/* Definitions to make GDB run on a vax under 4.2bsd. Copyright 1986, 1987, 1989, 1991, 1993 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* There is one known bug with VAX support that I don't know how to fix: if you do a backtrace from a signal handler, you get something like: #0 0xbc in kill (592, 3) #1 0x7f in hand (...) (...) #2 0x7fffec7e in ?? (2, 0, 2147478112, 94) ^^ GDB doesn't know about sigtramp #3 0x7fffec70 in ?? (592, 2) ^^^^^^^^^^ wrong address #4 0xae in main (...) (...) when the correct backtrace (as given by adb) is: _kill(250,3) from _hand+21 _hand(2,0,7fffea60,5e) from 7fffec7e sigtramp(2,0,7fffea60,5e) from _kill+4 _kill(250,2) from _main+2e _main(1,7fffeac4,7fffeacc) from start+3d If anyone knows enough about VAX BSD to fix this, please send the fix to bug-gdb@prep.ai.mit.edu. */ #define TARGET_BYTE_ORDER LITTLE_ENDIAN /* Offset from address of function to start of its code. Zero on most machines. */ #define FUNCTION_START_OFFSET 2 /* Advance PC across any function entry prologue instructions to reach some "real" code. */ #define SKIP_PROLOGUE(pc) \ { register int op = (unsigned char) read_memory_integer (pc, 1); \ if (op == 0x11) pc += 2; /* skip brb */ \ if (op == 0x31) pc += 3; /* skip brw */ \ if (op == 0xC2 && \ ((unsigned char) read_memory_integer (pc+2, 1)) == 0x5E) \ pc += 3; /* skip subl2 */ \ if (op == 0x9E && \ ((unsigned char) read_memory_integer (pc+1, 1)) == 0xAE && \ ((unsigned char) read_memory_integer(pc+3, 1)) == 0x5E) \ pc += 4; /* skip movab */ \ if (op == 0x9E && \ ((unsigned char) read_memory_integer (pc+1, 1)) == 0xCE && \ ((unsigned char) read_memory_integer(pc+4, 1)) == 0x5E) \ pc += 5; /* skip movab */ \ if (op == 0x9E && \ ((unsigned char) read_memory_integer (pc+1, 1)) == 0xEE && \ ((unsigned char) read_memory_integer(pc+6, 1)) == 0x5E) \ pc += 7; /* skip movab */ \ } /* Immediately after a function call, return the saved pc. Can't always go through the frames for this because on some machines the new frame is not set up until the new function executes some instructions. */ #define SAVED_PC_AFTER_CALL(frame) FRAME_SAVED_PC(frame) #define TARGET_UPAGES 10 #define TARGET_NBPG 512 #define STACK_END_ADDR (0x80000000 - (TARGET_UPAGES * TARGET_NBPG)) /* On the VAX, sigtramp is in the u area. Can't check the exact addresses because for cross-debugging we don't have VAX include files around. This should be close enough. */ #define IN_SIGTRAMP(pc, name) ((pc) >= STACK_END_ADDR && (pc < 0x80000000)) /* Stack grows downward. */ #define INNER_THAN < /* Sequence of bytes for breakpoint instruction. */ #define BREAKPOINT {3} /* Amount PC must be decremented by after a breakpoint. This is often the number of bytes in BREAKPOINT but not always. */ #define DECR_PC_AFTER_BREAK 0 /* Nonzero if instruction at PC is a return instruction. */ #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 04) /* Return 1 if P points to an invalid floating point value. LEN is the length in bytes -- not relevant on the Vax. */ #define INVALID_FLOAT(p, len) ((*(short *) p & 0xff80) == 0x8000) /* Say how long (ordinary) registers are. */ #define REGISTER_TYPE long /* Number of machine registers */ #define NUM_REGS 17 /* Initializer for an array of names of registers. There should be NUM_REGS strings in this initializer. */ #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc", "ps"} /* Register numbers of various important registers. Note that some of these values are "real" register numbers, and correspond to the general registers of the machine, and some are "phony" register numbers which are too large to be actual register numbers as far as the user is concerned but do serve to get the desired values when passed to read_register. */ #define AP_REGNUM 12 #define FP_REGNUM 13 /* Contains address of executing stack frame */ #define SP_REGNUM 14 /* Contains address of top of stack */ #define PC_REGNUM 15 /* Contains program counter */ #define PS_REGNUM 16 /* Contains processor status */ /* Total amount of space needed to store our copies of the machine's register state, the array `registers'. */ #define REGISTER_BYTES (17*4) /* Index within `registers' of the first byte of the space for register N. */ #define REGISTER_BYTE(N) ((N) * 4) /* Number of bytes of storage in the actual machine representation for register N. On the vax, all regs are 4 bytes. */ #define REGISTER_RAW_SIZE(N) 4 /* Number of bytes of storage in the program's representation for register N. On the vax, all regs are 4 bytes. */ #define REGISTER_VIRTUAL_SIZE(N) 4 /* Largest value REGISTER_RAW_SIZE can have. */ #define MAX_REGISTER_RAW_SIZE 4 /* Largest value REGISTER_VIRTUAL_SIZE can have. */ #define MAX_REGISTER_VIRTUAL_SIZE 4 /* Nonzero if register N requires conversion from raw format to virtual format. */ #define REGISTER_CONVERTIBLE(N) 0 /* Convert data from raw format for register REGNUM to virtual format for register REGNUM. */ #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), 4); /* Convert data from virtual format for register REGNUM to raw format for register REGNUM. */ #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), 4); /* Return the GDB type object for the "standard" data type of data in register N. */ #define REGISTER_VIRTUAL_TYPE(N) builtin_type_int /* Store the address of the place in which to copy the structure the subroutine will return. This is called from call_function. */ #define STORE_STRUCT_RETURN(ADDR, SP) \ { write_register (1, (ADDR)); } /* Extract from an array REGBUF containing the (raw) register state a function return value of type TYPE, and copy that, in virtual format, into VALBUF. */ #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) /* Write into appropriate registers a function return value of type TYPE, given in virtual format. */ #define STORE_RETURN_VALUE(TYPE,VALBUF) \ write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE)) /* Extract from an array REGBUF containing the (raw) register state the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one). */ #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) /* Describe the pointer in each stack frame to the previous stack frame (its caller). */ /* FRAME_CHAIN takes a frame's nominal address and produces the frame's chain-pointer. */ /* In the case of the Vax, the frame's nominal address is the FP value, and 12 bytes later comes the saved previous FP value as a 4-byte word. */ #define FRAME_CHAIN(thisframe) \ (!inside_entry_file ((thisframe)->pc) ? \ read_memory_integer ((thisframe)->frame + 12, 4) :\ 0) /* Define other aspects of the stack frame. */ /* A macro that tells us whether the function invocation represented by FI does not have a frame on the stack associated with it. If it does not, FRAMELESS is set to 1, else 0. */ /* On the vax, all functions have frames. */ #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;} /* Saved Pc. */ #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 16, 4)) /* Cannot find the AP register value directly from the FP value. Must find it saved in the frame called by this one, or in the AP register for the innermost frame. However, there is no way to tell the difference between the innermost frame and a frame for which we just don't know the frame that it called (e.g. "info frame 0x7ffec789"). For the sake of argument suppose that the stack is somewhat trashed (which is one reason that "info frame" exists). So return 0 (indicating we don't know the address of the arglist) if we don't know what frame this frame calls. */ #define FRAME_ARGS_ADDRESS_CORRECT(fi) \ (((fi)->next \ ? read_memory_integer ((fi)->next->frame + 8, 4) \ : /* read_register (AP_REGNUM) */ 0)) /* In most of GDB, getting the args address is too important to just say "I don't know". This is sometimes wrong for functions that aren't on top of the stack, but c'est la vie. */ #define FRAME_ARGS_ADDRESS(fi) \ (((fi)->next \ ? read_memory_integer ((fi)->next->frame + 8, 4) \ : read_register (AP_REGNUM) /* 0 */)) #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame) /* Return number of args passed to a frame. Can return -1, meaning no way to tell. */ #define FRAME_NUM_ARGS(numargs, fi) \ { numargs = (0xff & read_memory_integer (FRAME_ARGS_ADDRESS (fi), 1)); } /* Return number of bytes at start of arglist that are not really args. */ #define FRAME_ARGS_SKIP 4 /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ { register int regnum; \ register int regmask = read_memory_integer ((frame_info)->frame+4, 4) >> 16; \ register CORE_ADDR next_addr; \ bzero (&frame_saved_regs, sizeof frame_saved_regs); \ next_addr = (frame_info)->frame + 16; \ /* Regmask's low bit is for register 0, \ which is the first one that would be pushed. */ \ for (regnum = 0; regnum < 12; regnum++, regmask >>= 1) \ (frame_saved_regs).regs[regnum] = (regmask & 1) ? (next_addr += 4) : 0; \ (frame_saved_regs).regs[SP_REGNUM] = next_addr + 4; \ if (read_memory_integer ((frame_info)->frame + 4, 4) & 0x20000000) \ (frame_saved_regs).regs[SP_REGNUM] += 4 + 4 * read_memory_integer (next_addr + 4, 4); \ (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 16; \ (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame + 12; \ (frame_saved_regs).regs[AP_REGNUM] = (frame_info)->frame + 8; \ (frame_saved_regs).regs[PS_REGNUM] = (frame_info)->frame + 4; \ } /* Things needed for making the inferior call functions. */ /* Push an empty stack frame, to record the current PC, etc. */ #define PUSH_DUMMY_FRAME \ { register CORE_ADDR sp = read_register (SP_REGNUM);\ register int regnum; \ sp = push_word (sp, 0); /* arglist */ \ for (regnum = 11; regnum >= 0; regnum--) \ sp = push_word (sp, read_register (regnum)); \ sp = push_word (sp, read_register (PC_REGNUM)); \ sp = push_word (sp, read_register (FP_REGNUM)); \ sp = push_word (sp, read_register (AP_REGNUM)); \ sp = push_word (sp, (read_register (PS_REGNUM) & 0xffef) \ + 0x2fff0000); \ sp = push_word (sp, 0); \ write_register (SP_REGNUM, sp); \ write_register (FP_REGNUM, sp); \ write_register (AP_REGNUM, sp + 17 * sizeof (int)); } /* Discard from the stack the innermost frame, restoring all registers. */ #define POP_FRAME \ { register CORE_ADDR fp = read_register (FP_REGNUM); \ register int regnum; \ register int regmask = read_memory_integer (fp + 4, 4); \ write_register (PS_REGNUM, \ (regmask & 0xffff) \ | (read_register (PS_REGNUM) & 0xffff0000)); \ write_register (PC_REGNUM, read_memory_integer (fp + 16, 4)); \ write_register (FP_REGNUM, read_memory_integer (fp + 12, 4)); \ write_register (AP_REGNUM, read_memory_integer (fp + 8, 4)); \ fp += 16; \ for (regnum = 0; regnum < 12; regnum++) \ if (regmask & (0x10000 << regnum)) \ write_register (regnum, read_memory_integer (fp += 4, 4)); \ fp = fp + 4 + ((regmask >> 30) & 3); \ if (regmask & 0x20000000) \ { regnum = read_memory_integer (fp, 4); \ fp += (regnum + 1) * 4; } \ write_register (SP_REGNUM, fp); \ flush_cached_frames (); \ set_current_frame (create_new_frame (read_register (FP_REGNUM),\ read_pc ())); } /* This sequence of words is the instructions calls #69, @#32323232 bpt Note this is 8 bytes. */ #define CALL_DUMMY {0x329f69fb, 0x03323232} #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */ /* Insert the specified number of args and function address into a call sequence of the above form stored at DUMMYNAME. */ #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \ { *((char *) dummyname + 1) = nargs; \ *(int *)((char *) dummyname + 3) = fun; }