Adding long-branch stubs for __tls_get_addr calls that are optimised
away is silly. It also causes assertion failures on newer object files
that use R_PPC_TLSGD and R_PPC_TLSLD marker relocs, and half-optimised
(ie. broken) code for older object files.
PR 16546
* elf32-ppc.c (ppc_elf_relax_section): Don't build long-branch
stubs for calls to __tls_get_addr that we know will later be
optimised away.
The Linux kernel builds modules using ld -r. These might need the
ppc476 workaround, so enable it for ld -r if sections have sufficient
alignment to tell location within a page.
bfd/
* elf32-ppc.c (ppc_elf_relax_section): Enable ppc476 workaround
for ld -r, when code sections are sufficiently aligned.
* elf32-ppc.h (struct ppc_elf_params): Delete pagesize. Add
pagesize_p2.
ld/
* emultempl/ppc32elf.em (pagesize): New static var.
(ppc_after_open_output): Set params.pagesize_p2 from pagesize.
(PARSE_AND_LIST_ARGS_CASES): Adjust to use pagesize.
For powerpc64 as HJ did earlier for other ELF targets, and a tidy.
PR gold/15530
* elf64-ppc.c (ppc64_elf_gc_mark_dynamic_ref): Support
--export-dynamic and --dynamic-list marking of symbols.
* elflink.c (bfd_elf_gc_mark_dynamic_ref_symbol): Reorder
cheap tests first.
When a DW_FORM_flag_present attribute comes at the very end of a
debug section, readelf complains about a corrupt attribute
because it's checking to make sure there's at least one byte of
data remaining. This patch suppresses the check when the form
is DW_FORM_flag_present.
2014-02-11 Cary Coutant <ccoutant@google.com>
* binutils/dwarf.c (read_and_display_attr_value): Don't warn
for zero-length attribute value.
Double float complex objects are not 16-byte aligned in either
gcc or solaris studio. This patch makes gdb to not align double
float complex arguments in the dummy frame when calling a
function.
2014-02-11 Jose E. Marchesi <jose.marchesi@oracle.com>
* sparc64-tdep.c (sparc64_store_arguments): Do not align complex
double float arguments to 16-byte in the argument slots.
* configure.ac: Don't crash if pkg-config is not found and guile
wasn't explicitly requested. Use AC_MSG_ERROR instead of AC_ERROR
in guile checks.
* configure: Regenerate.
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
gdb/ChangeLog:
2014-02-11 Simon Marchi <simon.marchi@ericsson.com> (tiny patch)
Checked in by Joel Brobecker <brobecker@adacore.com>.
* mi/mi-main.c (mi_cmd_data_write_memory_bytes): Fix comment.
There are two failures in the gnu-ifunc.exp test on ARM. These are
due to the failure to resolve the correct target function when
attempting to breakpoint a GNU ifunc resolved function:
(gdb) break gnu_ifunc
Breakpoint 4 at gnu-indirect-function resolver at 0x2aacb5a2
when gnu_ifunc has been resolved this should actually be:
(gdb) break gnu_ifunc
Breakpoint 4 at 0x868c
There are two reasons for this. The first is that ARM does not have a
separate .got.plt section so looking this up will always fail. The second
is that the Thumb bit needs to be stripped from the address to allow
it to be reliably compared when inserting into the ifunc cache.
Tested with no regressions on arm-linux-gnueabihf and
x86_64-unknown-linux-gnu.
gdb/ChangeLog:
2014-02-10 Will Newton <will.newton@linaro.org>
* elfread.c (elf_rel_plt_read): Look for a .got section if
looking up .got.plt fails.
(elf_gnu_ifunc_resolve_by_got): Call gdbarch_addr_bits_remove
on address passed to elf_gnu_ifunc_record_cache.
(elf_gnu_ifunc_resolve_addr): Likewise.
(elf_gnu_ifunc_resolver_return_stop): Likewise.
watchpoint_update and watchpoint_cond avoid checking for
watchpoints when we are located at a function epilogue in the
current frame. This is done in order to avoid using corrupted
local registers and unwinding a corrupted/destroyed stack.
The code determining whether we are in a function epilogue is
provided by the backends via the gdbarch_in_function_epilogue_p
hook. This commit adds such a hook for sparc64 targets.
2014-02-10 Jose E. Marchesi <jose.marchesi@oracle.com>
* sparc-tdep.c (sparc_in_function_epilogue_p): New function.
(X_RETTURN): New macro.
* sparc-tdep.h: sparc_in_function_epilogue_p prototype.
* sparc64-tdep.c (sparc64_init_abi): Hook
sparc_in_function_epilogue_p.
This commit fixes a compile error introduced by my previous commit.
Checked in as obvious.
2014-02-10 Gary Benson <gbenson@redhat.com>
* symfile-debug.c (debug_qf_expand_symtabs_matching):
Rename name_matcher to symbol_matcher.
Commit 206f2a5777 added two new
typedefs, but did not update debug_qf_expand_symtabs_matching
to use them. This patch fixes this.
Checked in as obvious.
2014-02-10 Gary Benson <gbenson@redhat.com>
* symfile-debug.c (debug_qf_expand_symtabs_matching):
Use expand_symtabs_file_matcher_ftype and
expand_symtabs_symbol_matcher_ftype.
This patch moves the Ada symbol cache to per-program-space data.
gdb/ChangeLog:
* ada-lang.c (struct cache_entry, HASH_SIZE): Move definition up.
(struct ada_symbol_cache): New.
(ada_free_symbol_cache): Forward declare.
(struct ada_pspace_data): New.
(ada_pspace_data_handle): New static global.
(get_ada_pspace_data, ada_pspace_data_cleanup)
(ada_init_symbol_cache, ada_free_symbol_cache): New functions.
(cache_space, cache): Delete, now folded inside struct
ada_pspace_data.
(ada_get_symbol_cache): New function.
(ada_clear_symbol_cache, find_entry, cache_symbol): Adjust
implementation.
(_initialize_ada_language): Remove initialization of cache_space.
Move call to observer_attach_inferior_exit up, grouping it
with the other observer registrations inside this function.
Rename command to be more general. Add call to
register_program_space_data_with_cleanup.
This patch is mostly cosmetic, avoiding us to use the same callback
names as in ada-lang.c.
gdb/ChangeLog:
* ada-tasks.c (ada_tasks_new_objfile_observer): Renames
ada_new_objfile_observer.
(ada_tasks_normal_stop_observer): Renames ada_normal_stop_observer.
(_initialize_tasks): Update uses of ada_new_objfile_observer
and ada_tasks_normal_stop_observer.
Consider the following code:
type Color is (Black, Red, Green, Blue, White);
type Primary_Table is array (Color range Red .. Blue) of Boolean;
Prim : Primary_Table := (True, False, False);
GDB prints the length of arrays in a fairly odd way:
(gdb) p prim'length
$2 = blue
The length returned should be an integer, not the array index type,
and this patch fixes this.
gdb/ChangeLog:
* ada-lang.c (ada_evaluate_subexp): Set the type of the value
returned by the 'Length attribute to integer.
testsuite/ChangeLog:
* gdb.ada/tick_length_array_enum_idx: New testcase.
This bit was meant to be merged with the following patch:
commit 3d9434b5dd
Subject: [Ada] Add a symbol lookup cache
... but I forgot :-(. This causes the cache to be undefined, and
with a bit of (bad) luck:
% gdb
(gdb) set lang ada
(gdb) set $xxx := 1
[SEGV]
gdb/ChangeLog:
* ada-lang.c (_initialize_ada_language): Initialize
cache_space obstack.
This patch implements the caching mechanism alluded to in a comment
next to some stubbed functions.
gdb/ChangeLog:
* ada-lang.c (HASH_SIZE): New macro.
(struct cache_entry): New type.
(cache_space, cache): New static globals.
(ada_clear_symbol_cache, find_entry): New functions.
(lookup_cached_symbol, cache_symbol): Implement.
(ada_new_objfile_observer, ada_free_objfile_observer): New.
(_initialize_ada_language): Attach ada_new_objfile_observer
and ada_free_objfile_observer.
This patch series constifies a number of struct block * parameters.
gdb/ChangeLog:
* ada-lang.c (ada_add_block_symbols, add_defn_to_vec)
(lookup_cached_symbol, ada_add_local_symbols): Add "const" to
struct block * parameter.
(ada_lookup_symbol_list_worker): Constify local variable "block".
Remove cast which is no longer necessary.
Tests in gdb.gdb fail because directory gdb/testsuite/gdb.gdb doesn't
exist in build tree. This patch appends gdb.gdb/Makefile in AC_OUTPUT,
and adds new Makefile.in in gdb.gdb, so that directory gdb.gdb can be
created during configure.
With this patch applied, tests under gdb.gdb can be run,
$ make check RUNTESTFLAGS='--directory=gdb.gdb'
Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
Using ../../../../git/gdb/testsuite/config/unix.exp as tool-and-target-specific interface file.
Running ../../../../git/gdb/testsuite/gdb.gdb/complaints.exp ...
Running ../../../../git/gdb/testsuite/gdb.gdb/observer.exp ...
Running ../../../../git/gdb/testsuite/gdb.gdb/python-interrupts.exp ...
FAIL: gdb.gdb/python-interrupts.exp: signal SIGINT
Running ../../../../git/gdb/testsuite/gdb.gdb/python-selftest.exp ...
FAIL: gdb.gdb/python-selftest.exp: call catch_command_errors(execute_command, "python print 5", 0, RETURN_MASK_ALL)
Running ../../../../git/gdb/testsuite/gdb.gdb/selftest.exp ...
Running ../../../../git/gdb/testsuite/gdb.gdb/xfullpath.exp ...
=== gdb Summary ===
gdb/testsuite:
2014-02-10 Yao Qi <yao@codesourcery.com>
PR testsuite/16543
* configure.ac: Append gdb.gdb/Makefile in AC_OUTPUT.
* configure: Regenerated.
* Makefile.in: New file.
Revert this patch (which I approved, mea culpa).
2014-02-08 Mark Kettenis <kettenis@gnu.org>
* Makefile.in (all-lib): Remove.
($(LIBGNU) $(GNULIB_H)): Replace with gits of remove all-lib target.
This patch provides a means for backend relax_section support to
increase the size of a section without needing to reallocate
section contents. This helps reduce memory usage when the added space
does not need to be written in relax_section, as is the case for
powerpc. Writing the stubs later means a few tweaks are needed in the
powerpc relocate_section function, but also removes some code
duplication since the extra ld -r relocs can be written there too.
* elf-bfd.h (struct elf_backend_data): Add caches_rawsize.
* elfxx-target.h (elf_backend_caches_rawsize): Define.
(elfNN_bed): Init new field.
* elflink.c (elf_link_input_bfd): Handle caches_rawsize.
* elf32-ppc.c (shared_stub_entry): Zero addi offset.
(ppc_elf_relax_section): Don't reallocate section here, write
stubs, or write out relocs for ld -r here..
(ppc_elf_relocate_section): ..instead write stubs here, and use
existing code to write out relocs for ld -r. Fix offset
adjustment on reloc for little-endian.
(elf_backend_caches_rawsize): Define.
As design, =breakpoint-modified isn't emitted when breakpoints are modified
by MI commands. This patch is to add tests for this.
gdb/testsuite:
2014-02-08 Yao Qi <yao@codesourcery.com>
* gdb.mi/mi-breakpoint-changed.exp (test_insert_delete_modify): Test
that no =breakpoint-modified is emitted when breakpoints are
modified through MI commands.
Say:
<stopped at a breakpoint in thread 2>
(gdb) thread 3
(gdb) step
The above triggers the prepare_to_proceed/deferred_step_ptid process,
which switches back to thread 2, to step over its breakpoint before
getting back to thread 3 and "step" it.
If while stepping over the breakpoint in thread 2, a signal arrives,
and it is set to pass/nostop, we'll set a step-resume breakpoint at
the supposed signal-handler resume address, and call keep_going. The
problem is that we were supposedly stepping thread 3, and that
keep_going delivers a signal to thread 2, and due to scheduler-locking
off, resumes everything else, _including_ thread 3, the thread we want
stepping. This means that we lose control of thread 3 until the next
event, when we stop everything. The end result for the user, is that
GDB lost control of the "step".
Here's the current infrun debug output of the above, with the testcase
in the patch below:
infrun: clear_proceed_status_thread (Thread 0x2aaaab8f5700 (LWP 11663))
infrun: clear_proceed_status_thread (Thread 0x2aaaab6f4700 (LWP 11662))
infrun: clear_proceed_status_thread (Thread 0x2aaaab4f2b20 (LWP 11659))
infrun: proceed (addr=0xffffffffffffffff, signal=144, step=1)
infrun: prepare_to_proceed (step=1), switched to [Thread 0x2aaaab6f4700 (LWP 11662)]
infrun: resume (step=1, signal=0), trap_expected=1, current thread [Thread 0x2aaaab6f4700 (LWP 11662)] at 0x40098f
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 11659 [Thread 0x2aaaab6f4700 (LWP 11662)],
infrun: status->kind = stopped, signal = SIGUSR1
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x40098f
infrun: random signal 30
Program received signal SIGUSR1, User defined signal 1.
infrun: signal arrived while stepping over breakpoint
infrun: inserting step-resume breakpoint at 0x40098f
infrun: resume (step=0, signal=30), trap_expected=0, current thread [Thread 0x2aaaab6f4700 (LWP 11662)] at 0x40098f
^^^ this is a wildcard resume.
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 11659 [Thread 0x2aaaab6f4700 (LWP 11662)],
infrun: status->kind = stopped, signal = SIGTRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x40098f
infrun: BPSTAT_WHAT_STEP_RESUME
infrun: resume (step=1, signal=0), trap_expected=1, current thread [Thread 0x2aaaab6f4700 (LWP 11662)] at 0x40098f
^^^ step-resume hit, meaning the handler returned, so we go back to stepping thread 3.
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 11659 [Thread 0x2aaaab6f4700 (LWP 11662)],
infrun: status->kind = stopped, signal = SIGTRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x40088b
infrun: switching back to stepped thread
infrun: Switching context from Thread 0x2aaaab6f4700 (LWP 11662) to Thread 0x2aaaab8f5700 (LWP 11663)
infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x2aaaab8f5700 (LWP 11663)] at 0x400938
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 11659 [Thread 0x2aaaab8f5700 (LWP 11663)],
infrun: status->kind = stopped, signal = SIGTRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x40093a
infrun: keep going
infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x2aaaab8f5700 (LWP 11663)] at 0x40093a
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 11659 [Thread 0x2aaaab8f5700 (LWP 11663)],
infrun: status->kind = stopped, signal = SIGTRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x40091e
infrun: stepped to a different line
infrun: stop_stepping
[Switching to Thread 0x2aaaab8f5700 (LWP 11663)]
69 (*myp) ++; /* set breakpoint child_two here */
^^^ we stopped at the wrong line. We still stepped a bit because the
test is running in a loop, and when we got back to stepping thread 3,
it happened to be in the stepping range. (The loop increments a
counter, and the test makes sure it increments exactly once. Without
the fix, the counter increments a bunch, since the user-stepped thread
runs free without GDB noticing.)
The fix is to switch to the stepping thread before continuing for the
step-resume breakpoint.
gdb/
2014-02-07 Pedro Alves <palves@redhat.com>
* infrun.c (handle_signal_stop) <signal arrives while stepping
over a breakpoint>: Switch back to the stepping thread.
gdb/testsuite/
2014-02-07 Pedro Alves <pedro@codesourcery.com>
Pedro Alves <palves@redhat.com>
* gdb.threads/step-after-sr-lock.c: New file.
* gdb.threads/step-after-sr-lock.exp: New file.
Currently on software single-step Linux targets we get:
(gdb) PASS: gdb.threads/stepi-random-signal.exp: before stepi: get hexadecimal valueof "$pc"
stepi
infrun: clear_proceed_status_thread (Thread 0x7ffff7fca700 (LWP 7073))
infrun: clear_proceed_status_thread (Thread 0x7ffff7fcb740 (LWP 7069))
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT, step=1)
infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 7069)] at 0x400700
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 7069 [Thread 0x7ffff7fcb740 (LWP 7069)],
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x400704
infrun: software single step trap for Thread 0x7ffff7fcb740 (LWP 7069)
infrun: stepi/nexti
infrun: stop_stepping
44 while (counter != 0)
(gdb) FAIL: gdb.threads/stepi-random-signal.exp: stepi (no random signal)
Vs hardware-step targets:
(gdb) PASS: gdb.threads/stepi-random-signal.exp: before stepi: get hexadecimal valueof "$pc"
stepi
infrun: clear_proceed_status_thread (Thread 0x7ffff7fca700 (LWP 9565))
infrun: clear_proceed_status_thread (Thread 0x7ffff7fcb740 (LWP 9561))
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT, step=1)
infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 9561)] at 0x400700
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 9561 [Thread 0x7ffff7fcb740 (LWP 9561)],
infrun: status->kind = stopped, signal = GDB_SIGNAL_CHLD
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x400700
infrun: random signal (GDB_SIGNAL_CHLD)
infrun: random signal, keep going
infrun: resume (step=1, signal=GDB_SIGNAL_CHLD), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 9561)] at 0x400700
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 9561 [Thread 0x7ffff7fcb740 (LWP 9561)],
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x400704
infrun: stepi/nexti
infrun: stop_stepping
44 while (counter != 0)
(gdb) PASS: gdb.threads/stepi-random-signal.exp: stepi
The test turns on infrun debug, does a stepi while a SIGCHLD is
pending, and checks whether the "random signal" paths in infrun.c are
taken.
On the software single-step variant above, those paths were not taken.
This is a test bug.
The Linux backend short-circuits reporting signals that are set to
pass/nostop/noprint. But _only_ if the thread is _not_
single-stepping. So on hardware-step targets, even though the signal
is set to pass/nostop/noprint by default, the thread is indeed told to
single-step, and so the core sees the signal. On the other hand, on
software single-step architectures, the backend never actually gets a
single-step request (steps are emulated by setting a breakpoint at the
next pc, and then the target told to continue, not step). So the
short-circuiting code triggers and the core doesn't see the signal.
The fix is to make the test be sure the target doesn't bypass
reporting the signal to the core.
Tested on x86_64 Fedora 17, both with and without a series that
implements software single-step for x86_64.
gdb/testsuite/
2014-02-07 Pedro Alves <palves@redhat.com>
* gdb.threads/stepi-random-signal.exp: Set SIGCHLD to print.