENT (fixp->fx_addsy)); #endif } #endif return 1; } /* Generate a reloc for a fixup. */ arelent * tc_gen_reloc (seg, fixp) asection *seg; fixS *fixp; { arelent *reloc; reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, "reloc %d not supported by object file format", (int)fixp->fx_r_type); return NULL; } reloc->addend = fixp->fx_addnumber; return reloc; }