PR binutils/17531
* dwarf.c (process_debug_info): Add range check.
(display_debug_pubnames_worker): Likewise.
(display_gdb_index): Fix range check.
(process_cu_tu_index): Add range check.
* readelf.c (get_data): Change parameter types from size_t to
bfd_size_type. Add checks for loss of accuracy when casting from
bfd_size_type to size_t.
(get_dynamic_data): Likewise.
(process_section_groups): Limit number of error messages.
With global system gcc-5.0 if one also installs ccache (needing a different
patch
https://bugzilla.samba.org/show_bug.cgi?id=11060
for -fplugin=libcc1plugin) it breaks as GDB will read from inferior
DW_AT_producer containing -fpreprocessed (due to ccache used to compile the
inferior).
<c> DW_AT_producer : (indirect string, offset: 0x52): GNU C11 5.0.0 20150114 (Red Hat 5.0.0-0.1) -fpreprocessed -mtune=generic -
march=x86-64 -g
It is wrong that gcc puts -fpreprocessed into DW_AT_producer - fixed it in
trunk GCCs:
https://gcc.gnu.org/ml/gcc-patches/2015-01/msg01495.html
But even with that fix there are already built inferiors out there which GDB
could be compatible (for the 'compile' mode) with.
gdb/ChangeLog
2015-02-03 Jan Kratochvil <jan.kratochvil@redhat.com>
Filter out inferior gcc option -fpreprocessed.
* compile/compile.c (filter_args): New function.
(get_args): Use it.
LTO may optimize out a plugin symbol, which is also referenced by a
non-IR file. When that happens, we should mark the plugin symbol
undefined. It isn't the problem since LTO already determined the
symbols in the non-IR file aren't used.
bfd/
PR ld/12365
PR ld/14272
* elflink.c (_bfd_elf_fix_symbol_flags): Mark the plugin symbol
undefined if it is referenced from a non-IR file.
ld/testsuite/
PR ld/12365
* ld-plugin/pr12365a.c: New file.
* ld-plugin/pr12365b.c: Likewise.
* ld-plugin/pr12365c.c: Likewise.
* ld-plugin/lto.exp (lto_link_tests): Prepare for the PR ld/12365
test.
Run the PR ld/12365 test.
Even with the previous patch installed, we'll still see
sigall-reverse.exp occasionally fail. The problem is that the event
loop's event handling processing is done in two steps:
#1 - poll all event sources, and push new event objects to the event
queue, until all event sources are drained.
#2 - go through the event queue, processing each event object at a
time. For each event, call the associated callback, and deletes the
event object from the queue.
and then bad things happen if between #1 and #2 something decides that
events from an event source that has already queued events shouldn't
be processed yet. To do that, we either remove the event source from
the list of event sources, or clear its "have events" flag. However,
if an event for that source has meanwhile already been pushed in the
event queue, #2 will still process it and call the associated
callback...
One way to fix it that I considered was to do something to the event
objects already in the event queue when an event source is no longer
interesting. But then I couldn't find any good reason for the
two-step process in the first place. It's much simpler (and less
code) to call the event source callbacks as we poll the sources and
find events.
Tested on x86-64 Fedora 20, native and gdbserver.
gdb/
2015-02-03 Pedro Alves <palves@redhat.com>
* event-loop.c: Don't declare nor define a queue type for
gdb_event_p.
(event_queue): Delete.
(create_event, create_file_event, gdb_event_xfree)
(initialize_event_loop, process_event): Delete.
(gdb_do_one_event): Return as soon as one event is handled.
(handle_file_event): Change prototype. Used the passed in
file_handler pointer and ready_mask instead of looping over all
file handlers.
(gdb_wait_for_event): Update the poll/select timeouts before
blocking. Run event handlers directly instead of queueing events.
Return as soon as one event is handled.
(struct async_event_handler_data): Delete.
(invoke_async_event_handler): Delete.
(check_async_event_handlers): Change return type to int. Run
event handlers directly instead of queueing events. Return as
soon as one event is handled.
(handle_timer_event): Delete.
(update_wait_timeout): New function, factored out from
poll_timers.
(poll_timers): Reimplement.
* event-loop.h (initialize_event_loop): Delete declaration.
* top.c (gdb_init): Don't call initialize_event_loop.
The sigall-reverse.exp test occasionally fails with something like this:
(gdb) PASS: gdb.reverse/sigall-reverse.exp: send signal TERM
continue
Continuing.
The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?([y] or n) FAIL: gdb.reverse/sigall-reverse.exp: continue to signal exit (timeout)
FAIL: gdb.reverse/sigall-reverse.exp: reverse to handler of TERM (timeout)
FAIL: gdb.reverse/sigall-reverse.exp: reverse to gen_TERM (timeout)
This is another event-loop/async related problem exposed by the patch
that made 'query' use gdb_readline_wrapper (588dcc3edb).
The problem is that even though gdb_readline_wrapper disables
target-async while the secondary prompt is in progress, the record
target's async event source is left marked. So when
gdb_readline_wrapper nests an event loop to process input, it may
happen that that event loop ends up processing a target event while
GDB is not really ready for it. Here's the relevant part of the
backtrace showing the root issue in action:
...
#14 0x000000000061cb48 in fetch_inferior_event (client_data=0x0) at src/gdb/infrun.c:4158
#15 0x0000000000642917 in inferior_event_handler (event_type=INF_REG_EVENT, client_data=0x0) at src/gdb/inf-loop.c:57
#16 0x000000000077ca5c in record_full_async_inferior_event_handler (data=0x0) at src/gdb/record-full.c:791
#17 0x0000000000640fdf in invoke_async_event_handler (data=...) at src/gdb/event-loop.c:1067
#18 0x000000000063fb01 in process_event () at src/gdb/event-loop.c:339
#19 0x000000000063fb2a in gdb_do_one_event () at src/gdb/event-loop.c:360
#20 0x000000000074d607 in gdb_readline_wrapper (prompt=0x3588f40 "The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?([y] or n) ") at src/gdb/top.c:842
#21 0x0000000000750bd9 in defaulted_query (ctlstr=0x8c6588 "The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?", defchar=121 'y', args=0x7fff70524410) at src/gdb/utils.c:1279
#22 0x0000000000750e4c in yquery (ctlstr=0x8c6588 "The next instruction is syscall exit_group. It will make the program exit. Do you want to stop the program?") at src/gdb/utils.c:1358
#23 0x00000000004b020e in record_linux_system_call (syscall=gdb_sys_exit_group, regcache=0x3529450, tdep=0xd6c840 <amd64_linux_record_tdep>) at src/gdb/linux-record.c:1933
With my all-stop-on-top-of-non-stop series, I'm also seeing
gdb.server/ext-attach.exp fail occasionally due to the same issue.
The first part of the fix is for target_async implementations to make
sure to remove/unmark all target-related event sources from the event
loop.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/
2015-02-03 Pedro Alves <palves@redhat.com>
* event-loop.c (clear_async_event_handler): New function.
* event-loop.h (clear_async_event_handler): New declaration.
* record-btrace.c (record_btrace_async): New function.
(init_record_btrace_ops): Install record_btrace_async.
* record-full.c (record_full_async): New function.
(record_full_resume): Don't mark the async event source here.
(init_record_full_ops): Install record_full_async.
(record_full_core_resume): Don't mark the async event source here.
(init_record_full_core_ops): Install record_full_async.
* remote.c (remote_async): Mark and clear the async stop reply
queue event-loop token as appropriate.
In all these cases we're interested in whether the target is currently
async, with its event sources installed in the event loop, not whether
it can async if needed. Also, I'm not seeing the point of the
target_async call from within linux_nat_wait. That's normally done on
resume instead, which this target already does.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/
2015-02-03 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_child_follow_fork, linux_nat_wait_1): Use
target_is_async_p instead of target_can_async.
(linux_nat_wait): Use target_is_async_p instead of
target_can_async. Don't enable async here.
* remote.c (interrupt_query, remote_wait, putpkt_binary): Use
target_is_async_p instead of target_can_async.
Unless pointer_equality_needed is set then set st_value to be zero
for undefined symbols.
bfd/ChangeLog:
2015-02-03 Will Newton <will.newton@linaro.org>
* elfnn-aarch64.c (elfNN_aarch64_finish_dynamic_symbol):
Set st_value to zero for undefined symbols if the reference
is weak or pointer_equality_needed is FALSE.
Improve the comment discussing why we clear st_value for some
symbols.
bfd/ChangeLog:
2015-02-03 Will Newton <will.newton@linaro.org>
* elf32-arm.c (elf32_arm_finish_dynamic_symbol): Improve
comment discussing why we clear st_value for some symbols.
After successfully call buildargv(), the code need to be sure of calling
freeargv() in any cases.
2015-02-02 Chen Gang <gang.chen.5i5j@gmail.com>
* common/sim-options.c (sim_args_command): Call freeargv() when
failure occurs.
We need to check that the output is executable before assuming that we
can replace the reference with zero.
2015-02-02 Cary Coutant <ccoutant@google.com>
gold/
* x86_64.cc (Target_x86_64::Relocate::relocate_tls): Check for
executable output file.
This is the result of a little bit of investigation of the C and Ada
languages, as well as some common sense.
gdb/ChangeLog:
* varobj.h (lang_varobj_ops): Mention which return values need
to be freed.
Moving .toc out of .got caused us to lose toc sorting and multi-toc
support.
* emultempl/ppc64elf.em (toc_section_name): New var.
(ppc_after_open): Set it.
(ppc_before_allocation): Use it.
(gld${EMULATION_NAME}_after_allocation): Here too.
When ada-lang.c:ada_lookup_symbol_list_worker finds a match in
the symbol cache, it caches the result again, which is unecessary.
This patch fixes the code to avoid that.
gdb/ChangeLog:
PR gdb/17856:
* ada-lang.c (ada_lookup_symbol_list_worker): Do not re-cache
results found in the cache.
Tested on x86_64-linux, no regression.
The Ada symbol cache has been designed to have one instance of that
of that cache per program space, and for each instance to be created
on-demand. ada_get_symbol_cache is the function responsible for both
lookup and creation on demand.
Unfortunately, ada_get_symbol_cache forgot to store the reference
to newly created caches, thus causing it to:
- Leak old caches;
- Allocate a new cache each time the cache is being searched or
a new entry is to be inserted.
This patch fixes the issue by avoiding the use of the local variable,
which indirectly allowed the bug to happen. We manipulate the reference
in the program-space data instead.
gdb/ChangeLog:
PR gdb/17854:
* ada-lang.c (ada_get_symbol_cache): Set pspace_data->sym_cache
when allocating a new one.
Every type has to pay the price in memory usage for their presence.
The proper place for them is in the type_specific field which exists
for this purpose.
gdb/ChangeLog:
* dwarf2read.c (process_structure_scope): Update setting of
TYPE_VPTR_BASETYPE, TYPE_VPTR_FIELDNO.
* gdbtypes.c (internal_type_vptr_fieldno): New function.
(set_type_vptr_fieldno): New function.
(internal_type_vptr_basetype): New function.
(set_type_vptr_basetype): New function.
(get_vptr_fieldno): Update setting of TYPE_VPTR_FIELDNO,
TYPE_VPTR_BASETYPE.
(allocate_cplus_struct_type): Initialize vptr_fieldno.
(recursive_dump_type): Printing of vptr_fieldno, vptr_basetype ...
(print_cplus_stuff): ... moved here.
(copy_type_recursive): Don't copy TYPE_VPTR_BASETYPE.
* gdbtypes.h (struct main_type): Members vptr_fieldno, vptr_basetype
moved to ...
(struct cplus_struct_type): ... here. All uses updated.
(TYPE_VPTR_FIELDNO, TYPE_VPTR_BASETYPE): Rewrite.
(internal_type_vptr_fieldno, set_type_vptr_fieldno): Declare.
(internal_type_vptr_basetype, set_type_vptr_basetype): Declare.
* stabsread.c (read_tilde_fields): Update setting of
TYPE_VPTR_FIELDNO, TYPE_VPTR_BASETYPE.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp <maint print type argc>: Update expected output.
This patch moves TYPE_SELF_TYPE into new field type_specific.self_type
for MEMBERPTR,METHODPTR types, and into type_specific.func_stuff
for METHODs, and then updates everything to use that.
TYPE_CODE_METHOD could share some things with TYPE_CODE_FUNC
(e.g. TYPE_NO_RETURN) and it seemed simplest to keep them together.
Moving TYPE_SELF_TYPE into type_specific.func_stuff for TYPE_CODE_METHOD
is also nice because when we allocate space for function types we assume
they're TYPE_CODE_FUNCs. If TYPE_CODE_METHODs don't need or use that
space then that space would be wasted, and cleaning that up would involve
more invasive changes.
In order to catch errant uses I've added accessor functions
that do some checking.
One can no longer assign to TYPE_SELF_TYPE like this:
TYPE_SELF_TYPE (foo) = bar;
One instead has to do:
set_type_self_type (foo, bar);
But I've left reading of the type to the macro:
bar = TYPE_SELF_TYPE (foo);
In order to discourage bypassing the TYPE_SELF_TYPE macro
I've named the underlying function that implements it
internal_type_self_type.
While testing this I found the stabs reader leaving methods
as TYPE_CODE_FUNCs, hitting my newly added asserts.
Since the dwarf reader smashes functions to methods (via
smash_to_method) I've done a similar thing for stabs.
gdb/ChangeLog:
* cp-valprint.c (cp_find_class_member): Rename parameter domain_p
to self_p.
(cp_print_class_member): Rename local domain to self_type.
* dwarf2read.c (quirk_gcc_member_function_pointer): Rename local
domain_type to self_type.
(set_die_type) <need_gnat_info>: Handle
TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, TYPE_CODE_METHOD.
* gdb-gdb.py (StructMainTypePrettyPrinter): Handle
TYPE_SPECIFIC_SELF_TYPE.
* gdbtypes.c (internal_type_self_type): New function.
(set_type_self_type): New function.
(smash_to_memberptr_type): Rename parameter domain to self_type.
Update setting of TYPE_SELF_TYPE.
(smash_to_methodptr_type): Update setting of TYPE_SELF_TYPE.
(smash_to_method_type): Rename parameter domain to self_type.
Update setting of TYPE_SELF_TYPE.
(check_stub_method): Call smash_to_method_type.
(recursive_dump_type): Handle TYPE_SPECIFIC_SELF_TYPE.
(copy_type_recursive): Ditto.
* gdbtypes.h (enum type_specific_kind): New value
TYPE_SPECIFIC_SELF_TYPE.
(struct main_type) <type_specific>: New member self_type.
(struct cplus_struct_type) <fn_field.type>: Update comment.
(TYPE_SELF_TYPE): Rewrite.
(internal_type_self_type, set_type_self_type): Declare.
* gnu-v3-abi.c (gnuv3_print_method_ptr): Rename local domain to
self_type.
(gnuv3_method_ptr_to_value): Rename local domain_type to self_type.
* m2-typeprint.c (m2_range): Replace TYPE_SELF_TYPE with
TYPE_TARGET_TYPE.
* stabsread.c (read_member_functions): Mark methods with
TYPE_CODE_METHOD, not TYPE_CODE_FUNC. Update setting of
TYPE_SELF_TYPE.
gdb/ChangeLog:
* gnu-v3-abi.c (gnuv3_dynamic_class): Assert only passed structs
or unions. Return zero if union.
(gnuv3_get_vtable): Call check_typedef. Assert only passed structs.
(gnuv3_rtti_type): Pass already-check_typedef'd value to
gnuv3_get_vtable.
(compute_vtable_size): Assert only passed structs.
(gnuv3_print_vtable): Don't call gnuv3_get_vtable for non-structs.
This commit adds a new exception, MAX_COMPLETIONS_REACHED_ERROR, to be
thrown whenever the completer has generated too many candidates to
be useful. A new user-settable variable, "max_completions", is added
to control this behaviour. A top-level completion limit is added to
complete_line_internal, as the final check to ensure the user never
sees too many completions. An additional limit is added to
default_make_symbol_completion_list_break_on, to halt time-consuming
symbol table expansions.
gdb/ChangeLog:
PR cli/9007
PR cli/11920
PR cli/15548
* cli/cli-cmds.c (complete_command): Notify user if max-completions
reached.
* common/common-exceptions.h (enum errors)
<MAX_COMPLETIONS_REACHED_ERROR>: New value.
* completer.h (get_max_completions_reached_message): New declaration.
(max_completions): Likewise.
(completion_tracker_t): New typedef.
(new_completion_tracker): New declaration.
(make_cleanup_free_completion_tracker): Likewise.
(maybe_add_completion_enum): New enum.
(maybe_add_completion): New declaration.
(throw_max_completions_reached_error): Likewise.
* completer.c (max_completions): New global variable.
(new_completion_tracker): New function.
(free_completion_tracker): Likewise.
(make_cleanup_free_completion_tracker): Likewise.
(maybe_add_completions): Likewise.
(throw_max_completions_reached_error): Likewise.
(complete_line): Remove duplicates and limit result to max_completions
entries.
(get_max_completions_reached_message): New function.
(gdb_display_match_list): Handle max_completions.
(_initialize_completer): New declaration and function.
* symtab.c: Include completer.h.
(completion_tracker): New static variable.
(completion_list_add_name): Call maybe_add_completion.
(default_make_symbol_completion_list_break_on_1): Renamed from
default_make_symbol_completion_list_break_on. Maintain
completion_tracker across calls to completion_list_add_name.
(default_make_symbol_completion_list_break_on): New function.
* top.c (init_main): Set rl_completion_display_matches_hook.
* tui/tui-io.c: Include completer.h.
(tui_old_rl_display_matches_hook): New static global.
(tui_rl_display_match_list): Notify user if max-completions reached.
(tui_setup_io): Save/restore rl_completion_display_matches_hook.
* NEWS (New Options): Mention set/show max-completions.
gdb/doc/ChangeLog:
* gdb.texinfo (Command Completion): Document new
"set/show max-completions" option.
gdb/testsuite/ChangeLog:
* gdb.base/completion.exp: Disable completion limiting for
existing tests. Add new tests to check completion limiting.
* gdb.linespec/ls-errs.exp: Disable completion limiting.
This commit makes default_make_symbol_completion_list_break_on build
the list of completions as it expands the necessary symbol tables,
rather than expanding all necessary symbol tables first and then
building the completion lists second. This allows for the early
termination of symbol table expansion if required.
gdb/ChangeLog:
* symtab.c (struct add_name_data) <code>: New field.
Updated comments.
(add_symtab_completions): New function.
(symtab_expansion_callback): Likewise.
(default_make_symbol_completion_list_break_on): Set datum.code.
Move minimal symbol scan before calling expand_symtabs_matching.
Scan known primary symtabs for externs and statics before calling
expand_symtabs_matching. Pass symtab_expansion_callback as
expansion_notify argument to expand_symtabs_matching. Do not scan
primary symtabs for externs and statics after calling
expand_symtabs_matching.
This commit adds a new callback parameter, "expansion_notify", to the
top-level expand_symtabs_matching function and to all the vectorized
functions it defers to. If expansion_notify is non-NULL, it will be
called every time a symbol table is expanded.
gdb/ChangeLog:
* symfile.h (expand_symtabs_exp_notify_ftype): New typedef.
(struct quick_symbol_functions) <expand_symtabs_matching>:
New argument expansion_notify. All uses updated.
(expand_symtabs_matching): New argument expansion_notify.
All uses updated.
* symfile-debug.c (debug_qf_expand_symtabs_matching):
Also print expansion notify.
* symtab.c (expand_symtabs_matching_via_partial): Call
expansion_notify whenever a partial symbol table is expanded.
* dwarf2read.c (dw2_expand_symtabs_matching): Call
expansion_notify whenever a symbol table is instantiated.
This copies a lot of code from readline, but this is temporary.
Readline currently doesn't export what we need.
The plan is to have something that has been working for awhile,
and then we'll have a complete story to present to the readline
maintainers.
gdb/ChangeLog:
* cli-out.c: #include completer.h, readline/readline.h.
(cli_mld_crlf, cli_mld_putch, cli_mld_puts): New functions.
(cli_mld_flush, cld_mld_erase_entire_line): Ditto.
(cli_mld_beep, cli_mld_read_key, cli_display_match_list): Ditto.
* cli-out.h (cli_display_match_list): Declare.
* completer.c (MB_INVALIDCH, MB_NULLWCH): New macros.
(ELLIPSIS_LEN): Ditto.
(gdb_get_y_or_n, gdb_display_match_list_pager): New functions.
(gdb_path_isdir, gdb_printable_part, gdb_fnwidth): Ditto.
(gdb_fnprint, gdb_print_filename): Ditto.
(gdb_complete_get_screenwidth, gdb_display_match_list_1): Ditto.
(gdb_display_match_list): Ditto.
* completer.h (mld_crlf_ftype, mld_putch_ftype): New typedefs.
(mld_puts_ftype, mld_flush_ftype, mld_erase_entire_line_ftype): Ditto.
(mld_beep_ftype, mld_read_key_ftype): Ditto.
(match_list_displayer): New struct.
(gdb_display_match_list): Declare.
* top.c (init_main): Set rl_completion_display_matches_hook.
* tui/tui-io.c: #include completer.h.
(printable_part, PUTX, print_filename, get_y_or_n): Delete.
(tui_mld_crlf, tui_mld_putch, tui_mld_puts): New functions.
(tui_mld_flush, tui_mld_erase_entire_line, tui_mld_beep): Ditto.
(tui_mld_getc, tui_mld_read_key): Ditto.
(tui_rl_display_match_list): Rewrite.
(tui_handle_resize_during_io): New arg for_completion. All callers
updated.
gdb/ChangeLog:
Add symbol lookup cache.
* NEWS: Document new options and commands.
* symtab.c (symbol_cache_key): New static global.
(DEFAULT_SYMBOL_CACHE_SIZE, MAX_SYMBOL_CACHE_SIZE): New macros.
(SYMBOL_LOOKUP_FAILED): New macro.
(symbol_cache_slot_state): New enum.
(block_symbol_cache): New struct.
(symbol_cache): New struct.
(new_symbol_cache_size, symbol_cache_size): New static globals.
(hash_symbol_entry, eq_symbol_entry): New functions.
(symbol_cache_byte_size, resize_symbol_cache): New functions.
(make_symbol_cache, free_symbol_cache): New functions.
(get_symbol_cache, symbol_cache_cleanup): New function.
(set_symbol_cache_size, set_symbol_cache_size_handler): New functions.
(symbol_cache_lookup, symbol_cache_clear_slot): New function.
(symbol_cache_mark_found, symbol_cache_mark_not_found): New functions.
(symbol_cache_flush, symbol_cache_dump): New functions.
(maintenance_print_symbol_cache): New function.
(maintenance_flush_symbol_cache): New function.
(symbol_cache_stats): New function.
(maintenance_print_symbol_cache_statistics): New function.
(symtab_new_objfile_observer): New function.
(symtab_free_objfile_observer): New function.
(lookup_static_symbol, lookup_global_symbol): Use symbol cache.
(_initialize_symtab): Init symbol_cache_key. New parameter
maint symbol-cache-size. New maint commands print symbol-cache,
print symbol-cache-statistics, flush-symbol-cache.
Install new_objfile, free_objfile observers.
gdb/doc/ChangeLog:
* gdb.texinfo (Symbols): Document new commands
"maint print symbol-cache", "maint print symbol-cache-statistics",
"maint flush-symbol-cache". Document new option
"maint set symbol-cache-size".
gdb/
2015-01-31 Eli Zaretskii <eliz@gnu.org>
* tui/tui-io.c (tui_expand_tabs): New function.
(tui_puts, tui_redisplay_readline): Expand TABs into the
appropriate number of spaces.
* tui/tui-regs.c: Include tui-io.h.
(tui_register_format): Call tui_expand_tabs to expand TABs into
the appropriate number of spaces.
* tui/tui-io.h: Add prototype for tui_expand_tabs.
To make it clear that some functions should not modify the variable
object, this patch adds the const qualifier where it makes sense to some
struct varobj * parameters. Most getters should take a const pointer to
guarantee they don't modify the object.
Unfortunately, I couldn't add it to some callbacks (such as name_of_child).
In the C implementation, they call c_describe_child, which calls
varobj_get_path_expr. varobj_get_path_expr needs to modify the object in
order to cache the computed value. It therefore can't take a const
pointer, and it affects the whole call chain. I suppose that's where you
would use a "mutable" in C++.
I did that to make sure there was no other cases like the one fixed in
the previous patch. I don't think it can hurt.
gdb/ChangeLog:
* ada-varobj.c (ada_number_of_children): Constify struct varobj *
parameter.
(ada_name_of_variable): Same.
(ada_path_expr_of_child): Same.
(ada_value_of_variable): Same.
(ada_value_is_changeable_p): Same.
(ada_value_has_mutated): Same.
* c-varobj.c (varobj_is_anonymous_child): Same.
(c_is_path_expr_parent): Same.
(c_number_of_children): Same.
(c_name_of_variable): Same.
(c_path_expr_of_child): Same.
(get_type): Same.
(c_value_of_variable): Same.
(cplus_number_of_children): Same.
(cplus_name_of_variable): Same.
(cplus_path_expr_of_child): Same.
(cplus_value_of_variable): Same.
* jv-varobj.c (java_number_of_children): Same.
(java_name_of_variable): Same.
(java_path_expr_of_child): Same.
(java_value_of_variable): Same.
* varobj.c (number_of_children): Same.
(name_of_variable): Same.
(is_root_p): Same.
(varobj_ensure_python_env): Same.
(varobj_get_objname): Same.
(varobj_get_expression): Same.
(varobj_get_display_format): Same.
(varobj_get_display_hint): Same.
(varobj_has_more): Same.
(varobj_get_thread_id): Same.
(varobj_get_frozen): Same.
(dynamic_varobj_has_child_method): Same.
(varobj_get_gdb_type): Same.
(is_path_expr_parent): Same.
(varobj_default_is_path_expr_parent): Same.
(varobj_get_language): Same.
(varobj_get_attributes): Same.
(varobj_is_dynamic_p): Same.
(varobj_get_child_range): Same.
(varobj_value_has_mutated): Same.
(varobj_get_value_type): Same.
(number_of_children): Same.
(name_of_variable): Same.
(check_scope): Same.
(varobj_editable_p): Same.
(varobj_value_is_changeable_p): Same.
(varobj_floating_p): Same.
(varobj_default_value_is_changeable_p): Same.
* varobj.h (struct lang_varobj_ops): Consitfy some struct varobj *
parameters.
(varobj_get_objname): Constify struct varobj * parameter.
(varobj_get_expression): Same.
(varobj_get_thread_id): Same.
(varobj_get_frozen): Same.
(varobj_get_child_range): Same.
(varobj_get_display_hint): Same.
(varobj_get_gdb_type): Same.
(varobj_get_language): Same.
(varobj_get_attributes): Same.
(varobj_editable_p): Same.
(varobj_floating_p): Same.
(varobj_has_more): Same.
(varobj_is_dynamic_p): Same.
(varobj_ensure_python_env): Same.
(varobj_default_value_is_changeable_p): Same.
(varobj_value_is_changeable_p): Same.
(varobj_get_value_type): Same.
(varobj_is_anonymous_child): Same.
(varobj_value_get_print_value): Same.
(varobj_default_is_path_expr_parent): Same.