String collection always used ref32 to fetch the string pointer. Make it
use gen_fetch instead.
As a side effect, this patch changes dup+const+trace+pop sequence used
for collecting the string's address to a trace_quick opcode. This
results in a shorter agent expression.
This appeared to work on x86_64 since it's a little-endian platform, and
malloc (used in gdb.trace/collection.exp) returns addresses in low 4GB.
Noticed and tested on s390x-ibm-linux-gnu, also tested on
i686-unknown-linux-gnu and x86_64-unknown-linux-gnu.
gdb/ChangeLog:
* ax-gdb.c (gen_traced_pop): Use gen_fetch for string collection.
Give the function a better name (drop "maybe_") and update the header
comment.
gdb/ChangeLog:
* disasm.c (maybe_add_dis_line_entry): Rename to...
(add_dis_line_entry): ...this, and update header comment.
(do_mixed_source_and_assembly): Now use add_dis_line_entry.
Currently, even when built with --enable-build-with-cxx, gdb uses
CFLAGS instead of CXXFLAGS. This commit fixes it.
CXXFLAGS set in the environment when configure was run is now honored
in the generated gdb/Makefile, and you can also override CXXFLAGS in
the command like at make time, with the usual 'make CXXFLAGS="..."'
Objects built with a C compiler (e.g., gnulib) still honor CFLAGS
instead.
gdb/ChangeLog:
2016-01-21 Pedro Alves <palves@redhat.com>
* Makefile.in (COMPILER_CFLAGS): New.
(CXXFLAGS): Get it from configure.
(INTERNAL_CFLAGS_BASE, INTERNAL_LDFLAGS): Use COMPILER_CFLAGS
instead of CFLAGS.
* build-with-cxx.m4 (GDB_AC_BUILD_WITH_CXX): Set and AC_SUBST
COMPILER_CFLAGS.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
2016-01-21 Pedro Alves <palves@redhat.com>
* Makefile.in (COMPILER_CFLAGS, CXXFLAGS): New.
(INTERNAL_CFLAGS_BASE): Use COMPILER_CFLAGS instead of CFLAGS.
* configure: Regenerate.
A relatively recent patch support for explicit locations, and part
of that patch cleaned up the way we parse breakpoint locations.
Unfortunatly, a small regression crept in for "*<EXPR>" breakpoint
locations. In particular, on PIE programs, one can see the issue by
doing the following, with any program:
(gdb) b *main
Breakpoint 1 at 0x51a: file hello.c, line 3.
(gdb) run
Starting program: /[...]/hello
Error in re-setting breakpoint 1: Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Just for the record, this regression was introduced by:
commit a06efdd6ef
Date: Tue Aug 11 17:09:35 2015 -0700
Subject: Explicit locations: introduce address locations
What happens is that the patch makes the implicit assumption that
the address computed the first time is static, as if it was designed
to only support litteral expressions (Eg. "*0x1234"). This allows
the shortcut of not re-computing the breakpoint location's address
when re-setting breakpoints.
However, this does not work in general, as demonstrated in the example
above.
This patch plugs that hole simply by saving the original expression
used to compute the address as part of the address location, so as
to then re-evaluate that expression during breakpoint re-set.
gdb/ChangeLog:
* location.h (new_address_location): Add new parameters
"addr_string" and "addr_string_len".
(get_address_string_location): Add declaration.
* location.c (new_address_location): Add new parameters
"addr_string" and "addr_string_len". If not NULL, store
a copy of the addr_string in the new location as well.
(get_address_string_location): New function.
(string_to_event_location): Update call to new_address_location.
* linespec.c (event_location_to_sals) <ADDRESS_LOCATION>:
Save the event location in the parser's state before
passing it to convert_address_location_to_sals.
* breakpoint.c (create_thread_event_breakpoint): Update call
to new_address_location.
(init_breakpoint_sal): Get the event location's string, if any,
and use it to update call to new_address_location.
* python/py-finishbreakpoint.c (bpfinishpy_init):
Update call to new_address_location.
* spu-tdep.c (spu_catch_start): Likewise.
* config/djgpp/fnchange.lst: Add entries for
gdb/testsuite/gdb.base/break-fun-addr1.c and
gdb/testsuite/gdb.base/break-fun-addr2.c.
gdb/testsuite/ChangeLog:
* gdb.base/break-fun-addr.exp: New file.
* gdb.base/break-fun-addr1.c: New file.
* gdb.base/break-fun-addr2.c: New file.
This patch fixes the following regression introduced by commit d0e59a68
step^M
39 } /* handler */^M
1: x/i $pc^M
=> 0x8740 <handler+80>: sub sp, r11, #0^M
(gdb) step^M
^M
Program received signal SIGSEGV, Segmentation fault.^M
setitimer () at ../sysdeps/unix/syscall-template.S:81^M
81 ../sysdeps/unix/syscall-template.S: No such file or directory.^M
1: x/i $pc^M
=> 0xb6eff9c0 <setitimer>: push {r7}^M
(gdb) FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, step from handler: leave handler
in my test setting, program is compiled in arm mode, but the glibc
is built in thumb mode, so when we do 'step' to step over syscall
instruction svc for SIGRETURN, GDB should set breakpoint for arm mode
in the program, even though the current program in glibc is in thumb
mode. Current GDB doesn't consider the case that the mode of program
SIGRETURN goes to can be different from current program mode.
In fact, GDB has taken care of this arm/thumb mode changes already,
see
/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
return 1. In addition, set IS_THUMB depending on whether we
will return to ARM or Thumb code. Return 0 if it is not a
rt_sigreturn/sigreturn syscall. */
static int
arm_linux_sigreturn_return_addr (struct frame_info *frame,
unsigned long svc_number,
CORE_ADDR *pc, int *is_thumb)
but in the commit d0e59a68
> - arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
> + if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
> + next_pc = arm_linux_sigreturn_next_pc (regcache, svc_number);
the IS_THUMB setting is lost, so it is a regression.
gdb:
2016-01-21 Yao Qi <yao.qi@linaro.org>
* arm-linux-tdep.c (arm_linux_sigreturn_next_pc): Add parameter
is_thumb and set it according to CPSR saved on the stack.
(arm_linux_get_next_pcs_syscall_next_pc): Pass is_thumb to
arm_linux_sigreturn_next_pc.
gdb/gdbserver:
2016-01-21 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_sigreturn_next_pc): Add parameter
is_thumb and set it according to CPSR saved on the stack.
(get_next_pcs_syscall_next_pc): Pass is_thumb to
arm_sigreturn_next_pc.
The lambda function used to sort the enumerator list does not work
properly. This list consists of tuples, (enum label, enum value). The
key function returns x.enumval. enumval not being defined for a tuple,
we see this exception in the test log:
Python Exception <class 'AttributeError'> 'tuple' object has no attribute 'enumval'
The function should return the second item of the tuple, which is the
enumval.
The pretty-printer still worked mostly correctly, except that the
enumeration values were not sorted. The test still passed because the
enumeration values are already sorted where they are defined. The test
also passed despite the exception being printed, because the right output
was printed after the exception:
print (enum flag_enum) (FLAG_1)
Python Exception <type 'exceptions.AttributeError'> 'tuple' objecthas no attribute 'enumval':M
$7 = 0x1 [FLAG_1]
(gdb) PASS: gdb.python/py-pp-maint.exp: print FLAG_1
New in v2:
- Improved test case, I stole Pedro's example directly. It verifies
that the sorting of enumerators by value works, by checking that
printing FOO_MASK appears as FOO_1 | FOO_2 | FOO_3.
I noticed that I could change the regexps to almost anything and the
tests would still pass. I think it was because of the | in there. I
made them more robust by using string_to_regexp. I used curly braces
{ } instead of quoting marks " " for strings, so that I could use
square brackets [ ] in them without having to escape them all. I also
removed the "message" part of the tests, since they are redundant with
the command, and it's just more maintenance to have to update them.
Tested with Python 2.7 and 3.5.
gdb/ChangeLog:
* python/lib/gdb/printing.py (FlagEnumerationPrinter.__call__):
Fix enumerators sort key function.
gdb/testsuite/ChangeLog:
* gdb.python/py-pp-maint.exp: Change/add enum flag tests.
* gdb.python/py-pp-maint.c (enum flag_enum): Use more complex
enum flag values.
(GNU Coding Standard...)
gdb/ChangeLog:
* printcmd.c (print_scalar_formatted): move binary operator from
end of line to beginning of next line. Adjust formatting
accordingly.
gdb/ChangeLog:
* fbsd-tdep.c (find_stop_signal): Remove.
(struct fbsd_collect_regset_section_cb) <lwp>: New field.
<stop_signal>: New field.
<abort_iteration>: New field.
(fbsd_collect_regset_section_cb): Use new fields.
(fbsd_collect_thread_registers): New function.
(struct fbsd_corefile_thread_data): New structure.
(fbsd_corefile_thread): New function.
(fbsd_make_corefile_notes): Use new function to dump notes for each
non-exited thread in a process.
Older versions of FreeBSD supported userland threading via a pure
user-space threading library (N threads scheduled on 1 process) and
a N:M model (N threads scheduled on M LWPs). However, modern FreeBSD
versions only support a M:M threading model where each user thread is
backed by a dedicated LWP. This thread target only supports this
threading model. It also uses ptrace to query and alter LWP state
directly rather than using libthread_db to simplify the implementation.
FreeBSD recently gained support for reporting LWP events (birth and death
of LWPs). GDB will use LWP events when present. For older systems it
fetches the list of LWPs in the to_update_thread_list target op to update
the list of threads on each stop.
This target supports scheduler locking by using ptrace to suspend
individual LWPs as necessary before resuming a process.
gdb/ChangeLog:
* configure.ac: Check for support for LWP names on FreeBSD.
* fbsd-nat.c [PT_LWPINFO] New variable debug_fbsd_lwp.
[TDP_RFPPWAIT || HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME]
(fbsd_fetch_kinfo_proc): Move function earlier.
[PT_LWPINFO] (fbsd_thread_alive): New function.
[PT_LWPINFO] (fbsd_pid_to_str): New function.
[HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME] (fbsd_thread_name): New function.
[PT_LWP_EVENTS] (fbsd_enable_lwp_events): New function.
[PT_LWPINFO] (fbsd_add_threads): New function.
[PT_LWPINFO] (fbsd_update_thread_list): New function.
[PT_LWPINFO] New variable super_resume.
[PT_LWPINFO] (resume_one_thread_cb): New function.
[PT_LWPINFO] (resume_all_threads_cb): New function.
[PT_LWPINFO] (fbsd_resume): New function.
(fbsd_remember_child): Save full ptid instead of plain pid.
(fbsd_is_child_pending): Return ptid of saved child process.
(fbsd_wait): Include lwp in returned ptid and switch to LWP ptid on
first stop.
[PT_LWP_EVENTS] Handle LWP events.
[TDP_RFPPWAIT] Include LWP in child ptid.
(fbsd_post_startup_inferior) [PT_LWP_EVENTS]: Enable LWP events.
(fbsd_post_attach) [PT_LWP_EVENTS]: Enable LWP events.
Add threads for existing processes.
(fbsd_nat_add_target) [PT_LWPINFO]: Set "to_thread_alive" to
"fbsd_thread_alive".
Set "to_pid_to_str" to "fbsd_pid_to_str".
[HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME]: Set "to_thread_name" to
"fbsd_thread_name".
[PT_LWPINFO]: Set "to_update_thread_list" to "fbsd_update_thread_list".
Set "to_has_thread_control" to "tc_schedlock".
Set "to_resume" to "fbsd_resume".
(_initialize_fbsd_nat): New function.
* configure: Regenerate.
* config.in: Regenerate.
gdb/doc/ChangeLog:
* gdb.texinfo (Debugging Output): Document "set/show debug fbsd-lwp".
This allows gdb to fetch per-thread registers for multi-threaded FreeBSD
processes.
Export get_ptrace_pid() from inf-ptrace.c and use it to determine the PID
to pass to ptrace in pan-BSD native targets. NetBSD and OpenBSD also accept
LWP IDs for ptrace requests to fetch per-thread state.
gdb/ChangeLog:
* amd64bsd-nat.c (amd64bsd_fetch_inferior_registers): Use
get_ptrace_pid.
(amd64bsd_store_inferior_registers): Use get_ptrace_pid.
(amd64bsd_dr_get): Use get_ptrace_pid.
(amd64bsd_dr_set): Use get_ptrace_pid.
* i386bsd-nat.c (i386bsd_fetch_inferior_registers): Use get_ptrace_pid.
(i386bsd_store_inferior_registers): Use get_ptrace_pid.
(i386bsd_dr_get): Use get_ptrace_pid.
(i386bsd_dr_set): Use get_ptrace_pid.
* inf-ptrace.c (get_ptrace_pid): Export.
* inf-ptrace.h (get_ptrace_pid): Declare.
* ppcfbsd-nat.c (ppcfbsd_fetch_inferior_registers): Use lwp id.
(ppcfbsd_store_inferior_registers): Use lwp id.
Display the LWP ID of each thread in a FreeBSD core. Extract thread
names from the per-thread THRMISC note.
gdb/ChangeLog:
* fbsd_tdep.c (fbsd_core_pid_to_str): New function.
(fbsd_core_thread_name): New function.
(fbsd_init_abi): Add "core_pid_to_str" gdbarch method.
Add "core_thread_name" gdbarch method.
Add a new gdbarch method to extract a thread name from a core for a
given thread. Use this new method in core_thread_name to implement the
to_thread_name target op.
gdb/ChangeLog:
* corelow.c (core_thread_name): New function.
(init_core_ops): Use "core_thread_name" for the "to_thread_name"
target op.
* gdbarch.sh (core_thread_name): New gdbarch callback.
* gdbarch.h: Re-generate.
* gdbarch.c: Re-generate.
Using Python 3.5 (I assume it's the same with 3.4 and lower, but I didn't
test), I see this:
print (enum flag_enum) (FLAG_1)^M
Python Exception <class 'TypeError'> %x format: an integer is required, not gdb.Value: ^M
$7 = ^M
(gdb) FAIL: gdb.python/py-pp-maint.exp: print FLAG_1
Apparently, this idiom, where v is a gdb.Value, was possible with Python 2,
but not with Python 3:
'%x' % v
In Python 2, it would automatically get converted to an integer. To solve
it, I simply added wrapped v in a call to int().
'%x' % int(v)
In Python 2, the int type is implemented with a "long" in C, so on x86-32 it's
32-bits. I was worried that doing int(v) would truncate the value and give
wrong results for enum values > 32-bits. However, the int type != the int
function. The int function does the right thing, selecting the right integer
type for the given value. I tested with large enum values on x86-32 and
Python 2, and everything works as expected.
gdb/ChangeLog:
* python/lib/gdb/printing.py (_EnumInstance.to_string): Explicitly
convert gdb.Value to integer type using int().
Include <sys/types.h> as a prerequisite for <machine/reg.h> when checking
for the r_fs and r_gs members in struct reg. Note that the previous test
for <machine/reg.h> already includes <sys/types.h> as a prerequisite.
gdb/ChangeLog:
* configure.ac: Include <sys/types.h when checking for "r_fs" in
"struct reg".
* configure: Regenerate.
The POOL48A major opcode was defined in early revisions of the 64-bit
microMIPS ISA, has never been implemented, and was removed before the
64-bit microMIPS ISA specification[1] has been finalized.
This complements commit a6c7053929 ("MIPS/opcodes: Remove microMIPS
48-bit LI instruction").
References:
[1] "MIPS Architecture for Programmers, Volume II-B: The microMIPS64
Instruction Set", MIPS Technologies, Inc., Document Number: MD00594,
Revision 3.06, October 17, 2012, Table 6.2 "microMIPS64 Encoding of
Major Opcode Field", p. 578
gas/
* config/tc-mips.c (micromips_insn_length): Remove the mention
of 48-bit microMIPS instructions.
gdb/
* mips-tdep.c (mips_insn_size): Remove 48-bit microMIPS
instruction support.
(micromips_next_pc): Likewise.
(micromips_scan_prologue): Likewise.
(micromips_deal_with_atomic_sequence): Likewise.
(micromips_stack_frame_destroyed_p): Likewise.
(mips_breakpoint_from_pc): Likewise.
opcodes/
* mips-dis.c (print_insn_micromips): Remove 48-bit microMIPS
instruction support.
Fix a bug in `micromips_insn_at_pc_has_delay_slot' in instruction size
determination via `mips_insn_size'. In the microMIPS case the latter
function expects a lone 16-bit instruction word containing the major
opcode regardless of whether the opcode requires another 16-bit word to
follow, to form a complete 32-bit instruction. Code however passes the
16-bit word previously retrieved shifted left by 16 bits. Consequently
`mips_insn_size', which examines the low 16-bit only, always sees 0.
By pure coincidence a major opcode of 0 denotes a 32-bit instruction in
the microMIPS instruction set, so the size of 4 is always returned here,
and the following 16-bit word is then merged in the low 16 bits of the
instruction previously shifted by 16 bits. The resulting 32-bit value
is then passed to `micromips_instruction_has_delay_slot' for delay slot
presence determination. This function in turn first examines the high
16 bits of the instruction word received and ignores the low 16 bits for
16-bit instructions.
Consequently the only effect of this bug is an extraneous memory read
issued to retrieve a subsequent 16-bit word where a 16-bit instruction
is being examined. Which in turn may fail if the instruction is located
right at the end of a readable memory area, in which case the lack of a
delay slot will be reported to the caller, which may be incorrect.
This code is used in breakpoint maintenance, for delay slot avoidance,
so the bug would only trigger for the unlikely case of someone placing
a breakpoint in a delay slot of an instruction which is at the end of
readable memory. Which explains why the bug remained unnoticed so long.
gdb/
* mips-tdep.c (micromips_insn_at_pc_has_delay_slot): Pass
unshifted 16-bit microMIPS instruction word to `mips_insn_size'.
This commit changes GDB like this:
- Program received signal SIGINT, Interrupt.
+ Thread 1 "main" received signal SIGINT, Interrupt.
- Breakpoint 1 at 0x40087a: file threads.c, line 87.
+ Thread 3 "bar" hit Breakpoint 1 at 0x40087a: file threads.c, line 87.
... once the program goes multi-threaded. Until GDB sees a second
thread spawn, the output is still the same as before, per the
discussion back in 2012:
https://www.sourceware.org/ml/gdb/2012-11/msg00010.html
This helps non-stop mode, where you can't easily tell which thread hit
a breakpoint or received a signal:
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 19362) "main" (running)
2 Thread 0x7ffff7fc0700 (LWP 19366) "foo" (running)
3 Thread 0x7ffff77bf700 (LWP 19367) "bar" (running)
(gdb)
Program received signal SIGUSR1, User defined signal 1.
0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
92 lll_wait_tid (pd->tid);
(gdb) b threads.c:87
Breakpoint 1 at 0x40087a: file threads.c, line 87.
(gdb)
Breakpoint 1, thread_function1 (arg=0x1) at threads.c:87
87 usleep (1); /* Loop increment. */
The best the user can do is run "info threads" and try to figure
things out.
It actually also affects all-stop mode, in case of "handle SIG print
nostop":
...
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
...
The above doesn't give any clue that these were different threads
getting the SIGUSR1 signal.
I initially thought of lowercasing "breakpoint" in
"Thread 3 hit Breakpoint 1"
but then after trying it I realized that leaving "Breakpoint"
uppercase helps the eye quickly find the relevant information. It's
also easier to implement not showing anything about threads until the
program goes multi-threaded this way.
Here's a larger example session in non-stop mode:
(gdb) c -a&
Continuing.
(gdb) interrupt -a
(gdb)
Thread 1 "main" stopped.
0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
92 lll_wait_tid (pd->tid);
Thread 2 "foo" stopped.
0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Thread 3 "bar" stopped.
0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
b threads.c:87
Breakpoint 4 at 0x40087a: file threads.c, line 87.
(gdb) b threads.c:67
Breakpoint 5 at 0x400811: file threads.c, line 67.
(gdb) c -a&
Continuing.
(gdb)
Thread 3 "bar" hit Breakpoint 4, thread_function1 (arg=0x1) at threads.c:87
87 usleep (1); /* Loop increment. */
Thread 2 "foo" hit Breakpoint 5, thread_function0 (arg=0x0) at threads.c:68
68 (*myp) ++;
info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" (running)
2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68
3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87
(gdb) shell kill -SIGINT 31957
(gdb)
Thread 1 "main" received signal SIGINT, Interrupt.
0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
92 lll_wait_tid (pd->tid);
info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68
3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87
(gdb) t 2
[Switching to thread 2, Thread 0x7ffff7fc0700 (LWP 31961)]
#0 thread_function0 (arg=0x0) at threads.c:68
68 (*myp) ++;
(gdb) catch syscall
Catchpoint 6 (any syscall)
(gdb) c&
Continuing.
(gdb)
Thread 2 "foo" hit Catchpoint 6 (call to syscall nanosleep), 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
I'll work on documentation next if this looks agreeable.
This patch applies on top of the star wildcards thread IDs series:
https://sourceware.org/ml/gdb-patches/2016-01/msg00291.html
For convenience, I've pushed this to the
users/palves/show-which-thread-caused-stop branch.
gdb/doc/ChangeLog:
2016-01-18 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Mention that GDB displays the ID and name
of the thread that hit a breakpoint or received a signal.
gdb/ChangeLog:
2016-01-18 Pedro Alves <palves@redhat.com>
* NEWS: Mention that GDB now displays the ID and name of the
thread that hit a breakpoint or received a signal.
* break-catch-sig.c (signal_catchpoint_print_it): Use
maybe_print_thread_hit_breakpoint.
* break-catch-syscall.c (print_it_catch_syscall): Likewise.
* break-catch-throw.c (print_it_exception_catchpoint): Likewise.
* breakpoint.c (maybe_print_thread_hit_breakpoint): New function.
(print_it_catch_fork, print_it_catch_vfork, print_it_catch_solib)
(print_it_catch_exec, print_it_ranged_breakpoint)
(print_it_watchpoint, print_it_masked_watchpoint, bkpt_print_it):
Use maybe_print_thread_hit_breakpoint.
* breakpoint.h (maybe_print_thread_hit_breakpoint): Declare.
* gdbthread.h (show_thread_that_caused_stop): Declare.
* infrun.c (print_signal_received_reason): Print which thread
received signal.
* thread.c (show_thread_that_caused_stop): New function.
gdb/testsuite/ChangeLog:
2016-01-18 Pedro Alves <palves@redhat.com>
* gdb.base/async-shell.exp: Adjust expected output.
* gdb.base/dprintf-non-stop.exp: Adjust expected output.
* gdb.base/siginfo-thread.exp: Adjust expected output.
* gdb.base/watchpoint-hw-hit-once.exp: Adjust expected output.
* gdb.java/jnpe.exp: Adjust expected output.
* gdb.threads/clone-new-thread-event.exp: Adjust expected output.
* gdb.threads/continue-pending-status.exp: Adjust expected output.
* gdb.threads/leader-exit.exp: Adjust expected output.
* gdb.threads/manythreads.exp: Adjust expected output.
* gdb.threads/pthreads.exp: Adjust expected output.
* gdb.threads/schedlock.exp: Adjust expected output.
* gdb.threads/siginfo-threads.exp: Adjust expected output.
* gdb.threads/signal-command-multiple-signals-pending.exp: Adjust
expected output.
* gdb.threads/signal-delivered-right-thread.exp: Adjust expected
output.
* gdb.threads/sigthread.exp: Adjust expected output.
* gdb.threads/watchpoint-fork.exp: Adjust expected output.
This commit fixes nat/linux-namespaces.c to build correctly on
targets without fork.
gdb/ChangeLog:
* nat/linux-namespaces.c (do_fork): New function.
(linux_mntns_get_helper): Use the above.
gdb/gdbserver/ChangeLog:
* configure.ac (AC_FUNC_FORK): New check.
* config.in: Regenerate.
* configure: Likewise.
This patch fixes a SIGSEGV when trying to open a Fortran program
compiled with ifort (reproduced using version using version 16.0.1.150).
The error can be reproduce with most, if not any program. For instance,
a single file only containing "end", compiled with no additional flag,
suffices.
gdb/ChangeLog:
PR gdb/19208
* dwarf2read.c (read_partial_die): Do not call set_objfile_main_name
if the function has no name.
2016-01-15 Sandra Loosemore <sandra@codesourcery.com>
gdb/
* charset.c [PHONY_ICONV] (GDB_DEFAULT_HOST_CHARSET):
Conditionalize for Windows host.
(GDB_DEFAULT_TARGET_CHARSET): Match GDB_DEFAULT_HOST_CHARSET.
(GDB_DEFAULT_TARGET_WIDE_CHARSET): Use UTF-32.
(phony_iconv_open): Handle both UTF-32 endiannesses.
(phony_iconv): Likewise. Check for output overflow and clean up
out-of-input cases. Correct adjustment to input buffer pointer.
(set_be_le_names) [PHONY_ICONV]: Use hard-wired names to match
phony_iconv_open.
Add support for specifying "all threads of inferior N", by writing "*"
as thread number/range in thread ID lists.
E.g., "info threads 2.*" or "thread apply 2.* bt".
gdb/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* NEWS: Mention star wildcard ranges.
* cli/cli-utils.c (get_number_or_range): Check state->in_range first.
(number_range_setup_range): New function.
* cli/cli-utils.h (number_range_setup_range): New declaration.
* thread.c (thread_apply_command): Support star TID ranges.
* tid-parse.c (tid_range_parser_finished)
(tid_range_parser_string, tid_range_parser_skip)
(get_tid_or_range, get_tid_or_range): Handle
TID_RANGE_STATE_STAR_RANGE.
(tid_range_parser_star_range): New function.
* tid-parse.h (enum tid_range_state) <TID_RANGE_STATE_STAR_RANGE>:
New value.
(tid_range_parser_star_range): New declaration.
gdb/doc/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads) <thread ID lists>: Document star ranges.
gdb/testsuite/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* gdb.multi/tids.exp: Test star wildcard ranges.
This fixes a few bugs in "thread apply".
While this works:
(gdb) thread apply 1 p 1234
Thread 1 (Thread 0x7ffff7fc1740 (LWP 14048)):
$1 = 1234
This doesn't:
(gdb) thread apply $thr p 1234
Thread 1 (Thread 0x7ffff7fc1740 (LWP 12039)):
Invalid thread ID: p 1234
(gdb)
~~~~
Also, while this works:
(gdb) thread apply 1
Please specify a command following the thread ID list
This doesn't:
(gdb) thread apply $thr
Thread 1 (Thread 0x7ffff7fc1740 (LWP 12039)):
[Current thread is 1 (Thread 0x7ffff7fc1740 (LWP 12039))]
(gdb)
~~~~
And, while this works:
(gdb) thread apply
Please specify a thread ID list
This obviously bogus invocation is just silent:
(gdb) thread apply bt
(gdb)
gdb/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* thread.c (thread_apply_command): Use the tid range parser to
advance past the thread ID list.
* tid-parse.c (get_positive_number_trailer): New function.
(parse_thread_id): Use it.
(get_tid_or_range): Use it. Return 0 instead of throwing invalid
thread ID error.
(get_tid_or_range): Detect negative values. Return 0 instead of
throwing invalid thread ID error.
gdb/testsuite/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* gdb.multi/tids.exp (thr_apply_info_thr_error): Remove "p 1234"
command from "thread apply" invocation.
(thr_apply_info_thr_invalid): Default the expected output to the
input tid list.
(top level): Add tests that use convenience variables. Add tests
for "thread apply" with a valid TID list, but missing the command.
Field syscall_next_pc in struct gdbarch_tdep was to calculate the
next pc of syscall instruction. On linux target, syscall_next_pc
is set to arm_linux_syscall_next_pc, to do linux specific things.
However, after we have struct arm_get_next_pcs_ops, we can do the
same thing in struct arm_get_next_pcs_ops field syscall_next_pc,
so syscall_next_pc in struct gdbarch_tdep is not needed any more.
gdb:
2016-01-14 Yao Qi <yao.qi@linaro.org>
* arm-linux-tdep.c (arm_linux_get_next_pcs_syscall_next_pc):
Declare.
(arm_linux_get_next_pcs_ops): Install
arm_linux_get_next_pcs_syscall_next_pc.
(arm_linux_syscall_next_pc): Change to ...
(arm_linux_get_next_pcs_syscall_next_pc): ... it.
(arm_linux_init_abi): Don't set tdep->syscall_next_pc.
* arm-tdep.c (arm_get_next_pcs_syscall_next_pc): Declare.
(arm_get_next_pcs_syscall_next_pc): Make it static. Don't
call tdep->syscall_next_pc.
* arm-tdep.h (struct gdbarch_tdep) <syscall_next_pc>: Remove.
(arm_get_next_pcs_syscall_next_pc): Remove.
Two recent patches breaks GDB C++ mode build,
https://sourceware.org/ml/gdb-patches/2016-01/msg00150.htmlhttps://sourceware.org/ml/gdb-patches/2016-01/msg00086.html
gdb/remote.c: In function 'int remote_set_syscall_catchpoint(target_ops*, int, int, int, int, int*)':
gdb/remote.c:2036:39: error: invalid conversion from 'void*' to 'char*' [-fpermissive]
catch_packet = xmalloc (maxpktsz);
^
gdb/thread.c: In function 'int do_captured_thread_select(ui_out*, void*)':
gdb/git/gdb/thread.c:1999:24: error: invalid conversion from 'void*' to 'const char*' [-fpermissive]
const char *tidstr = tidstr_v;
^
this patch fixes them by casting void * to the right type.
gdb:
2016-01-14 Yao Qi <yao.qi@linaro.org>
* remote.c (remote_set_syscall_catchpoint): Cast to char *.
* thread.c (do_captured_thread_select): Cast to const char *.
This patch makes thumb2_breakpoint static. When writing this patch,
I find the only reason we keep thumb2_breakpoint extern is that it
is used as an argument passed to arm_gdbserver_get_next_pcs. However,
field arm_thumb2_breakpoint is only used in a null check in
thumb_get_next_pcs_raw, so I wonder why do need to pass thumb2_breakpoint
to arm_gdbserver_get_next_pcs.
thumb2_breakpoint was added by Daniel Jacobowitz in order to support
single-step IT block
https://sourceware.org/ml/gdb-patches/2010-01/msg00624.html the logic
there was if we have 32-bit thumb-2 breakpoint defined, we can safely
single-step IT block, otherwise, we can't. Daniel didn't want to use
16-bit thumb BKPT instruction, because it triggers even on instruction
which should be executed. Secondly, using 16-bit thumb illegal
instruction on top of 32-bit thumb instruction may break the meaning of
original IT blocks, because the other 16-bit can be regarded as an
instruction. See more explanations from Daniel's kernel patch
http://www.spinics.net/lists/arm-kernel/msg80476.html
Let us back to this patch, GDB/GDBserver can safely single step
IT block if thumb2_breakpoint is defined, but the single step logic
doesn't have to know the thumb-2 breakpoint instruction. Only
breakpoint insertion mechanism decides to use which breakpoint
instruction. In the software single step code, instead of pass
thumb2_breakpoint, we can pass a boolean variable
has_thumb2_breakpoint indicate whether the target has thumb-2
breakpoint defined, which is equivalent to the original code.
Regression tested on arm-linux. No regression.
gdb:
2016-01-14 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.c (arm_get_next_pcs_ctor): Change
argument arm_thumb2_breakpoint to has_thumb2_breakpoint.
(thumb_get_next_pcs_raw): Check has_thumb2_breakpoint
instead.
* arch/arm-get-next-pcs.h (struct arm_get_next_pcs)
<arm_thumb2_breakpoint>: Remove.
<has_thumb2_breakpoint>: New field.
(arm_get_next_pcs_ctor): Update declaration.
* arm-linux-tdep.c (arm_linux_software_single_step): Pass
1 to arm_get_next_pcs_ctor.
* arm-tdep.c (arm_software_single_step): Pass 0 to
arm_get_next_pcs_ctor.
gdb/gdbserver:
2016-01-14 Yao Qi <yao.qi@linaro.org>
* linux-aarch32-low.c (thumb2_breakpoint): Make it static.
* linux-aarch32-low.h (thumb2_breakpoint): Remove declaration.
* linux-arm-low.c (arm_gdbserver_get_next_pcs): Pass 1 to
arm_get_next_pcs_ctor.
When reading instruction, we should use byte_order_for_code instead
of byte_order.
gdb:
2016-01-13 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.c (arm_get_next_pcs_raw): Use
byte_order_for_code to read instruction.
This commit adds a new $_gthread convenience variable, that is like
$_thread, but holds the current thread's global thread id.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention $_gthread.
* gdbthread.h (struct thread_info) <global_num>: Mention
$_gthread.
* thread.c (thread_num_make_value_helper): New function.
(thread_id_make_value): Delete.
(thread_id_per_inf_num_make_value, global_thread_id_make_value):
New.
(thread_funcs): Adjust.
(gthread_funcs): New.
(_initialize_thread): Register $_gthread variable.
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.base/default.exp: Expect $_gthread as well.
* gdb.multi/tids.exp: Test $_gthread.
* gdb.threads/thread-specific.exp: Test $_gthread.
gdb/doc/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Document the $_gthread convenience
variable.
(Convenience Vars): Likewise.
This commit adds a new Python InferiorThread.global_num attribute.
This can be used to pass the correct thread ID to Breakpoint.thread,
which takes a global thread ID, not a per-inferior thread number.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention InferiorThread.global_num.
* python/py-infthread.c (thpy_get_global_num): New function.
(thread_object_getset): Register "global_num".
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.multi/tids.exp: Test InferiorThread.global_num and
Breakpoint.thread.
* gdb.python/py-infthread.exp: Test InferiorThread.global_num.
gdb/doc/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* python.texi (Breakpoints In Python) <Breakpoint.thread>: Add
anchor.
(Threads In Python): Document new InferiorThread.global_num
attribute.
This commit changes GDB to track thread numbers per-inferior. Then,
if you're debugging multiple inferiors, GDB displays
"inferior-num.thread-num" instead of just "thread-num" whenever it
needs to display a thread:
(gdb) info inferiors
Num Description Executable
1 process 6022 /home/pedro/gdb/tests/threads
* 2 process 6037 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
1.1 Thread 0x7ffff7fc2740 (LWP 6022) "threads" (running)
1.2 Thread 0x7ffff77c0700 (LWP 6028) "threads" (running)
1.3 Thread 0x7ffff7fc2740 (LWP 6032) "threads" (running)
2.1 Thread 0x7ffff7fc1700 (LWP 6037) "threads" (running)
2.2 Thread 0x7ffff77c0700 (LWP 6038) "threads" (running)
* 2.3 Thread 0x7ffff7fc2740 (LWP 6039) "threads" (running)
(gdb)
...
(gdb) thread 1.1
[Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
(gdb)
...
etc.
You can still use "thread NUM", in which case GDB infers you're
referring to thread NUM of the current inferior.
The $_thread convenience var and Python's InferiorThread.num attribute
are remapped to the new per-inferior thread number. It's a backward
compatibility break, but since it only matters when debugging multiple
inferiors, I think it's worth doing.
Because MI thread IDs need to be a single integer, we keep giving
threads a global identifier, _in addition_ to the per-inferior number,
and make MI always refer to the global thread IDs. IOW, nothing
changes from a MI frontend's perspective.
Similarly, since Python's Breakpoint.thread and Guile's
breakpoint-thread/set-breakpoint-thread breakpoint methods need to
work with integers, those are adjusted to work with global thread IDs
too. Follow up patches will provide convenient means to access
threads' global IDs.
To avoid potencially confusing users (which also avoids updating much
of the testsuite), if there's only one inferior and its ID is "1",
IOW, the user hasn't done anything multi-process/inferior related,
then the "INF." part of thread IDs is not shown. E.g,.:
(gdb) info inferiors
Num Description Executable
* 1 process 15275 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb) add-inferior
Added inferior 2
(gdb) info threads
Id Target Id Frame
* 1.1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb)
No regressions on x86_64 Fedora 20.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention that thread IDs are now per inferior and global
thread IDs.
* Makefile.in (SFILES): Add tid-parse.c.
(COMMON_OBS): Add tid-parse.o.
(HFILES_NO_SRCDIR): Add tid-parse.h.
* ada-tasks.c: Adjust to use ptid_to_global_thread_id.
* breakpoint.c (insert_breakpoint_locations)
(remove_threaded_breakpoints, bpstat_check_breakpoint_conditions)
(print_one_breakpoint_location, set_longjmp_breakpoint)
(check_longjmp_breakpoint_for_call_dummy)
(set_momentary_breakpoint): Adjust to use global IDs.
(find_condition_and_thread, watch_command_1): Use parse_thread_id.
(until_break_command, longjmp_bkpt_dtor)
(breakpoint_re_set_thread, insert_single_step_breakpoint): Adjust
to use global IDs.
* dummy-frame.c (pop_dummy_frame_bpt): Adjust to use
ptid_to_global_thread_id.
* elfread.c (elf_gnu_ifunc_resolver_stop): Likewise.
* gdbthread.h (struct thread_info): Rename field 'num' to
'global_num. Add new fields 'per_inf_num' and 'inf'.
(thread_id_to_pid): Rename thread_id_to_pid to
global_thread_id_to_ptid.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(find_thread_id): Rename to ...
(find_thread_global_id): ... this.
(ALL_THREADS, ALL_THREADS_BY_INFERIOR): Declare.
(print_thread_info): Add comment.
* tid-parse.h: New file.
* tid-parse.c: New file.
* infcmd.c (step_command_fsm_prepare)
(step_command_fsm_should_stop): Adjust to use the global thread
ID.
(until_next_command, until_next_command)
(finish_command_fsm_should_stop): Adjust to use the global thread
ID.
(attach_post_wait): Adjust to check the inferior number too.
* inferior.h (struct inferior) <highest_thread_num>: New field.
* infrun.c (handle_signal_stop)
(insert_exception_resume_breakpoint)
(insert_exception_resume_from_probe): Adjust to use the global
thread ID.
* record-btrace.c (record_btrace_open): Use global thread IDs.
* remote.c (process_initial_stop_replies): Also consider the
inferior number.
* target.c (target_pre_inferior): Clear the inferior's highest
thread num.
* thread.c (clear_thread_inferior_resources): Adjust to use the
global thread ID.
(new_thread): New inferior parameter. Adjust to use it. Set both
the thread's global ID and the thread's per-inferior ID.
(add_thread_silent): Adjust.
(find_thread_global_id): New.
(find_thread_id): Make static. Adjust to rename.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(thread_id_to_pid): Rename to ...
(global_thread_id_to_ptid): ... this. Adjust.
(first_thread_of_process): Adjust.
(do_captured_list_thread_ids): Adjust to use global thread IDs.
(should_print_thread): New function.
(print_thread_info): Rename to ...
(print_thread_info_1): ... this, and add new show_global_ids
parameter. Handle it. Iterate over inferiors.
(print_thread_info): Reimplement as wrapper around
print_thread_info_1.
(show_inferior_qualified_tids): New function.
(print_thread_id): Use it.
(tp_array_compar): Compare inferior numbers too.
(thread_apply_command): Use tid_range_parser.
(do_captured_thread_select): Use parse_thread_id.
(thread_id_make_value): Adjust.
(_initialize_thread): Adjust "info threads" help string.
* varobj.c (struct varobj_root): Update comment.
(varobj_create): Adjust to use global thread IDs.
(value_of_root_1): Adjust to use global_thread_id_to_ptid.
* windows-tdep.c (display_tib): No longer accept an argument.
* cli/cli-utils.c (get_number_trailer): Make extern.
* cli/cli-utils.h (get_number_trailer): Declare.
(get_number_const): Adjust documentation.
* mi/mi-cmd-var.c (mi_cmd_var_update_iter): Adjust to use global
thread IDs.
* mi/mi-interp.c (mi_new_thread, mi_thread_exit)
(mi_on_normal_stop, mi_output_running_pid, mi_on_resume):
* mi/mi-main.c (mi_execute_command, mi_cmd_execute): Likewise.
* guile/scm-breakpoint.c (gdbscm_set_breakpoint_thread_x):
Likewise.
* python/py-breakpoint.c (bppy_set_thread): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-infthread.c (thpy_get_num): Add comment and return the
per-inferior thread ID.
(thread_object_getset): Update comment of "num".
gdb/testsuite/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.base/break.exp: Adjust to output changes.
* gdb.base/hbreak2.exp: Likewise.
* gdb.base/sepdebug.exp: Likewise.
* gdb.base/watch_thread_num.exp: Likewise.
* gdb.linespec/keywords.exp: Likewise.
* gdb.multi/info-threads.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.multi/tids.c: New file.
* gdb.multi/tids.exp: New file.
gdb/doc/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Document per-inferior thread IDs,
qualified thread IDs, global thread IDs and thread ID lists.
(Set Watchpoints, Thread-Specific Breakpoints): Adjust to refer to
thread IDs.
(Convenience Vars): Document the $_thread convenience variable.
(Ada Tasks): Adjust to refer to thread IDs.
(GDB/MI Async Records, GDB/MI Thread Commands, GDB/MI Ada Tasking
Commands, GDB/MI Variable Objects): Update to mention global
thread IDs.
* guile.texi (Breakpoints In Guile)
<breakpoint-thread/set-breakpoint-thread breakpoint>: Mention
global thread IDs instead of thread IDs.
* python.texi (Threads In Python): Adjust documentation of
InferiorThread.num.
(Breakpoint.thread): Mention global thread IDs instead of thread
IDs.
Add a new function to print a thread ID, in the style of paddress,
plongest, etc. and adjust all CLI-reachable paths to use it.
This gives us a single place to tweak to print inferior-qualified
thread IDs later:
- [Switching to thread 1 (Thread 0x7ffff7fc2740 (LWP 8155))]
+ [Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
etc., though for now, this has no user-visible change.
No regressions on x86_64 Fedora 20.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* breakpoint.c (remove_threaded_breakpoints)
(print_one_breakpoint_location): Use print_thread_id.
* btrace.c (btrace_enable, btrace_disable, btrace_teardown)
(btrace_fetch, btrace_clear): Use print_thread_id.
* common/print-utils.c (CELLSIZE): Delete.
(get_cell): Rename to ...
(get_print_cell): ... this and made extern. Adjust call callers.
Adjust to use PRINT_CELL_SIZE.
* common/print-utils.h (get_print_cell): Declare.
(PRINT_CELL_SIZE): New.
* gdbthread.h (print_thread_id): Declare.
* infcmd.c (signal_command): Use print_thread_id.
* inferior.c (print_inferior): Use print_thread_id.
* infrun.c (handle_signal_stop)
(insert_exception_resume_breakpoint)
(insert_exception_resume_from_probe)
(print_signal_received_reason): Use print_thread_id.
* record-btrace.c (record_btrace_info)
(record_btrace_resume_thread, record_btrace_cancel_resume)
(record_btrace_step_thread, record_btrace_wait): Use
print_thread_id.
* thread.c (thread_apply_all_command): Use print_thread_id.
(print_thread_id): New function.
(thread_apply_command): Use print_thread_id.
(thread_command, thread_find_command, do_captured_thread_select):
Use print_thread_id.
So a script can easily get at a thread's inferior and its number.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention InferiorThread.inferior.
* python/py-infthread.c (thpy_get_inferior): New.
(thread_object_getset): Register "inferior".
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.python/py-infthread.exp: Test InferiorThread.inferior.
gdb/doc/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* python.texi (Threads In Python): Document
InferiorThread.inferior.
This commit merges both the registers and $_siginfo "thread
running/executing" checks into a single function.
Accessing $_siginfo from a "catch signal" breakpoint condition doesn't
work. The condition always fails with "Selected thread is running":
(gdb) catch signal
Catchpoint 3 (standard signals)
(gdb)
condition $bpnum $_siginfo.si_signo == 5
(gdb) continue
Continuing.
Error in testing breakpoint condition:
Selected thread is running.
Catchpoint 3 (signal SIGUSR1), 0x0000003615e35877 in __GI_raise (sig=10) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
56 return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);
(gdb)
When accessing the $_siginfo object, we check whether the thread is
marked running (external/public) state and refuse the access if so.
This is so "print $_siginfo" at the prompt fails nicelly when the
current thread is running. While evaluating breakpoint conditionals,
we haven't decided yet whether the thread is going to stop, so
is_running still returns true, and we thus always error out.
Evaluating an expression that requires registers access is really
conceptually the same -- we could think of $_siginfo as a pseudo
register. However, in that case we check whether the thread is marked
executing (internal/private state), not running (external/public
state). Changing the $_siginfo validation to check is_executing as
well fixes the bug in question.
Note that checking is_executing is not fully correct, not even for
registers. See PR 19389. However, I think this is the lesser of two
evils and ends up as an improvement. We at least now have a single
place to fix.
Tested on x86_64 GNU/Linux.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
PR breakpoints/19388
* frame.c (get_current_frame): Use validate_registers_access.
* gdbthread.h (validate_registers_access): Declare.
* infrun.c (validate_siginfo_access): Delete.
(siginfo_value_read, siginfo_value_write): Use
validate_registers_access.
* thread.c (validate_registers_access): New function.
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
PR breakpoints/19388
* gdb.base/catch-signal-siginfo-cond.c: New file.
* gdb.base/catch-signal-siginfo-cond.exp: New file.
This adds a new QCatchSyscalls packet to enable 'catch syscall', and new
stop reasons "syscall_entry" and "syscall_return" for those events. It
is currently only supported on Linux x86 and x86_64.
gdb/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* NEWS (Changes since GDB 7.10): Mention QCatchSyscalls and the
syscall_entry and syscall_return stop reasons. Mention GDB
support for remote catch syscall.
* remote.c (PACKET_QCatchSyscalls): New enum.
(remote_set_syscall_catchpoint): New function.
(remote_protocol_features): New element for QCatchSyscalls.
(remote_parse_stop_reply): Parse syscall_entry/return stops.
(init_remote_ops): Install remote_set_syscall_catchpoint.
(_initialize_remote): Config QCatchSyscalls.
* linux-nat.h (struct lwp_info) <syscall_state>: Comment typo.
gdb/doc/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* gdb.texinfo (Remote Configuration): List the QCatchSyscalls packet.
(Stop Reply Packets): List the syscall entry and return stop reasons.
(General Query Packets): Describe QCatchSyscalls, and add it to the
table and the detailed list of stub features.
gdb/gdbserver/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* inferiors.h: Include "gdb_vecs.h".
(struct process_info): Add syscalls_to_catch.
* inferiors.c (remove_process): Free syscalls_to_catch.
* remote-utils.c (prepare_resume_reply): Report syscall_entry and
syscall_return stops.
* server.h (UNKNOWN_SYSCALL, ANY_SYSCALL): Define.
* server.c (handle_general_set): Handle QCatchSyscalls.
(handle_query): Report support for QCatchSyscalls.
* target.h (struct target_ops): Add supports_catch_syscall.
(target_supports_catch_syscall): New macro.
* linux-low.h (struct linux_target_ops): Add get_syscall_trapinfo.
(struct lwp_info): Add syscall_state.
* linux-low.c (handle_extended_wait): Mark syscall_state as an entry.
Maintain syscall_state and syscalls_to_catch across exec.
(get_syscall_trapinfo): New function, proxy to the_low_target.
(linux_low_ptrace_options): Enable PTRACE_O_TRACESYSGOOD.
(linux_low_filter_event): Toggle syscall_state entry/return for
syscall traps, and set it ignored for all others.
(gdb_catching_syscalls_p): New function.
(gdb_catch_this_syscall_p): New function.
(linux_wait_1): Handle SYSCALL_SIGTRAP.
(linux_resume_one_lwp_throw): Add PTRACE_SYSCALL possibility.
(linux_supports_catch_syscall): New function.
(linux_target_ops): Install it.
* linux-x86-low.c (x86_get_syscall_trapinfo): New function.
(the_low_target): Install it.
gdb/testsuite/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* gdb.base/catch-syscall.c (do_execve): New variable.
(main): Conditionally trigger an execve.
* gdb.base/catch-syscall.exp: Enable testing for remote targets.
(test_catch_syscall_execve): New, check entry/return across execve.
(do_syscall_tests): Call test_catch_syscall_execve.
This patch fixes the following GDB build error in C++ mode.
gdb/nat/linux-ptrace.c: In function 'int linux_child_function(void*)':
gdb/nat/linux-ptrace.c:323:65: error: invalid conversion from 'void*' to 'gdb_byte* {aka unsigned char*}' [-fpermissive]
linux_fork_to_function (child_stack, linux_grandchild_function);
^
gdb:
2016-01-12 Yao Qi <yao.qi@linaro.org>
* nat/linux-ptrace.c (linux_child_function): Cast child_stack
to gdb_byte * and pass to linux_fork_to_function.
I see the following compile error with an old bfin-uclinux gcc to
build GDBserver,
cc1: warnings being treated as errors
gdb/gdbserver/../nat/linux-ptrace.c: In function 'linux_fork_to_function':
gdb/gdbserver/../nat/linux-ptrace.c:283: error: passing argument 1 of 'clone' from incompatible pointer type
in glibc, clone's prototype is like this, and in uClibc, it is the same,
int clone(int (*fn)(void *), void *child_stack,
int flags, void *arg, ...
/* pid_t *ptid, struct user_desc *tls, pid_t *ctid */ );
so this patch changes function signature from 'void (*function) (gdb_byte *)'
to 'int (*function) (void *)'.
Note that I find Pedro advised to change argument type from 'void *'
to 'gdb_byte *' during the patch review
https://sourceware.org/ml/gdb-patches/2013-08/msg00611.html however,
I think fix compile error can justify the change back to 'void *'.
gdb:
2016-01-12 Yao Qi <yao.qi@linaro.org>
* nat/linux-ptrace.c (linux_fork_to_function): Change type
of argument 'function'.
(linux_grandchild_function): Change return type to 'int'.
Change child_stack's type to 'void *'.
(linux_child_function): Likewise.
The GNU Coding Standards say:
"Please do not include any trademark acknowledgements in GNU
software packages or documentation."
gdb/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
Remove use of the registered trademark symbol throughout.
gdb/gdbserver/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
Remove use of the registered trademark symbol throughout.
gdb/doc/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
Remove use of the registered trademark symbol throughout.
I see a timeout in gdb.base/random-signal.exp,
Continuing.^M
PASS: gdb.base/random-signal.exp: continue
^CPython Exception <type 'exceptions.KeyboardInterrupt'> <type
exceptions.KeyboardInterrupt'>: ^M
FAIL: gdb.base/random-signal.exp: stop with control-c (timeout)
it can be reproduced by running random-signal.exp with native-gdbserver
in a loop, like this, and the fail will be shown in about 20 runs,
$ (set -e; while true; do make check RUNTESTFLAGS="--target_board=native-gdbserver random-signal.exp"; done)
In the test, the program is being single-stepped for software watchpoint,
and in each internal stop, python unwinder sniffer is used,
#0 pyuw_sniffer (self=<optimised out>, this_frame=<optimised out>, cache_ptr=0xd554f8) at /home/yao/SourceCode/gnu/gdb/git/gdb/python/py-unwind.c:608
#1 0x00000000006a10ae in frame_unwind_try_unwinder (this_frame=this_frame@entry=0xd554e0, this_cache=this_cache@entry=0xd554f8, unwinder=0xecd540)
at /home/yao/SourceCode/gnu/gdb/git/gdb/frame-unwind.c:107
#2 0x00000000006a143f in frame_unwind_find_by_frame (this_frame=this_frame@entry=0xd554e0, this_cache=this_cache@entry=0xd554f8)
at /home/yao/SourceCode/gnu/gdb/git/gdb/frame-unwind.c:163
#3 0x000000000069dc6b in compute_frame_id (fi=0xd554e0) at /home/yao/SourceCode/gnu/gdb/git/gdb/frame.c:454
#4 get_prev_frame_if_no_cycle (this_frame=this_frame@entry=0xd55410) at /home/yao/SourceCode/gnu/gdb/git/gdb/frame.c:1781
#5 0x000000000069fdb9 in get_prev_frame_always_1 (this_frame=0xd55410) at /home/yao/SourceCode/gnu/gdb/git/gdb/frame.c:1955
#6 get_prev_frame_always (this_frame=this_frame@entry=0xd55410) at /home/yao/SourceCode/gnu/gdb/git/gdb/frame.c:1971
#7 0x00000000006a04b1 in get_prev_frame (this_frame=this_frame@entry=0xd55410) at /home/yao/SourceCode/gnu/gdb/git/gdb/frame.c:2213
when GDB goes to python extension, or other language extension, the
SIGINT handler is changed, and is restored when GDB leaves extension
language. GDB only stays in extension language for a very short period
in this case, but if ctrl-c is pressed at that moment, python extension
will handle the SIGINT, and exceptions.KeyboardInterrupt is shown.
Language extension is used in GDB side rather than inferior side,
so GDB should only change SIGINT handler for extension language when
the terminal is ours (not inferior's). This is what this patch does.
With this patch applied, I run random-signal.exp in a loop for 18
hours, and no fail is shown.
gdb:
2016-01-08 Yao Qi <yao.qi@linaro.org>
* extension.c: Include target.h.
(set_active_ext_lang): Only call install_gdb_sigint_handler,
check_quit_flag, and set_quit_flag if target_terminal_is_ours
returns false.
(restore_active_ext_lang): Likewise.
* target.c (target_terminal_is_ours): New function.
* target.h (target_terminal_is_ours): Declare.
Complement commit d09f2c3f [target_read_memory&co: no longer return
target_xfer_status] and apply the same change made to the big-endian leg
of the function to the little-endian leg as well.
gdb/
* mips-tdep.c (mips_breakpoint_from_pc): Rename local `status'
to `err' in the little-endian leg.
This patch makes arm_get_next_pcs_raw and thumb_get_next_pcs_raw
static.
gdb:
2016-01-06 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.c (arm_get_next_pcs): Move it to some
lines below.
(thumb_get_next_pcs_raw): Make it static.
(arm_get_next_pcs_raw): Likewise.
* arch/arm-get-next-pcs.h (thumb_get_next_pcs_raw): Remove the
declaration.
(arm_get_next_pcs_raw): Likewise.
There has never been a GNU/sim port for the S+Core architecture.
It was added to support private code that has (and most likely
never will) see the light of day [1]. Punt this as we don't do
this for other people. If you want to maintain a proprietary
internal build, then that's not really our problem.
[1] https://sourceware.org/ml/gdb-patches/2009-03/msg00390.html
Multitarget builds currently fail when:
(1) simulator support is enabled (the main --target supports target sim)
(2) powerpc is included in the --enable-targets list
(3) powerpc is not the main/default target (--target)
This is because the powerpc sim provides a non-standard API function
sim_spr_register_name which gdb/rs6000-tdep.c utilizes. Since the sim
does not yet support multitarget, only the sim (if one exists) for the
main target is built. When that target isn't powerpc, this function
is not available leading to linking errors:
rs6000-tdep.c:(.text+0x1e34d): undefined reference to
`sim_spr_register_name'
Fix this by only using that API if the sim linked in is the powerpc
sim.
gdb/ChangeLog:
2016-01-05 Pedro Alves <palves@redhat.com>
PR sim/13418
* configure.ac: Define WITH_PPC_SIM when linking in the sim and
the target is powerpc*.
* configure: Regenerate.
* config.in: Regenerate.
In btrace_pt_readmem_callback, we read memory inside TRY/CATCH and return in
case of an error return value. This corrupts the cleanup chain, which
eventually results in a SEGV when doing or discarding cleanups later on.
gdb/
* btrace.c (btrace_pt_readmem_callback): Do not return in TRY/CATCH.
testsuite/
* gdb.btrace/dlopen.exp: New.
* gdb.btrace/dlopen.c: New.
* gdb.btrace/dlopen-dso.c: New.
gdb/ChangeLog:
* top.c (print_gdb_version): Change copyright year in version
message.
gdb/gdbserver/ChangeLog:
* gdbreplay.c (gdbreplay_version): Change copyright year in
version message.
* server.c (gdbserver_version): Likewise.
Per GDB the "Start of New Year Procedure", this patch
- renames the current ChangeLog into ChangeLog-2015;
- starts a new ChangeLog file.
gdb/ChangeLog:
* config/djgpp/fnchange.lst: Add entry for gdb/ChangeLog-2015.
The following change...
commit 43499ea30d
Date: Tue Nov 17 15:17:44 2015 +0000
Subject: [C++/mingw] windows-nat.c casts
... causes a small regression in GDB, where we get the following
warning at startup:
% gdb
C:\[...]\gdb.exe: warning: cannot automatically find executable file or library to read symbols.
Use "file" or "dll" command to load executable/libraries directly.
GNU gdb (GDB) 7.10.50.20151218-cvs (with AdaCore local changes)
[...]
(gdb)
The warning comes from _initialize_loadable which tries to dynamically
load some symbols from kernel32.dll and psapi.dll, and in particular:
hm = LoadLibrary ("psapi.dll");
if (hm)
{
GPA (hm, EnumProcessModules);
GPA (hm, GetModuleInformation);
GPA (hm, GetModuleFileNameEx);
}
The problem is that the new GPA macro assumes that the name of
the variable we use to point to the function, and the name of
its associated symbol are the same. This is mostly the case,
except for GetModuleFileNameEx, where the name is provided by
the GetModuleFileNameEx_name macro (defined differently depending
on whether we are on cygwin or not). As a result, the dynamic
resolution for GetModuleFileNameEx returns NULL, and we trip
the following check which leads to the warning:
if (!EnumProcessModules || !GetModuleInformation || !GetModuleFileNameEx)
{
[...]
warning(_("[...]"));
}
This patch fixes the problem by calling GetProcAddress directly,
rather than through the GPA macro, but in a way which hopefully
avoids the C++ compilation warning that the previous patch was
trying to get rid of.
gdb/ChangeLog:
* windows-nat.c (_initialize_loadable): Fix computing of
GetModuleFileNameEx.
2015-12-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/
* event-top.c (command_handler): Don't require stdin to be a tty
for call to reinitialize_more_filter.
* top.c (command_loop): Likewise.
This patch fixes the cxx build broken by commit : d9311bfaf5.
Pushed as obvious.
gdb/ChangeLog:
* arm-tdep.c (arm_get_next_pcs_read_memory_unsigned_integer): Cast
to enum bfd_endian)
This patch teaches GDBServer how to software single step on ARM
linux by sharing code with GDB.
The arm_get_next_pcs function in GDB is now shared with GDBServer. So
that GDBServer can use the function to return the possible addresses of
the next PC.
A proper shared context was also needed so that we could share the code,
this context is described in the arm_get_next_pcs structure.
Testing :
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* Makefile.in (ALL_TARGET_OBS): Append arm-get-next-pcs.o,
arm-linux.o.
(ALLDEPFILES): Append arm-get-next-pcs.c, arm-linux.c
(arm-linux.o): New rule.
(arm-get-next-pcs.o): New rule.
* arch/arm-get-next-pcs.c: New file.
* arch/arm-get-next-pcs.h: New file.
* arch/arm-linux.h: New file.
* arch/arm-linux.c: New file.
* arm.c: Include common-regcache.c.
(thumb_advance_itstate): Moved from arm-tdep.c.
(arm_instruction_changes_pc): Likewise.
(thumb_instruction_changes_pc): Likewise.
(thumb2_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
* arm.h (submask): Move macro from arm-tdep.h
(bit): Likewise.
(bits): Likewise.
(sbits): Likewise.
(BranchDest): Likewise.
(thumb_advance_itstate): Moved declaration from arm-tdep.h
(arm_instruction_changes_pc): Likewise.
(thumb_instruction_changes_pc): Likewise.
(thumb2_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
* arm-linux-tdep.c: Include arch/arm.h, arch/arm-get-next-pcs.h
arch/arm-linux.h.
(arm_linux_get_next_pcs_ops): New struct.
(ARM_SIGCONTEXT_R0, ARM_UCONTEXT_SIGCONTEXT,
ARM_OLD_RT_SIGFRAME_SIGINFO, ARM_OLD_RT_SIGFRAME_UCONTEXT,
ARM_NEW_RT_SIGFRAME_UCONTEXT, ARM_NEW_SIGFRAME_MAGIC): Move stack
layout defines to arch/arm-linux.h.
(arm_linux_sigreturn_next_pc_offset): Move to arch/arm-linux.c.
(arm_linux_software_single_step): Adjust for arm_get_next_pcs
implementation.
* arm-tdep.c: Include arch/arm-get-next-pcs.h.
(arm_get_next_pcs_ops): New struct.
(submask): Move macro to arm.h.
(bit): Likewise.
(bits): Likewise.
(sbits): Likewise.
(BranchDest): Likewise.
(thumb_instruction_changes_pc): Move to arm.c
(thumb2_instruction_changes_pc): Likewise.
(arm_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
(thumb_advance_itstate): Likewise.
(thumb_get_next_pc_raw): Move to arm-get-next-pcs.c.
(arm_get_next_pc_raw): Likewise.
(arm_get_next_pc): Likewise.
(thumb_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence): Likewise.
(arm_get_next_pcs_read_memory_unsigned_integer): New function.
(arm_get_next_pcs_addr_bits_remove): Likewise.
(arm_get_next_pcs_syscall_next_pc): Likewise.
(arm_get_next_pcs_is_thumb): Likewise.
(arm_software_single_step): Adjust for arm_get_next_pcs
implementation.
* arm-tdep.h: (arm_get_next_pc): Remove declaration.
(arm_get_next_pcs_read_memory_unsigned_integer):
New declaration.
(arm_get_next_pcs_addr_bits_remove): Likewise.
(arm_get_next_pcs_syscall_next_pc): Likewise.
(arm_get_next_pcs_is_thumb): Likewise.
(arm_deal_with_atomic_sequence: Remove declaration.
* common/gdb_vecs.h: Add CORE_ADDR vector definition.
* configure.tgt (aarch64*-*-linux): Add arm-get-next-pcs.o,
arm-linux.o.
(arm*-wince-pe): Add arm-get-next-pcs.o.
(arm*-*-linux*): Add arm-get-next-pcs.o, arm-linux.o,
arm-get-next-pcs.o
(arm*-*-netbsd*,arm*-*-knetbsd*-gnu): Add arm-get-next-pcs.o.
(arm*-*-openbsd*): Likewise.
(arm*-*-symbianelf*): Likewise.
(arm*-*-*): Likewise.
* symtab.h: Move CORE_ADDR vector definition to gdb_vecs.h.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Append arch/arm-linux.c,
arch/arm-get-next-pcs.c.
(arm-linux.o): New rule.
(arm-get-next-pcs.o): New rule.
* configure.srv (arm*-*-linux*): Add arm-get-next-pcs.o,
arm-linux.o.
* linux-aarch32-low.c (arm_abi_breakpoint): Remove macro. Moved
to linux-aarch32-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): Make non-static.
* linux-aarch32-low.h (arm_abi_breakpoint): New macro. Moved
from linux-aarch32-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): New declaration.
* linux-arm-low.c: Include arch/arm-linux.h
aarch/arm-get-next-pcs.h, sys/syscall.h.
(get_next_pcs_ops): New struct.
(get_next_pcs_addr_bits_remove): New function.
(get_next_pcs_is_thumb): New function.
(get_next_pcs_read_memory_unsigned_integer): Likewise.
(arm_sigreturn_next_pc): Likewise.
(get_next_pcs_syscall_next_pc): Likewise.
(arm_gdbserver_get_next_pcs): Likewise.
(struct linux_target_ops) <arm_gdbserver_get_next_pcs>:
Initialize.
* linux-low.h: Move CORE_ADDR vector definition to gdb_vecs.h.
* server.h: Include gdb_vecs.h.
This patch is in preparation for software single step support on ARM in
GDBServer. It adds a new shared function regcache_raw_read_unsigned and
regcache_raw_get_unsigned so that GDB and GDBServer can use the same call
to fetch a raw register into an integer.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* Makefile.in (SFILES): Append common/common-regcache.c.
(COMMON_OBS): Append common/common-regcache.o.
(common-regcache.o): New rule.
* common/common-regcache.h (register_status) New enum.
(regcache_raw_read_unsigned): New declaration.
* common/common-regcache.c: New file.
* regcache.h (enum register_status): Move to common-regcache.h.
(regcache_raw_read_unsigned): Likewise.
(regcache_raw_get_unsigned): Likewise.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Append common/common-regcache.c.
(OBS): Append common-regcache.o.
(common-regcache.o): New rule.
* regcache.c (init_register_cache): Initialize cache to
REG_UNAVAILABLE.
(regcache_raw_read_unsigned): New function.
* regcache.h (REG_UNAVAILABLE, REG_VALID): Replaced by shared
register_status enum.
This patch is in preparation for software single step support on ARM in
GDBServer. It refactors arm_*_software_single_step and sub-functions to
use regcache instead of frame to access registers so that the code can be
shared more easily between GDB and GDBServer.
Note also that since the intention is at some point to get rid of frame
completely in that function, memory reads have also been replaced by
read_memory_unsigned_integer rather than get_frame_memory_unsigned.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* arm-linux-tdep.c (arm_linux_sigreturn_next_pc_offset): New function.
(arm_linux_sigreturn_next_pc): Likewise.
(arm_linux_syscall_next_pc): Use regcache instead of frame.
(arm_linux_software_single_step): Likewise.
* arm-tdep.c (arm_is_thumb): New function.
(shifted_reg_va): Use regcache instead of frame.
(thumb_get_next_pc_raw): Likewise.
(arm_get_next_pc_raw): Likewise.
(arm_get_next_pc): Likewise.
(thumb_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence): Likewise.
(arm_software_single_step): Likewise.
* arm-tdep.h (struct gdbarch_tdep): Use regcache for syscall_next_pc.
(arm_get_next_pc): Use regcache.
(arm_deal_with_atomic_sequence): Likewise.
(arm_is_thumb): New declaration.
* regcache.c (regcache_raw_get_unsigned): New function.
* regcache.h (regcache_raw_get_unsigned): New function declaration.
This patch is in preparation for software single stepping support on ARM
it shares some functions and definitions that will be needed.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
Not tested: wince/bsd build.
gdb/ChangeLog:
* arch/arm.c (bitcount): Move from arm-tdep.c.
(condition_true): Likewise.
* arch/arm.h (Instruction Definitions): Move form arm-tdep.h.
(condition_true): Move defenition from arm-tdep.h.
(bitcount): Likewise.
* arm-tdep.c (condition_true): Move to arch/arm.c.
(bitcount): Likewise.
* arm-tdep.h (Instruction Definitions): Move to arch/arm.h.
* arm-wince-tdep.c: Include arch/arm.h.
* armnbsd-tdep.c: Likewise.
Note: this applies on top of:
[PATCH] Remove support for LinuxThreads and vendor 2.4 kernels w/ backported NPTL
https://sourceware.org/ml/gdb-patches/2015-12/msg00214.html
We try to avoid using libthread_db.so to list threads in the inferior
when debugging live processes, but the code that decides whether to
use it decides incorrectly if you have more than one inferior, and the
current inferior doesn't have execution yet. The result is visible
as:
(gdb) add-inferior
Added inferior 2
(gdb) inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) info inferiors
Num Description Executable
1 process 15397 /home/pedro/gdb/tests/threads
* 2 <null>
(gdb) info threads
Cannot find new threads: generic error
(gdb)
Fix this by checking whether each inferior has execution rather than
just the current inferior.
By moving the core updating to linux-nat.c's update_thread_list
implementation, this also ends up fixing the
lwp-last-seen-running-on-core updating in the case we're debugging a
program that uses raw clone rather than pthreads, as linux-thread-db.c
isn't pushed in the target stack in that scenario.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-12-17 Pedro Alves <palves@redhat.com>
PR threads/19354
* linux-nat.c (linux_nat_update_thread_list): Update process cores
each lwp was last seen running on here.
* linux-thread-db.c (update_thread_core): Delete.
(thread_db_update_thread_list_td_ta_thr_iter): Rename to ...
(thread_db_update_thread_list): ... this. Skip inferiors with
execution. Also call the target beneath.
(thread_db_update_thread_list): Delete.
gdb/testsuite/ChangeLog:
2015-12-17 Pedro Alves <palves@redhat.com>
PR threads/19354
* gdb.multi/info-threads.exp: New file.
Since we now rely on PTRACE_EVENT_CLONE being available (added in
Linux 2.5.46), we're relying on NPTL.
This commit removes the support for older LinuxThreads, as well as the
workarounds for vendor 2.4 kernels with NPTL backported.
- Rely on tkill being available.
- Assume gdb doesn't get cancel signals.
- Remove code that checks the LinuxThreads restart and cancel signals
in the inferior.
- Assume that __WALL is available.
- Assume that non-leader threads report WIFEXITED.
- Thus, no longer need to send signal 0 to check whether threads are
still alive.
- Update comments throughout.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
* configure.ac: Remove tkill checks.
* configure, config.in: Regenerate.
* linux-nat.c: Remove HAVE_TKILL_SYSCALL check. Update top level
comments.
(linux_nat_post_attach_wait): Remove 'cloned' parameter. Use
__WALL.
(attach_proc_task_lwp_callback): Don't set the cloned flag.
(linux_nat_attach): Adjust.
(kill_lwp): Remove HAVE_TKILL_SYSCALL check. No longer fall back
to 'kill'.
(linux_handle_extended_wait): Use __WALL. Don't set the cloned
flag.
(wait_lwp): Use __WALL. Update comments.
(running_callback, stop_and_resume_callback): Delete.
(linux_nat_filter_event): Don't stop and resume all lwps. Don't
check if the event LWP has previously exited.
(check_zombie_leaders): Update comments.
(linux_nat_wait_1): Use __WALL.
(kill_wait_callback): Don't handle clone processes separately.
Use __WALL instead.
(linux_thread_alive): Delete.
(linux_nat_thread_alive): Return true as long as the LWP is in the
LWP list.
(linux_nat_update_thread_list): Assume the kernel supports
PTRACE_EVENT_CLONE.
(get_signo): Delete.
(lin_thread_get_thread_signals): Remove LinuxThreads references.
No longer check __pthread_sig_restart / __pthread_sig_cancel in
the inferior.
* linux-nat.h (struct lwp_info) <cloned>: Delete field.
* linux-thread-db.c: Update comments.
(_initialize_thread_db): Remove LinuxThreads references.
* nat/linux-waitpid.c (my_waitpid): No longer emulate __WALL.
Pass down flags unmodified.
* linux-waitpid.h (my_waitpid): Update documentation.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_kill_one_lwp): Remove references to
LinuxThreads.
(kill_lwp): Remove HAVE_TKILL_SYSCALL check. No longer fall back
to 'kill'.
(linux_init_signals): Delete.
(initialize_low): Adjust.
* thread-db.c (thread_db_init): Remove LinuxThreads reference.
Hi,
AddressSanitizer reports an error like this,
(gdb) PASS: gdb.base/call-ar-st.exp: continue to tbreak9
print print_long_arg_list(a, b, c, d, e, f, *struct1, *struct2, *struct3, *struct4, *flags, *flags_combo, *three_char, *five_char, *int_char_combo, *d1, *d2, *d3, *f1, *f2, *f3)
=================================================================
==6236==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60200008eb50 at pc 0x89e432 bp 0x7fffa3df9080 sp 0x7fffa3df9078
READ of size 5 at 0x60200008eb50 thread T0
#0 0x89e431 in memory_xfer_partial gdb/target.c:1264
#1 0x89e6c7 in target_xfer_partial gdb/target.c:1320
#2 0x89f267 in target_write_partial gdb/target.c:1595^M
#3 0x8a014b in target_write_with_progress gdb/target.c:1889^M
#4 0x8a0262 in target_write gdb/target.c:1914^M
#5 0x89ee59 in target_write_memory gdb/target.c:1492^M
#6 0x9a1c74 in write_memory gdb/corefile.c:393^M
#7 0x467ea5 in aarch64_push_dummy_call gdb/aarch64-tdep.c:1388
The problem is that an instance of stack_item_t is created to adjust
stack for alignment, the item.len is correct, but item.data is buf,
which is wrong, because item.len can be greater than the length of
buf. This patch sets item.data to NULL, and only update sp (no
inferior memory writes on stack for this item).
gdb:
2015-12-17 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (struct stack_item_t): Update comments.
(pass_on_stack): Set item.data to NULL.
(aarch64_push_dummy_call): Call write_memory if si->data
isn't NULL.
Ref: https://sourceware.org/ml/gdb/2015-12/msg00024.html
We have code in configure.ac that tries to detect whether the compiler
supports each warning and suppress it if not, but that doesn't work
with "-Wno-" options, because gcc doesn't error out for
-Wno-unknown-warning unless other diagnostics are being produced.
See https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html.
Handle this by checking whether -Wfoo works when we actually want
-Wno-foo.
gdb/ChangeLog:
2015-12-16 Pedro Alves <palves@redhat.com>
* configure.ac (compiler warning flags): When testing a
-Wno-foo option, check whether -Wfoo works instead.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
2015-12-16 Pedro Alves <palves@redhat.com>
* configure.ac (compiler warning flags): When testing a
-Wno-foo option, check whether -Wfoo works instead.
* configure: Regenerate.
Ref: https://sourceware.org/ml/gdb/2015-12/msg00014.html
Fixes the build in C++ mode with g++ 4.4:
gdb/btrace.h: In function ‘size_t VEC_btrace_insn_s_embedded_size(int)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘VEC_btrace_insn_s* VEC_btrace_insn_s_alloc(int)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘VEC_btrace_insn_s* VEC_btrace_insn_s_copy(VEC_btrace_insn_s*)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘VEC_btrace_insn_s* VEC_btrace_insn_s_merge(VEC_btrace_insn_s*, VEC_btrace_insn_s*)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘int VEC_btrace_insn_s_reserve(VEC_btrace_insn_s**, int, const char*, unsigned int)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/ChangeLog:
2015-12-16 Pedro Alves <palves@redhat.com>
* common/vec.h (vec_offset): New macro.
(DEF_VEC_ALLOC_FUNC_I, DEF_VEC_ALLOC_FUNC_O): Use it instead of
offsetof.
This patch implements documentation updates for target remote mode fork and
exec events. A summary of the rationale for the changes made here:
* Connecting to a remote target -- explain that the two protocols exist.
* Connecting in target remote mode -- explain invoking gdbserver for target
remote mode, and move remote-specific text from original "Connecting to a
remote target" section.
* Connecting in target extended-remote mode -- promote this section from
"Using the gdbserver Program | Running gdbserver | Multi-Process Mode for
gdbserver". Put it next to the target remote mode section.
* Host and target files -- collect paragraphs dealing with how to locate
symbol files from original sections "Connecting to a remote target" and
"Using the gdbserver program | Connecting to gdbserver".
* Steps for connecting to a remote target -- used to be "Using the
gdbserver program | Connecting to gdbserver"
* Remote connection commands -- used to be the bulk of "Connecting to a
remote target". Added "target extended-remote" commands and information.
gdb/ChangeLog:
* NEWS: Announce fork and exec event support for target remote.
gdb/doc/ChangeLog:
* gdb.texinfo (Forks): Correct Linux kernel version where
fork and exec events are supported, add notes about support
of these events in target remote mode.
(Connecting): Reorganize and clarify distinctions between
target remote, extended-remote, and multiprocess.
Reorganize related text from separate sections into new
sections.
(Server): Note effects of target extended-remote mode.
Delete section on Multi-Process Mode for gdbserver.
Move some text to "Connecting" node.
This patch implements support for fork and exec events with target remote
mode Linux targets. For such targets with Linux kernels 2.5.46 and later,
this enables follow-fork-mode, detach-on-fork and fork and exec
catchpoints.
The changes required to implement this included:
* Don't exit from gdbserver if there are still active inferiors.
* Allow changing the active process in remote mode.
* Enable fork and exec events in remote mode.
* Print "Ending remote debugging" only when disconnecting.
* Combine remote_kill and extended_remote_kill into a single function
that can handle the multiple inferior case for target remote. Also,
the same thing for remote_mourn and extended_remote_mourn.
* Enable process-style ptids in target remote.
* Remove restriction on multiprocess mode in target remote.
gdb/gdbserver/ChangeLog:
* server.c (process_serial_event): Don't exit from gdbserver
in remote mode if there are still active inferiors.
gdb/ChangeLog:
* inferior.c (number_of_live_inferiors): New function.
(have_live_inferiors): Use number_of_live_inferiors in place
of duplicate code.
* inferior.h (number_of_live_inferiors): Declare new function.
* remote.c (set_general_process): Remove restriction on target
remote mode.
(remote_query_supported): Likewise.
(remote_detach_1): Exit in target remote mode only when there
is just one live inferior left.
(remote_disconnect): Unpush the target directly instead of
calling remote_mourn.
(remote_kill): Rewrite function to handle both target remote
and extended-remote. Call remote_kill_k.
(remote_kill_k): New function.
(extended_remote_kill): Delete function.
(remote_mourn, extended_remote_mourn): Combine functions into
one, remote_mourn, and enable extended functionality for target
remote.
(remote_pid_to_str): Enable "process" style ptid string for
target remote.
(remote_supports_multi_process): Remove restriction on target
remote mode.
Fixes a couple of places where we access the length field of the type
structure directly, rather than using the TYPE_LENGTH macro.
gdb/ChangeLog:
* i386-tdep.c (i386_mpx_info_bounds): Use TYPE_LENGTH.
(i386_mpx_set_bounds): Likewise.
* solib-darwin.c (darwin_load_image_infos): Likewise.
(darwin_solib_read_all_image_info_addr): Likewise.
Reference the 'listsize' setting in the help text for the 'list' command
to help users find this setting.
gdb/ChangeLog:
* cli/cli-cmds.c (_initialize_cli_cmds): Extend help text for
'list' command.
When a a user uses 'list +' to list forward through a source file they
eventually reach the end of the source file. Subsequent uses of 'list
+' result in an error message like this, that let the user know they are
at the end of the source file:
Line number XXX out of range; FILENAME has YYY lines.
Compare this to the current behaviour of 'list -' which lists backwards
through a source file. When the user reaches the beginning of the
source file, subsequent uses of 'list -' result in the command silently
returning. This can be confusing if the previous uses of 'list -' have
scrolled off the users display, the user receives no reminder that the
have already seen the start of the file.
After this commit a use of 'list -' when the user has already seen the
start of a file will receive the following error:
Already at the start of FILENAME.
gdb/ChangeLog:
* cli/cli-cmds.c (list_command): Add an error when trying to use
'-' to scan read off the start of the source file.
gdb/testsuite/ChangeLog:
* gdb.base/list.exp (test_list_forward): Add end of file error
test.
(test_repeat_list_command): Add end of file error test.
(test_list_backwards): Add beginning of file error test.
There is an inconsistency with the handling of the special +/- arguments
to the list command.
For the very first time that list is used (after the inferior has
changed locations) then only the first character of the argument string
is checked, so 'list +BLAH' will operate as 'list +' and 'list -----FOO'
will operate as 'list -'. This compares to each subsequent use of list,
where the whole argument string is checked, so 'list +BLAH' will try to
list lines of code around the function '+BLAH'.
This commit unifies the behaviour so that the whole argument string is
checked, in order to list the next 10, or previous 10 lines from a file
only 'list +' and 'list -' are now valid.
gdb/ChangeLog:
* cli/cli-cmds.c (list_command): Check that the argument string is
a single character, either '+' or '-'.
gdb/testsuite/ChangeLog:
* gdb.base/list.exp (test_list_invalid_args): New function,
defined, and called.
Move handling of special +/- arguments to the list_command function
inside a single if block, this helps group all related functionality
together. There should be no user visible changes after this commit.
gdb/ChangeLog:
* cli/cli-cmds.c (list_command): Move all handling of +/-
arguments into a single if block.
Small code cleanup, use NULL instead of 0 when checking pointers. There
should be no user visible changes after this commit.
gdb/ChangeLog:
* cli/cli-cmds.c (list_command): Use NULL instead of 0 when
checking pointers.
This patch fixes a regression introduced by:
https://sourceware.org/ml/gdb-patches/2015-12/msg00192.html
We can't use thread_from_lwp with core files. As mentioned in a comment,
td_ta_map_lwp2thr uses ps_get_thread_area, but we can't use that
currently on core targets, as it uses ptrace directly.
Use directly record_thread instead.
This fixes :
PASS -> FAIL: gdb.threads/corethreads.exp: thread0 found
PASS -> FAIL: gdb.threads/corethreads.exp: thread1 found
gdb/ChangeLog:
* linux-thread-db.c (find_new_threads_callback): Use record_thread.
Before, on systems that did not support PTRACE_EVENT_CLONE, both GDB and
GDBServer coordinated with libthread_db.so to insert breakpoints at magic
locations in libpthread.so, in order to break at thread creation and
thread death.
Support for thread events was removed from GDBServer as patch:
https://sourceware.org/ml/gdb-patches/2015-11/msg00466.html
This patch removes support for thread events in GDB.
No regressions found on Ubuntu 14.04 x86_64.
gdb/ChangeLog:
* breakpoint.c (remove_thread_event_breakpoints): Remove.
* breakpoint.h (remove_thread_event_breakpoints): Remove
declaration.
* linux-nat.c (in_pid_list_p): Remove.
(lin_lwp_attach_lwp): Remove.
* linux-nat.h (lin_lwp_attach_lwp): Remove declaration.
* linux-thread-db.c (thread_db_use_events): Remove.
(struct thread_db_info) <td_create_bp_addr>: Remove.
<td_death_bp_addr>: Likewise.
<td_ta_event_addr_p>: Likewise.
<td_ta_set_event_p>: Likewise.
<td_ta_clear_event_p>: Likewise.
<td_ta_event_getmsg_p>: Likewise.
<td_thr_event_enable_p>: Likewise.
(attach_thread): Likewise.
(detach_thread): Likewise.
(have_threads_callback): Likewise.
(have_threads): Likewise.
(enable_thread_event): Likewise.
(enable_thread_event_reporting): Likewise.
(try_thread_db_load_1): Remove td_ta_event_addr, td_ta_set_event,
td_ta_clear_event, td_ta_event_getmsg, td_thr_event_enable
initializations.
(try_thread_db_load_1): Remove enable_thread_event_reporting call.
(disable_thread_event_reporting): Remove.
(record_thread): Adapt to thread_db_use_event removal.
(detach_thread): Remove.
(thread_db_detach): Adapt to thread_db_use_event removal.
(check_event): Remove.
(thread_db_wait): Adapt to thread events support removal.
(thread_db_mourn_inferior): Likewise.
(find_new_threads_callback): Likewise.
(find_new_threads_once): Likewise.
(thread_db_update_thread_list): Likewise.
It is possible to use multiple base addresses within a single address
range series, within the .debug_ranges section. The following is a
simplified example for 32-bit addresses:
.section ".debug_ranges"
.4byte 0xffffffff
.4byte BASE_1
.4byte START_OFFSET_1
.4byte END_OFFSET_1
.4byte START_OFFSET_2
.4byte END_OFFSET_2
.4byte 0xffffffff
.4byte BASE_2
.4byte START_OFFSET_3
.4byte END_OFFSET_3
.4byte 0
.4byte 0
In this example START/END 1 and 2 are relative to BASE_1, while
START/END 3 are relative to BASE_2.
Currently gdb does not correctly parse this DWARF, resulting in
corrupted address range information. This commit fixes this issue, and
adds a new test to cover this case.
In order to support testing of this feature extensions were made to the
testsuite dwarf assembler, additional functionality was added to the
.debug_line generation function, and a new function for generating the
.debug_ranges section was added.
gdb/ChangeLog:
* dwarf2read.c (dwarf2_ranges_read): Unify and fix base address
reading code.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-ranges-base.c: New file.
* gdb.dwarf2/dw2-ranges-base.exp: New file.
* lib/dwarf.exp (namespace eval Dwarf): Add new variables to
support additional line table, and debug ranges generation.
(Dwarf::ranges): New function, generate .debug_ranges.
(Dwarf::lines): Support generating simple line table programs.
(Dwarf::assemble): Initialise new namespace variables.
This patch fixes the following failures for rl78-elf:
FAIL: gdb.base/vla-datatypes.exp: print int_vla
FAIL: gdb.base/vla-datatypes.exp: print unsigned_int_vla
FAIL: gdb.base/vla-datatypes.exp: print double_vla
FAIL: gdb.base/vla-datatypes.exp: print float_vla
FAIL: gdb.base/vla-datatypes.exp: print long_vla
FAIL: gdb.base/vla-datatypes.exp: print unsigned_long_vla
FAIL: gdb.base/vla-datatypes.exp: print char_vla
FAIL: gdb.base/vla-datatypes.exp: print short_vla
FAIL: gdb.base/vla-datatypes.exp: print unsigned_short_vla
FAIL: gdb.base/vla-datatypes.exp: print unsigned_char_vla
FAIL: gdb.base/vla-datatypes.exp: print foo_vla
FAIL: gdb.base/vla-datatypes.exp: print bar_vla
FAIL: gdb.base/vla-datatypes.exp: print vla_struct_object
FAIL: gdb.base/vla-datatypes.exp: print vla_union_object
FAIL: gdb.base/vla-ptr.exp: print td_vla
FAIL: gdb.mi/mi-vla-c99.exp: evaluate complete vla
The first failure in this bunch occurs due to printing an incorrect
result for a variable length array:
print int_vla
$1 = {-1, -1, -1, -1, -1}
The result should actually be this:
$1 = {0, 2, 4, 6, 8}
When I started examining this bug, I found that printing an
individual array element worked correctly. E.g. "print int_vla[2]"
resulted in 4 being printed. I have not looked closely to see why
this is the case.
I found that evaluation of the location expression for int_vla was
causing problems. This is the relevant DWARF entry for int_vla:
<2><15a>: Abbrev Number: 10 (DW_TAG_variable)
<15b> DW_AT_name : (indirect string, offset: 0xbf): int_vla
<15f> DW_AT_decl_file : 1
<160> DW_AT_decl_line : 35
<161> DW_AT_type : <0x393>
<165> DW_AT_location : 4 byte block: 86 7a 94 2 (DW_OP_breg22 (r22): -6; DW_OP_deref_size: 2)
I found that DW_OP_breg22 was providing a correct result.
DW_OP_deref_size was fetching the correct value from memory. However,
the value being fetched should be considered a pointer.
DW_OP_deref_size zero extends the fetched value prior to pushing
it onto the evaluation stack. (The DWARF-4 document specifies this
action; so GDB is faithfully implementing the DWARF-4 specification.)
However, zero extending the pointer is not sufficient for converting
that value to an address for rl78 and (perhaps) other architectures
which define a `pointer_to_address' method. (I suspect that m32c
would have the same problem.)
Ideally, we would perform the pointer to address conversion in
DW_OP_deref_size. We don't, however, know the type of the object
that the address refers to in DW_OP_deref_size. I can't think
of a way to infer the type at that point in the code.
Before proceeding, I should note that there are two other DWARF
operations that could be used in place of DW_OP_deref_size. One of
these is DW_OP_GNU_deref_type. Current GDB implements this operation,
but as is obvious from the name, it is non-standard DWARF. The other
operation is DW_OP_xderef_size. Even though it's part of DWARF-2
through DWARF-4 specifications, it's not presently implemented in GDB.
Present day GCC does not output dwarf expressions containing this
operation either. [Of the two, I like DW_OP_GNU_deref_type better.
Using it avoids the need to specify an "address space identifier".
(GCC, GDB, and other non-free tools all need to agree on the meanings
of these identifiers.)]
Back to the bug analysis...
The closest consumer of the DW_OP_deref_size result is the
DWARF_VALUE_MEMORY case in dwarf2_evaluate_loc_desc_full. At that
location, we do know the object type to which the address is intended
to refer. I added code to perform a pointer to address conversion at
this location. (See the patch.)
I do have some misgivings regarding this patch. As noted earlier, it
would really be better to perform the pointer to address conversion in
DW_OP_deref_size. I can't, however, think of a way to make this work.
Changing GCC to output one of the other aforementioned operations might
be preferable but, as noted earlier, these solutions have problems as
well. Long term, I think it'd be good to have something like
DW_OP_GNU_deref_type become part of the standard. If that can't or
won't happen, we'll need to implement DW_OP_xderef_size.
But until that happens, this patch will work for expressions in which
DW_OP_deref_size occurs last. It should even work for dereferences
followed by adding an offset. I don't think it'll work for more than
one dereference in the same expression.
gdb/ChangeLog:
* dwarf2loc.c (dwarf2_evaluate_loc_desc_full): Perform a pointer
to address conversion for DWARF_VALUE_MEMORY.
This set of patches add support for the zero-padded hexadecimal format for
varobj's, defined as "zero-hexadecimal". We currently only support regular
non-zero-padded hexadecimal.
Talking with IDE developers, they would like to have this option that is
already available to GDB's print/x commands, in the CLI, as 'z'.
gdb/ChangeLog:
2015-12-09 Luis Machado <lgustavo@codesourcery.com>
* gdb/mi/mi-cmd-var.c (mi_parse_format): Handle new "zero-hexadecimal"
format.
* gdb/varobj.c (varobj_format_string): Add "zero-hexadecimal" entry.
(format_code): Add 'z' entry.
(varobj_set_display_format): Handle FORMAT_ZHEXADECIMAL.
* gdb/varobj.h (varobj_display_formats) <FORMAT_ZHEXADECIMAL>: New enum
field.
* NEWS: Add new note to MI changes citing the new zero-hexadecimal
format for -var-set-format.
gdb/doc/ChangeLog:
2015-12-09 Luis Machado <lgustavo@codesourcery.com>
* gdb.texinfo (GDB/MI Variable Objects): Update text to mention
-var-set-format's new zero-hexadecimal format.
gdb/testsuite/ChangeLog:
2015-12-09 Luis Machado <lgustavo@codesourcery.com>
* gdb.mi/mi-var-display.exp: Add new checks for the zero-hexadecimal
format and change test names to make them unique.
When `info float` is used on an AMD64 system, GDB prints
floating-point values of x87 registers with raw contents like
0x361a867a8e0527397ce0 or 0xc4f988454a1ddd3cfdab wrongly.
This happens due to truncation to double, after which the former
becomes 0.0, and the latter becomes negative infinity. This is caused
by failed detection of x86-64 host, which results in setting
gdb_host_{float,double,long_double}_format to zeros.
This commit fixes this misdetection, and adds a test to make sure
future commits don't introduce a regression here.
gdb/ChangeLog:
2015-12-09 Ruslan Kabatsayev <b7.10110111@gmail.com>
PR gdb/18702
* configure.host: Fix detection of x86_64 host when setting
floatformats.
gdb/testsuite/ChangeLog:
2015-12-09 Ruslan Kabatsayev <b7.10110111@gmail.com>
Pedro Alves <pedro@redhat.com>
PR gdb/18702
Add checking of floatformats setup on x86_64 hosts.
* gdb.arch/i386-float.S (main): Load bigval and smallval.
(smallval, bigval): New labels/constants.
* gdb.arch/i386-float.exp: Use with_test_prefix and test "info
float" after loading bigval and smallval.
gdb/ChangeLog:
* NEWS: Announce this enhancement and the corresponding new
option.
gdb/doc/ChangeLog:
* gdb.texinfo (Ada Mode Into): Move overloading support
description to its own node.
(Overloading support for Ada): New node.
So far, trying to evaluate an expression involving a function call for
which GDB could find multiple function candidates outputs a menu so that
the user can select the one to run. For instance, with the two
following functions:
type New_Integer is new Integer;
function F (I : Integer) return Boolean;
function F (I : New_Integer) return Boolean;
Then we get the following GDB session:
(gdb) print f(1)
Multiple matches for f
[0] cancel
[1] foo.f at foo.adb:23
[2] foo.f at foo.adb.28
>
While the source location information is sufficient in order to
determine which one to select, one has to look for them in source files,
which is not convenient.
This commit tunes this menu in order to also include the list of formal
and return types (if any) in each entry. The above then becomes:
(gdb) print f(1)
Multiple matches for f
[0] cancel
[1] foo.f (integer) return boolean at foo.adb:23
[2] foo.f (foo.new_integer) return boolean at foo.adb.28
>
Since this output is more verbose than previously, this change also
introduces an option (set/show ada print-signatures) to get the original
output.
gdb/ChangeLog:
* ada-lang.c (print_signatures): New.
(ada_print_symbol_signature): New.
(user_select_syms): Add signatures to the output of candidate
symbols using ada_print_symbol_signature.
(_initialize_ada_language): Add a "set/show ada
print-signatures" boolean option.
gdb/testsuite/ChangeLog:
* gdb.ada/fun_overload_menu.exp: New testcase.
* gdb.ada/fun_overload_menu/foo.adb: New testcase.
Tested on x86_64-linux, no regression.
i386-nat.[hc] got renamed to x86-nat.[hc] a while back, but somehow
3 references to the old file name remained past the renaming. This
fixes all of them.
gdb/ChangeLog (with Mike Stump <mikestump@comcast.net>):
* Makefile.in (TAGS): Replace i386-nat.h by x86-nat.h.
* x86-nat.c: Replace remaining references to i386-nat
by reference to x86-nat instead.
GCC 4.1 gives the following warning:
gdb/remote.c: In function 'remote_parse_stop_reply':
gdb/remote.c:6549: warning: operation on 'p' may be undefined
on this line of code:
event->ptid = read_ptid (++p, &p);
Since p actually isn't used afterwards anyway, simply use NULL.
gdb/
* remote.c (remote_parse_stop_reply): Avoid GCC 4.1 "operation
may be undefined" warning.
Fix a couple of places where a struct thread_item was added to a
vector while the item.name field was uninitialized.
gdb/
* remote.c (remote_newthread_step): Initialize item.name.
(remote_get_threads_with_qthreadinfo): Likewise.
Testing with "maint set target-non-stop on" causes regressions in
tests that rely on TARGET_WAITKIND_NO_RESUMED, which isn't modelled on
the RSP. In real all-stop, gdbserver detects the situation and
reporst error to GDB, and so the tests (e.g.,
gdb.threads/no-unwaited-for-left.exp) at fail quickly. But with
"maint set target-non-stop on", GDB instead hangs forever waiting for
a stop reply that never comes, and so the tests take longer to time
out.
This adds a new "N" stop reply packet that maps 1-1 to
TARGET_WAITKIND_NO_RESUMED.
gdb/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
PR 14618
* NEWS (New remote packets): Mention the N stop reply.
* remote.c (remote_protocol_features): Add "no-resumed" entry.
(remote_query_supported): Report no-resumed+ support.
(remote_parse_stop_reply): Handle 'N'.
(process_stop_reply): Handle TARGET_WAITKIND_NO_RESUMED.
(remote_wait_as): Handle 'N' / TARGET_WAITKIND_NO_RESUMED.
(_initialize_remote): Register "set/show remote
no-resumed-stop-reply" commands.
gdb/doc/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
PR 14618
* gdb.texinfo (Stop Reply Packets): Document the N stop reply.
(Remote Configuration): Add the "set/show remote
no-resumed-stop-reply" to the available settings table.
(General Query Packets): Document the "no-resumed" qSupported
feature.
gdb/gdbserver/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
PR 14618
* linux-low.c (linux_wait_1): If the last resumed thread is gone,
report TARGET_WAITKIND_NO_RESUMED.
* remote-utils.c (prepare_resume_reply): Handle
TARGET_WAITKIND_NO_RESUMED.
* server.c (report_no_resumed): New global.
(handle_query) <qSupported>: Handle "no-resumed+". Report
"no-resumed+" support.
(resume): When the target reports TARGET_WAITKIND_NO_RESUMED, only
return error if the client doesn't support no-resumed events.
(push_stop_notification): New function.
(handle_target_event): Use it. Report TARGET_WAITKIND_NO_RESUMED
events if the client supports them.
gdb/testsuite/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* gdb.threads/no-unwaited-for-left.exp: Remove setup_kfail calls.
Running the testsuite against gdbserver with "maint set target-non-stop on"
stumbled on a set of problems. See code comments for details.
This handles my concerns expressed in PR14618.
gdb/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
PR 14618
* infrun.c (handle_no_resumed): New function.
(handle_inferior_event_1) <TARGET_WAITKIND_NO_RESUMED>: Defer to
handle_no_resumed.
When testing with "maint set target-non-stop on", a few
threading-related tests expose an issue that requires new RSP packets.
Say there are 3 threads running, 1-3. If GDB tries to stop thread 1,
2 and 3, and then waits for their stops, but meanwhile say, thread 2
exits, GDB hangs forever waiting for a stop for thread 2 that won't
ever happen.
This patch fixes the issue by adding support for thread exit events to
the protocol. However, we don't want these always enabled, as they're
useless most of the time, and would slow down remote debugging. So I
made it so that GDB can enable/disable them, and then made gdb do that
around the cases that need it, which currently is only
infrun.c:stop_all_threads.
In turn, if we have thread exit events, then the extra "thread x
exited" traffic slows down attach-many-short-lived-threads.exp enough
that gdb has trouble keeping up with new threads that are spawned
while gdb tries to stop existing ones. To fix that I added support
for the counterpart thread created events too. Enabling those when we
try to stop threads ensures that new threads never get a chance to
themselves start new threads, killing the race.
gdb/doc/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Remote Configuration): List "set/show remote
thread-events" command in configuration table.
(Stop Reply Packets): Document "T05 create" stop
reason and 'w' stop reply.
(General Query Packets): Document QThreadEvents packet. Document
QThreadEvents qSupported feature.
gdb/gdbserver/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* linux-low.c (handle_extended_wait): Assert that the LWP's
waitstatus is TARGET_WAITKIND_IGNORE. If GDB wants to hear about
thread create events, leave the new child's status pending.
(linux_low_filter_event): If GDB wants to hear about thread exit
events, leave the LWP marked dead and don't delete it.
(linux_wait_for_event_filtered): Don't check for thread exit.
(filter_exit_event): New function.
(linux_wait_1): Use it, when returning an exit event.
(linux_resume_one_lwp_throw): Assert that the LWP's
waitstatus is TARGET_WAITKIND_IGNORE.
* remote-utils.c (prepare_resume_reply): Handle
TARGET_WAITKIND_THREAD_CREATED and TARGET_WAITKIND_THREAD_EXITED.
* server.c (report_thread_events): New global.
(handle_general_set): Handle QThreadEvents.
(handle_query) <qSupported>: Handle and report QThreadEvents+;
(handle_target_event): Handle TARGET_WAITKIND_THREAD_CREATED and
TARGET_WAITKIND_THREAD_EXITED.
* server.h (report_thread_events): Declare.
gdb/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* NEWS (New commands): Mention "set/show remote thread-events"
commands.
(New remote packets): Mention thread created/exited stop reasons
and QThreadEvents packet.
* infrun.c (disable_thread_events): New function.
(stop_all_threads): Disable/enable thread create/exit events.
Handle TARGET_WAITKIND_THREAD_EXITED.
(handle_inferior_event_1): Handle TARGET_WAITKIND_THREAD_CREATED
and TARGET_WAITKIND_THREAD_EXITED.
* remote.c (remove_child_of_pending_fork): Also remove threads of
threads that have TARGET_WAITKIND_THREAD_EXITED events.
(remote_parse_stop_reply): Handle "create" magic register. Handle
'w' stop reply.
(initialize_remote): Install remote_thread_events as
to_thread_events target hook.
(remote_thread_events): New function.
* target-delegates.c: Regenerate.
* target.c (target_thread_events): New function.
* target.h (struct target_ops) <to_thread_events>: New field.
(target_thread_events): Declare.
* target/waitstatus.c (target_waitstatus_to_string): Handle
TARGET_WAITKIND_THREAD_CREATED and TARGET_WAITKIND_THREAD_EXITED.
* target/waitstatus.h (enum target_waitkind)
<TARGET_WAITKIND_THREAD_CREATED, TARGET_WAITKIND_THREAD_EXITED):
New values.
There's currently no non-stop equivalent of the all-stop ^C (\003)
"packet" that GDB sends when a ctrl-c is pressed while a foreground
command is active. There's vCont;t, but that's defined to cause a
"signal 0" stop.
This fixes many tests that type ^C, when testing with extended-remote
with "maint set target-non-stop on". E.g.:
Continuing.
talk to me baby
PASS: gdb.base/interrupt.exp: process is alive
a
a
PASS: gdb.base/interrupt.exp: child process ate our char
^C
[Thread 22730.22730] #1 stopped.
0x0000003615ee6650 in __read_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
(gdb) FAIL: gdb.base/interrupt.exp: send_gdb control C
p func1 ()
gdb/
2015-11-30 Pedro Alves <palves@redhat.com>
* NEWS (New remote packets): Mention vCtrlC.
* remote.c (PACKET_vCtrlC): New enum value.
(async_remote_interrupt): Call target_interrupt instead of
target_stop.
(remote_interrupt_as): Remove 'ptid' parameter.
(remote_interrupt_ns): New function.
(remote_stop): Adjust.
(remote_interrupt): If the target is in non-stop mode, try
interrupting with vCtrlC.
(initialize_remote): Install set remote ctrl-c packet.
gdb/doc/
2015-11-30 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Bootstrapping): Add "interrupting remote targets"
anchor.
(Packets): Document vCtrlC.
gdb/gdbserver/
2015-11-30 Pedro Alves <palves@redhat.com>
* server.c (handle_v_requests): Handle vCtrlC.
Running local-watch-wrong-thread.exp with "maint set target-non-stop
on" exposes that gdb/remote.c only records whether the target stopped
for a breakpoint/watchpoint plus the watchpoint data address *for the
last reported remote event*. But in non-stop mode, we need to keep
that info per-thread, as each thread can end up with its own
last-status pending.
gdb/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* remote.c (struct remote_state) <remote_watch_data_address,
stop_reason>: Delete fields.
(struct private_thread_info) <stop_reason, watch_data_address>:
New fields.
(resume_clear_thread_private_info): New function.
(append_pending_thread_resumptions): Call it.
(remote_resume): Clear all threads' private info.
(process_stop_reply): Adjust.
(remote_wait_as): Don't reference remote_state's stop_reason
field.
(remote_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint, remote_stopped_by_watchpoint)
(remote_stopped_data_address): Adjust to refer get data from the
current thread.
When running with "maint set target-non-stop on", and in all-stop
mode, nothing is stopping all threads after attaching. vAttach in
non-stop can leave all threads running and GDB has to explicitly pause
them.
This is not visible with the native target, as in that case, attach
always stops all threads (the core re-resumes them in case of
"attach&").
In addition, it's not defined which thread manages to report the
initial attach stop, so always pick the lowest one (otherwise
multi-attach.exp regresses).
gdb/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* infcmd.c (attach_post_wait): If the target is always in non-stop
mode, and the UI is in all-stop mode, stop all threads and pick
the one with lowest number as current.
This is the first pass at implementing support for all-stop mode
running against the remote target using the non-stop variant of the
protocol.
The trickiest part here is the initial connection setup/synching. We
need to fetch all inferiors' target descriptions etc. before stopping
threads, because stop_all_threads needs to read the threads' registers
(to record each thread's stop_pc). But OTOH, the initial inferior
setup (target_post_attach, post_create_inferior, etc.), only works
correctly if the inferior is stopped... So I've split that initial
setup part from attach_command_post_wait to a separate function, and
added a "still needs setup" flag to the inferior structure. This is
similar to gdbserver/linux-low.c's handling of discovering the
process's target description). Then if on connection all threads of
the remote inferior are running, when we go about stopping them, as
soon as they stop we call setup_inferior, from within
stop_all_threads.
Also, in all-stop, we need to process all the initial stop replies to
learn about all the pending signal the threads may already be stopped
for, and pick the one to report as current. This is exposed by
gdb.threads/reconnect-signal.exp.
gdb/
2015-11-30 Pedro Alves <palves@redhat.com>
* gdbthread.h (switch_to_thread_no_regs): Declare.
* infcmd.c (setup_inferior): New function, factored out from ...
(attach_command_post_wait): ... this. Rename to ...
(attach_post_wait): ... this. Replace parameter async_exec with
attach_post_wait_mode parameter. Adjust.
(enum attach_post_wait_mode): New enum.
(struct attach_command_continuation_args): Replace 'async_exec'
field with 'mode' field.
(attach_command_continuation): Adjust.
(attach_command): Add comment. Mark the inferior as needing
setup. Adjust to use enum attach_post_wait_mode.
(notice_new_inferior): Use switch_to_thread_no_regs. Adjust to
use enum attach_post_wait_mode.
* inferior.h (setup_inferior): Declare.
(struct inferior) <needs_setup>: New field.
* infrun.c (set_last_target_status): Make extern.
(stop_all_threads): Make extern. Setup inferior, if necessary.
* infrun.h (set_last_target_status, stop_all_threads): Declare.
* remote-notif.c (remote_async_get_pending_events_handler)
(handle_notification): Replace non_stop checks with
target_is_non_stop_p() checks.
* remote.c (remote_notice_new_inferior): Remove non_stop check.
(remote_update_thread_list): Replace non_stop check with
target_is_non_stop_p() check.
(print_one_stopped_thread): New function.
(process_initial_stop_replies): New 'from_tty' parameter.
"Notice" all new live inferiors after storing initial stops as
pending status in each corresponding thread. If all-stop, stop
all threads, try picking a signalled thread as current, and print
the status of that one thread. Record the last target status.
(remote_start_remote): Replace non_stop checks with
target_is_non_stop_p() checks. Don't query for the remote current
thread of use qOffsets here. Pass from_tty to
process_initial_stop_replies.
(extended_remote_attach): Replace non_stop checks with
target_is_non_stop_p() checks.
(extended_remote_post_attach): Send qOffsets here.
(remote_vcont_resume, remote_resume, remote_stop)
(remote_interrupt, remote_parse_stop_reply, remote_wait): Replace
non_stop checks with target_is_non_stop_p() checks.
(remote_async): If target is non-stop, mark/clear the pending
events token.
* thread.c (switch_to_thread_no_regs): New function.
Testing with "maint set target-non-stop on" makes mi-nonstop.exp run
with the extended-remote board. That reveals that mi-nonstop.exp is
using the wrong predicate to check for "using remote protocol".
This is not visible today because non-stop tests all fail to run with
extended-remote board, because they spawn gdb and then do "set
non-stop on". However, with that board, gdb connects to the gdbserver
from within mi_gdb_start, and changing non-stop when already connected
doesn't work. Fix that by instead enabling non-stop mode on gdb's
command line.
gdb/testsuite/ChangeLog:
2015-11-30 Pedro Alves <palves@redhat.com>
* gdb.mi/mi-nonstop.exp: Append "set non-stop on" to GDBFLAGS
instead of issuing "-gdb-set non-stop 1" after starting gdb.
Use mi_is_target_remote instead of checking "is_remote target".
* lib/gdb.exp (gdb_is_target_remote): Rename to ...
(gdb_is_target_remote_prompt): ... this, and add 'prompt_regexp'
parameter.
(gdb_is_target_remote): Reimplement.
* lib/mi-support.exp (mi_is_target_remote): New procedure.
Before commit 3a8724032abf, DEMANGLE_COMPONENT_CAST was used for both
casts and conversion operators. We now have
DEMANGLE_COMPONENT_CONVERSION for the latter.
gdb/ChangeLog:
2014-11-28 Pedro Alves <palves@redhat.com>
* cp-name-parser.y (conversion_op): Use
DEMANGLE_COMPONENT_CONVERSION instead of DEMANGLE_COMPONENT_CAST.
This patch fixes the GDB internal error on AArch64 when running
watchpoint-fork.exp
top?bt 15
internal_error (file=file@entry=0x79d558 "../../binutils-gdb/gdb/linux-nat.c", line=line@entry=4866, fmt=0x793b20 "%s: Assertion `%s' failed.")
at ../../binutils-gdb/gdb/common/errors.c:51
#1 0x0000000000495bc4 in linux_nat_thread_address_space (t=<optimized out>, ptid=<error reading variable: Cannot access memory at address 0x1302>)
at ../../binutils-gdb/gdb/linux-nat.c:4866
#2 0x00000000005db2c8 in delegate_thread_address_space (self=<optimized out>, arg1=<error reading variable: Cannot access memory at address 0x1302>)
at ../../binutils-gdb/gdb/target-delegates.c:2447
#3 0x00000000005e8c7c in target_thread_address_space (ptid=<error reading variable: Cannot access memory at address 0x1302>)
at ../../binutils-gdb/gdb/target.c:2727
#4 0x000000000054eef8 in get_thread_arch_regcache (ptid=..., gdbarch=0xad51e0) at ../../binutils-gdb/gdb/regcache.c:529
#5 0x000000000054efcc in get_thread_regcache (ptid=...) at ../../binutils-gdb/gdb/regcache.c:546
#6 0x000000000054f120 in get_thread_regcache_for_ptid (ptid=...) at ../../binutils-gdb/gdb/regcache.c:560
#7 0x00000000004a2278 in aarch64_point_is_aligned (is_watchpoint=0, addr=34168, len=2) at ../../binutils-gdb/gdb/nat/aarch64-linux-hw-point.c:122
#8 0x00000000004a2e68 in aarch64_handle_breakpoint (type=hw_execute, addr=34168, len=2, is_insert=0, state=0xae8880)
at ../../binutils-gdb/gdb/nat/aarch64-linux-hw-point.c:465
#9 0x000000000048edf0 in aarch64_linux_remove_hw_breakpoint (self=<optimized out>, gdbarch=<optimized out>, bp_tgt=<optimized out>)
at ../../binutils-gdb/gdb/aarch64-linux-nat.c:657
#10 0x00000000005da8dc in delegate_remove_hw_breakpoint (self=<optimized out>, arg1=<optimized out>, arg2=<optimized out>)
at ../../binutils-gdb/gdb/target-delegates.c:492
#11 0x0000000000536a24 in bkpt_remove_location (bl=<optimized out>) at ../../binutils-gdb/gdb/breakpoint.c:13065
#12 0x000000000053351c in remove_breakpoint_1 (bl=0xb3fe70, is=is@entry=mark_inserted) at ../../binutils-gdb/gdb/breakpoint.c:4026
#13 0x000000000053ccc0 in detach_breakpoints (ptid=...) at ../../binutils-gdb/gdb/breakpoint.c:3930
#14 0x00000000005a3ac0 in handle_inferior_event_1 (ecs=0x7ffffff048) at ../../binutils-gdb/gdb/infrun.c:5042
After the fork, GDB will physically remove the breakpoints from the child
process (in frame #14), but at that time, GDB doesn't create an inferior
yet for child, but inferior_ptid is set to child's ptid (in frame #13).
In aarch64_point_is_aligned, we'll get the regcache of current_lwp_ptid
to determine if the current process is 32-bit or 64-bit, so the inferior
can't be found, and the internal error is caused.
I don't find a better fix other than not checking alignment on removing
breakpoint.
gdb:
2015-11-27 Yao Qi <yao.qi@linaro.org>
* nat/aarch64-linux-hw-point.c (aarch64_dr_state_remove_one_point):
Don't assert on alignment.
(aarch64_handle_breakpoint): Only check alignment when IS_INSERT
is true.
AArch64 AAPCS defined HFA (homogeneous floating-point aggregate)
and HVF (homogeneous short vector aggregate), bug GDB only handles the
former. In the AAPCS doc, both types are treated exactly the same
in terms of alignment and passing locations (on registers or stack).
This patch is to extend is_hfa to handle both HFA and HVA.
gdb:
2015-11-27 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (is_hfa): Rename to ...
(is_hfa_or_hva): ... this. Handle vector type. All callers
updated.
(aarch64_extract_return_value): Update debugging message.
(aarch64_store_return_value): Likewise.
(aarch64_return_in_memory): Update comments.
As defined in AArch64 AAPCS, short vectors are passed through V
registers, and its maximum alignment is 16-byte. This patch is
to reflect these rules in GDB. This patch fixes some fails in
gdb.base/gnu_vector.exp.
gdb:
2015-11-27 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_type_align): For vector type, return
its length, but with the maximum of 16 bytes.
(is_hfa): Return zero for vector type.
(aarch64_push_dummy_call): Handle short vectors.
(aarch64_extract_return_value): Likewise.
(aarch64_store_return_value): Likewise.
This patch adds support for thread names in the remote protocol, and
updates gdb/gdbserver to use it. The information is added to the XML
description sent in response to the qXfer:threads:read packet.
gdb/ChangeLog:
* linux-nat.c (linux_nat_thread_name): Replace implementation by call
to linux_proc_tid_get_name.
* nat/linux-procfs.c (linux_proc_tid_get_name): New function,
implementation inspired by linux_nat_thread_name.
* nat/linux-procfs.h (linux_proc_tid_get_name): New declaration.
* remote.c (struct private_thread_info) <name>: New field.
(free_private_thread_info): Free name field.
(remote_thread_name): New function.
(thread_item_t) <name>: New field.
(clear_threads_listing_context): Free name field.
(start_thread): Get name xml attribute.
(thread_attributes): Add "name" attribute.
(remote_update_thread_list): Copy name field.
(init_remote_ops): Assign remote_thread_name callback.
* target.h (target_thread_name): Update comment.
* NEWS: Mention remote thread name support.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_target_ops): Use linux_proc_tid_get_name.
* server.c (handle_qxfer_threads_worker): Refactor to include thread
name in reply.
* target.h (struct target_ops) <thread_name>: New field.
(target_thread_name): New macro.
gdb/doc/ChangeLog:
* gdb.texinfo (Thread List Format): Mention thread names.
Since this code path returns a string owned by the target (we don't know how
it's allocated, could be a static read-only string), it's safer if we return
a constant string. If, for some reasons, the caller wishes to modify the
string, it should make itself a copy.
gdb/ChangeLog:
* linux-nat.c (linux_nat_thread_name): Constify return value.
* target.h (struct target_ops) <to_thread_name>: Likewise.
(target_thread_name): Likewise.
* target.c (target_thread_name): Likewise.
* target-delegates.c (debug_thread_name): Regenerate.
* python/py-infthread.c (thpy_get_name): Constify local variables.
* thread.c (print_thread_info): Likewise.
(thread_find_command): Likewise.
If GDB has been configured without libipt support, i.e. HAVE_LIBIPT is
undefined, and is running on a system that supports Intel(R) Processor Trace,
GDB will run into an internal error when trying to decode the trace.
(gdb) record btrace
(gdb) s
usage (name=0x7fffffffe954 "fib-64")
at src/fib.c:12
12 fprintf(stderr, "usage: %s <num>\n", name);
(gdb) info record
Active record target: record-btrace
Recording format: Intel(R) Processor Trace.
Buffer size: 16kB.
gdb/btrace.c:971: internal-error: Unexpected branch trace format.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
This requires a system with Linux kernel 4.1 or later running on a 5th
Generation Intel Core processor or later.
The issue is documented as PR 19297.
When trying to enable branch tracing, in addition to checking the target
support for the requested branch tracing format, also check whether GDB
supports. it.
gdb/
* btrace.c (btrace_enable): Check whether HAVE_LIBIPT is defined.
testsuite/
* lib/gdb.exp (skip_btrace_pt_tests): Check for a "GDB does not
support" error.
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
* NEWS: Mention that a few "info" commands now list the
corresponding items in ascending ID order.
Before:
(gdb) info display
Auto-display expressions now in effect:
Num Enb Expression
3: y 1
2: y 1
1: y 1
After:
(gdb) info display
Auto-display expressions now in effect:
Num Enb Expression
1: y 1
2: y 1
3: y 1
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* printcmd.c (display_command): Append new display at the end of
the list.
gdb/testsuite/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.base/display.exp: Expect displays to be sorted in ascending
order. Use multi_line.
* gdb.base/solib-display.exp: Likewise.
Before:
(gdb) info checkpoints
3 process 29132 at 0x4008ad, file foo.c, line 81
2 process 29131 at 0x4008ad, file foo.c, line 81
1 process 29130 at 0x4008ad, file foo.c, line 81
* 0 Thread 0x7ffff7fc5740 (LWP 29128) (main process) at 0x4008ad, file foo.c, line 81
After:
(gdb) info checkpoints
* 0 Thread 0x7ffff7fc5740 (LWP 29128) (main process) at 0x4008ad, file foo.c, line 81
1 process 29130 at 0x4008ad, file foo.c, line 81
2 process 29131 at 0x4008ad, file foo.c, line 81
3 process 29132 at 0x4008ad, file foo.c, line 81
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* printcmd.c (display_command): Append new display at the end of
the list.
gdb/testsuite/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.base/display.exp: Expect displays to be sorted in ascending
order. Use multi_line.
* gdb.base/solib-display.exp: Likewise.
Before:
(gdb) info threads
Id Target Id Frame
3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30
2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60
* 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92
After:
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92
2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60
3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30
gdb/doc/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.texinfo (Inferiors and Programs): Adjust "maint info
program-spaces" example to ascending order listing.
(Threads): Adjust "info threads" example to ascending order
listing.
(Forks): Adjust "info inferiors" example to ascending order
listing.
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* inferior.c (add_inferior_silent): Append the new inferior to the
end of the list.
* progspace.c (add_program_space): Append the new pspace to the
end of the list.
* thread.c (new_thread): Append the new thread to the end of the
list.
gdb/testsuite/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.base/foll-exec-mode.exp: Adjust to GDB listing inferiors and
threads in ascending order.
* gdb.base/foll-fork.exp: Likewise.
* gdb.base/foll-vfork.exp: Likewise.
* gdb.base/multi-forks.exp: Likewise.
* gdb.mi/mi-nonstop.exp: Likewise.
* gdb.mi/mi-nsintrall.exp: Likewise.
* gdb.multi/base.exp: Likewise.
* gdb.multi/multi-arch.exp: Likewise.
* gdb.python/py-inferior.exp: Likewise.
* gdb.threads/break-while-running.exp: Likewise.
* gdb.threads/execl.exp: Likewise.
* gdb.threads/gcore-thread.exp: Likewise.
* gdb.threads/info-threads-cur-sal.exp: Likewise.
* gdb.threads/kill.exp: Likewise.
* gdb.threads/linux-dp.exp: Likewise.
* gdb.threads/multiple-step-overs.exp: Likewise.
* gdb.threads/next-bp-other-thread.exp: Likewise.
* gdb.threads/step-bg-decr-pc-switch-thread.exp: Likewise.
* gdb.threads/step-over-lands-on-breakpoint.exp: Likewise.
* gdb.threads/step-over-trips-on-watchpoint.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.threads/tls.exp: Likewise.
* lib/mi-support.exp (mi_reverse_list): Delete.
(mi_check_thread_states): No longer reverse list.
... like the kernel does.
gcore-thread.exp has a check to make sure the signalled thread is the
current thread after loading the core back, but that just works by
accident, because the signalled thread happened to be the last thread
on the thread list, and gdb currently iterates over threads in reverse
order.
So this fixes gcore-thread.exp once we start walking threads in
ascending number.
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
* linux-tdep.c (find_stop_signal): Delete.
(struct linux_corefile_thread_data) <pid>: Remove field.
(linux_corefile_thread_callback): Rename to ...
(linux_corefile_thread): ... this. Now takes a struct
linux_corefile_thread_data pointer rather than a void pointer.
Remove thread state and thread pid checks.
(linux_make_corefile_notes): Prefer dumping the signalled thread
first. Use ALL_NON_EXITED_THREADS instead of
iterate_over_threads.
When trying to save fast tracepoints to file, gdb returns internal failure:
gdb/breakpoint.c:13446: internal-error: unhandled tracepoint type 27
A problem internal to GDB has been detected, further debugging may prove unreliable.
And no file including the fast tracepoints definition is created.
The patch also extends save-trace.exp to test saving tracepoint with a
fast tracepoint in there. Note that because this test doesn't actually
inserts the tracepoints in the program, we can run it with targets that
don't actually support fast tracepoints (or tracepoints at all).
gdb/ChangeLog:
* breakpoint.c (tracepoint_print_recreate): Fix logic error
if -> else if.
gdb/testsuite/ChangeLog:
* gdb.trace/actions.c: Include trace-common.h.
(main): Add a location for a fast tracepoint.
* gdb.trace/save-trace.exp: Set a fast tracepoint in addition to
the normal tracepoints.
(gdb_verify_tracepoints): Adjust number of expected tracepoints.
The comment for the code in question says:
/* If the minimal symbol has a zero size, save it
but keep scanning backwards looking for one with
a non-zero size. A zero size may mean that the
symbol isn't an object or function (e.g. a
label), or it may just mean that the size was not
specified. */
As written, the code in question will only scan past the first symbol
of zero size. My change fixes the implementation to match the
comment.
Having this correct is important when the compiler generates several
local labels that are left in place by the linker. (I've been told
that the linker should eliminate these symbols, but I know of one
architecture for which this is not happening.)
I've created a test case called asmlabel.c. It's pretty simple:
main (int argc, char **argv)
{
asm ("L0:");
v = 0;
asm ("L1:");
v = 1; /* set L1 breakpoint here */
asm ("L2:");
v = 2; /* set L2 breakpoint here */
return 0;
}
If breakpoints are placed on the lines indicated by the comments,
this is the behavior of GDB built without my patch:
(gdb) continue
Continuing.
Breakpoint 2, L1 () at asmlabel.c:26
26 v = 1; /* set L1 breakpoint here */
Note that L1 appears as the function instead of main. This is not
what we want to happen. With my patch in place, we see the desired
behavior instead:
(gdb) continue
Continuing.
Breakpoint 2, main (argc=1, argv=0x7fffffffdb88) at asmlabel.c:26
26 v = 1; /* set L1 breakpoint here */
gdb/ChangeLog:
* minsyms.c (lookup_minimal_symbol_by_pc_section_1): Scan backwards
over all zero-sized symbols.
gdb/testsuite/ChangeLog:
* gdb.base/asmlabel.exp: New test.
* gdb.base/asmlabel.c: New test case.
One of our users reported an internal error using the "bt full"
command. In their situation, reproducing involved the following
scenario:
(gdb) frame 1
(gdb) bt full
#0 0xf7783430 in __kernel_vsyscall ()
No symbol table info available.
#1 0xf5550aeb in waitpid () at ../sysdeps/unix/syscall-template.S:81
No locals.
[...]
#6 0x0fe83139 in xxxx (arg=...)
[...some locals printed, and then...]
<S17b> =
[...]/dwarf2loc.c:364: internal-error: dwarf_expr_frame_base: Assertion
`framefunc != NULL' failed.
As shown above, the error happens while GDB is trying to print the value
of <S17b>, which is a local string internally generated by the compiler.
For that, it finds that the array lives in memory, and therefore tries
to create a struct value for it via:
case DWARF_VALUE_MEMORY:
{
CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
[...]
retval = value_at_lazy (type, address + byte_offset);
Unfortunately for us, TYPE happens to be an array whose bounds
are dynamic. More precisely, the bounds of our arrays are described
in the debugging info as being...
<4><2c1985e>: Abbrev Number: 33 (DW_TAG_subrange_type)
<2c1985f> DW_AT_type : <0x2c1989c>
<2c19863> DW_AT_lower_bound : <0x2c19835>
<2c19867> DW_AT_upper_bound : <0x2c19841>
... which are references to a pair of local variables. For instance,
the lower bound is a reference to the following DIE
<3><2c19835>: Abbrev Number: 32 (DW_TAG_variable)
<2c19836> DW_AT_name : [...]
<2c1983a> DW_AT_type : <0x2c198b4>
<2c1983e> DW_AT_artificial : 1
<2c1983e> DW_AT_location : 2 byte block: 91 58 (DW_OP_fbreg: -40)
As a result of the above, value_at_lazy indirectly triggers
a resolution of TYPE (via value_from_contents_and_address),
which means a resolution of TYPE's bounds, and as seen in
the DW_AT_location attribute above for our bounds, computing
the bound's location requires the frame (its location expression
uses DW_OP_fbreg).
Unfortunately for us, value_at_lazy does not get passed a frame,
we've lost the relevant frame when we try to resolve the array's
bounds. Instead, resolve_dynamic_range gets calls dwarf2_evaluate_property
with NULL as the frame:
static struct type *
resolve_dynamic_range (struct type *dyn_range_type,
struct property_addr_info *addr_stack)
{
[...]
if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
^^^^
... which then handles this by using the selected frame instead:
if (frame == NULL && has_stack_frames ())
frame = get_selected_frame (NULL);
In our case, the selected frame happens to be frame #1, which is
a frame where we have a minimal amount of debugging info, and in
particular, no debug info for the function itself. And because of that,
when we try to determine the frame's base...
static void
dwarf_expr_frame_base (void *baton, const gdb_byte **start,
size_t * length)
{
struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
const struct block *bl = get_frame_block (debaton->frame, NULL);
[...]
framefunc = block_linkage_function (bl);
... framefunc ends up being NULL, which triggers the assert
in that same function:
gdb_assert (framefunc != NULL);
This patches avoids the issue by temporarily setting the selected_frame
before printing the locals of each frames.
This patch also adds a small testcase, which reproduces the same
issue, but with a slightly different outcome:
(gdb) bt full
#0 0x000000000040049a in opaque_routine ()
No symbol table info available.
#1 0x0000000000400532 in main () at wrong_frame_bt_full-main.c:20
my_table_size = 3
my_table = <error reading variable my_table (frame address is not available.)>
With this patch, the output becomes:
(gdb) bt full
[...]
my_table = {0, 1, 2}
gdb/ChangeLog:
* stack.c (print_frame_local_vars): Temporarily set the selected
frame to FRAME while printing the frame's local variables.
gdb/testsuite/ChangeLog:
* gdb.base/wrong_frame_bt_full-main.c: New file.
* gdb.base/wrong_frame_bt_full-opaque.c: New file.
* gdb.base/wrong_frame_bt_full.exp: New file.
We noticed the following hang trying to run a program where one
of the subroutines we built without debugging info (opaque_routine):
$ gdb my_program
(gdb) break opaque_routine
(gdb) run
[...hangs...]
The problem comes from the fact that, at the breakpoint's address,
we have the following code:
=> 0x0000000000401994 <+4>: pop %rbp
At some point after hitting the breakpoint and stopping, GDB calls
amd64_windows_frame_decode_epilogue, which then gets stuck in the
following infinite loop:
| /* We don't care about the instruction deallocating the frame:
| if it hasn't been executed, the pc is still in the body,
| if it has been executed, the following epilog decoding will work. */
|
| /* First decode:
| - pop reg [41 58-5f] or [58-5f]. */
|
| while (1)
| {
| /* Read opcode. */
| if (target_read_memory (pc, &op, 1) != 0)
| return -1;
|
| if (op >= 0x40 && op <= 0x4f)
| {
| /* REX prefix. */
| rex = op;
|
| /* Read opcode. */
| if (target_read_memory (pc + 1, &op, 1) != 0)
| return -1;
| }
| else
| rex = 0;
|
| if (op >= 0x58 && op <= 0x5f)
| {
| /* pop reg */
| gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
|
| cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
| cur_sp += 8;
| }
| else
| break;
|
| /* Allow the user to break this loop. This shouldn't happen as the
| number of consecutive pop should be small. */
| QUIT;
| }
Nothing in that loop updates PC, and therefore, because the instruction
we stopped at is a "pop", we keep looping forever doing the same thing
over and over!
This patch fixes the issue by advancing PC to the beginning of
the next instruction if the current one is a "pop reg" instruction.
gdb/ChangeLog:
* amd64-windows-tdep.c (amd64_windows_frame_decode_epilogue):
Increment PC in while loop skipping "pop reg" instructions.
The following issue has been observed on arm-android, trying to step
over the following line of code:
Put_Line (">>> " & Integer'Image (Message (I)));
Below is a copy of the GDB transcript:
(gdb) cont
Breakpoint 1, q.dump (message=...) at q.adb:11
11 Put_Line (">>> " & Integer'Image (Message (I)));
(gdb) next
0x00016000 in system.concat_2.str_concat_2 ()
The expected behavior for the "next" command is to step over
the call to Put_Line and stop at line 12:
(gdb) next
12 I := I + 1;
What happens during the next step is that the code for line 11
above make a call to system.concat_2.str_concat_2 (to implement
the '&' string concatenation operator) before making the call
to Put_Line. While stepping, GDB stops eventually stops at the
first instruction of that function, and fails to detect that
it's a function call from where we were before, and so decides
to stop stepping.
And the reason why it fails to detect that we landed inside a function
call is because it fails to unwind from that function:
(gdb) bt
#0 0x00016000 in system.concat_2.str_concat_2 ()
#1 0x0001bc74 in ?? ()
Debugging GDB, I found that GDB decides to use the ARM unwind info
for that function, which contains the following data:
0x16000 <system__concat_2__str_concat_2>: 0x80acb0b0
Compact model index: 0
0xac pop {r4, r5, r6, r7, r8, r14}
0xb0 finish
0xb0 finish
But, in fact, using that data is wrong, in this case, because
it mentions a pop of 6 registers, and therefore hints at a frame
size of 24 bytes. The problem is that, because we're at the first
instruction of the function, the 6 registers haven't been pushed
to the stack yet. In other words, using the ARM unwind entry above,
GDB is tricked into thinking that the frame size is 24 bytes, and
that the return address (r14) is available on the stack.
One visible manifestation of this issue can been seen by looking
at the value of the stack pointer, and the frame's base address:
(gdb) p /x $sp
$2 = 0xbee427b0
(gdb) info frame
Stack level 0, frame at 0xbee427c8:
^^^^^^^^^^
||||||||||
The frame's base address should be equal to the value of the stack
pointer at entry. And you eventually get the correct frame address,
as well as the correct backtrace if you just single-step one additional
instruction, past the push:
(gdb) x /i $pc
=> 0x16000 <system__concat_2__str_concat_2>:
push {r4, r5, r6, r7, r8, lr}
(gdb) stepi
(gdb) bt
#0 0x00016004 in system.concat_2.str_concat_2 ()
#1 0x00012b6c in q.dump (message=...) at q.adb:11
#2 0x00012c3c in q () at q.adb:19
Digging further, I found that GDB tries to use the ARM unwind info
only when sure that it is relevant, as explained in the following
comment:
/* The ARM exception table does not describe unwind information
for arbitrary PC values, but is guaranteed to be correct only
at call sites. We have to decide here whether we want to use
ARM exception table information for this frame, or fall back [...]
There is one case where it decides that the info is relevant,
described in the following comment:
/* We also assume exception information is valid if we're currently
blocked in a system call. The system library is supposed to
ensure this, so that e.g. pthread cancellation works.
For that, it just parses the instruction at the address it believes
to be the point of call, and matches it against an "svc" instruction.
For instance, for a non-thumb instruction, it is at...
get_frame_pc (this_frame) - 4
... and the code checking looks like the following.
if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
byte_order_for_code, &insn)
&& (insn & 0x0f000000) == 0x0f000000 /* svc */)
exc_valid = 1;
However, the reason why this doesn't work in our case is that
because we are at the first instruction of a function in the innermost
frame. That frame can't possibly be making a call, and therefore
be stuck on a system call.
What the code above ends up doing is checking the instruction
just before the start of our function, which in our case is not
even an actual instruction, but unlucky for us, happens to match
the pattern it is looking for, thus leading GDB to improperly
trust the ARM unwinding data.
gdb/ChangeLog:
* arm-tdep.c (arm_exidx_unwind_sniffer): Do not check for a frame
stuck on a system call if the given frame is the innermost frame.
Using the gdb.ada/var_rec_arr.exp test, where the program declares
an array of variant records...
type Record_Type (I : Small_Type := 0) is record
S : String (1 .. I);
end record;
type Array_Type is array (Integer range <>) of Record_Type;
... and then a variable A1 of type Array_Type, the following command
ocassionally trigger an internal error trying to allocate more memory
than we have left:
(gdb) ptype a1(1)
[...]/utils.c:1089: internal-error: virtual memory exhausted.
A problem internal to GDB has been detected,
[...]
What happens is that recent versions of GNAT are able to generate
DWARF expressions for type Record_Type, and therefore the record's
DW_AT_byte_size is not a constant, which unfortunately breaks
an assumption made by dwarf2read.c:read_structure_type when it does:
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
if (attr)
{
TYPE_LENGTH (type) = DW_UNSND (attr);
}
As a result of this, when ada_evaluate_subexp tries to create
a value_zero for a1(1) while processing the OP_FUNCALL operator
as part of evaluating the subscripting operation in no-side-effect
mode, we try to allocate a value with a bogus size, potentially
triggering the out-of-memory internal error.
This patch avoids this issue by setting the length to zero in
this case. Until we decide to start supporting dynamic type
lengths in GDB's type struct, and it's not clear yet that
this is worth the effort (see added comment), that's probably
the best we can do.
gdb/ChangeLog:
* dwarf2read.c (read_structure_type): Set the type's length
to zero if it has a DW_AT_byte_size attribute which is not
a constant.
gdb/testsuite/ChangeLog:
* testsuite/gdb.ada/var_rec_arr.exp: Add "ptype a1(1)" test.
This patch fixes a typo in target.c:read_memory_robust, where
it calls read_whatever_is_readable with the function arguments
in the wrong order. Depending on the address being read, it
can cause an xmalloc with a huge size, resulting in an assertion
failure, or just read something other than what was requested.
The problem only arises when GDB is handling an MI
"-data-read-memory-bytes" request and the initial target_read returns
an error status. Note that read_memory_robust is only called from
the MI code.
gdb/ChangeLog:
* gdb/target.c (read_memory_robust): Call
read_whatever_is_readable with arguments in the correct order.
gdbserver's target_process_qsupported is called for each feature that
the gdbserver common code does not recognize. The only current
implementation, for x86 Linux, does this:
static void
x86_linux_process_qsupported (const char *query)
{
/* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
with "i386" in qSupported query, it supports x86 XML target
descriptions. */
use_xml = 0;
if (query != NULL && startswith (query, "xmlRegisters="))
{
char *copy = xstrdup (query + 13);
char *p;
for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
{
if (strcmp (p, "i386") == 0)
{
use_xml = 1;
break;
}
}
free (copy);
}
x86_linux_update_xmltarget ();
}
Notice that this clears use_xml and calls x86_linux_update_xmltarget
each time target_process_qsupported is called. So if gdb sends in any
unknown feature after "xmlRegisters=i386", like e.g.,
"xmlRegisters=i386;UnknownFeature+" gdbserver ends up not reporting a
XML description...
Work around this by having GDB send the "xmlRegisters=" feature last.
gdb/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* remote.c (remote_query_supported): Send the "xmlRegisters="
feature last.
There is this build failure when building in C++:
/home/simark/src/binutils-gdb/gdb/nat/aarch64-linux-hw-point.c: In function ‘void aarch64_linux_set_debug_regs(const aarch64_debug_reg_state*, int, int)’:
/home/simark/src/binutils-gdb/gdb/nat/aarch64-linux-hw-point.c:564:64: error: ‘count’ cannot appear in a constant-expression
iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
^
We can simplify the computation and make g++ happy at the same time by
formulating as:
size of fixed part + size of variable part
thus...
size of fixed part + count * size of one variable part element
thus...
offsetof (struct user_hwdebug_state, dbg_regs) + count * sizeof (regs.dbg_reg[0]);
gdb/ChangeLog:
* nat/aarch64-linux-hw-point.c (aarch64_linux_set_debug_regs): Change
form of iov_len computation.
Both x86_64 GNU/Linux and x86_64 mingw-w64 build cleanly with
--enable-targets=all. This enables -Werror by default in C++ mode
too, in order to let the buildbot catch C++ build regressions for us.
gdb/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* configure.ac (ERROR_ON_WARNING): Don't check whether in C++
mode.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* configure.ac (ERROR_ON_WARNING): Don't check whether in C++
mode.
* configure: Regenerate.
Both x86_64 GNU/Linux and x86_64 mingw-w64 build cleanly with
--enable-targets=all. Let's drop the -fpermissive hack, in order to
let the buildbot catch C++ build regressions for us.
gdb/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* build-with-cxx.m4 (GDB_AC_BUILD_WITH_CXX): Remove -fpermissive.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* configure: Regenerate.
Fixes:
src/gdb/breakpoint.c: In function ‘void update_watchpoint(watchpoint*, int)’:
src/gdb/breakpoint.c:2147:31: error: invalid conversion from ‘int’ to ‘target_hw_bp_type’ [-fpermissive]
base->loc->watchpoint_type = -1;
^
Seems better to rely on "address == -1 && length == -1" than on a enum
value that's not really part of the set of supposedly valid enum
values. Also, factor that out to separate functions for better
localization of the concept.
gdb/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* breakpoint.c (software_watchpoint_add_no_memory_location)
(is_no_memory_software_watchpoint): New functions.
(update_watchpoint): Use
software_watchpoint_add_memoryless_location.
(breakpoint_address_bits): Use is_no_memory_software_watchpoint.
Fixes:
src/gdb/remote.c: In function ‘void remote_unpush_target()’:
src/gdb/remote.c:4610:45: error: invalid conversion from ‘int’ to ‘strata’ [-fpermissive]
pop_all_targets_above (process_stratum - 1);
^
In file included from src/gdb/inferior.h:38:0,
from src/gdb/remote.c:25:
src/gdb/target.h:2299:13: error: initializing argument 1 of ‘void pop_all_targets_above(strata)’ [-fpermissive]
extern void pop_all_targets_above (enum strata above_stratum);
^
I used to carry a patch in the C++ branch that just did:
- pop_all_targets_above (process_stratum - 1);
+ pop_all_targets_above ((enum strata) (process_stratum - 1));
But then thought that maybe adding a routine that does exactly what we
need results in clearer code. This is the result.
gdb/ChangeLog:
2015-11-19 Pedro Alves <palves@redhat.com>
* remote.c (remote_unpush_target): Use
pop_all_targets_at_and_above instead of pop_all_targets_above.
* target.c (unpush_target_and_assert): New function, factored out
from ...
(pop_all_targets_above): ... here.
(pop_all_targets_at_and_above): New function.
* target.h (pop_all_targets_at_and_above): Declare.
If we constify value_cstring, we might as well constify this one.
gdb/ChangeLog:
* valops.c (value_string): Constify 'ptr' parameter.
* value.h (value_string): Constify 'ptr' parameter.
Hi,
I build GDB with -fsanitize=address, and run testsuite. In
gdb.base/callfuncs.exp, I see the following error,
p t_float_values(0.0,0.0)
=================================================================
==8088==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000cb650 at pc 0x6e195c bp 0x7fff164f9770 sp 0x7fff164f9768
READ of size 16 at 0x6020000cb650 thread T0^
#0 0x6e195b in regcache_raw_write /home/yao/SourceCode/gnu/gdb/git/gdb/regcache.c:912
#1 0x6e1e52 in regcache_cooked_write /home/yao/SourceCode/gnu/gdb/git/gdb/regcache.c:945
#2 0x466d69 in pass_in_v /home/yao/SourceCode/gnu/gdb/git/gdb/aarch64-tdep.c:1101
#3 0x467512 in pass_in_v_or_stack /home/yao/SourceCode/gnu/gdb/git/gdb/aarch64-tdep.c:1196
#4 0x467d7d in aarch64_push_dummy_call /home/yao/SourceCode/gnu/gdb/git/gdb/aarch64-tdep.c:1335
The code in pass_in_v read contents from V registers (128 bit), but the
data passed through V registers can be less than 128 bit. In this case,
float is passed. So writing V registers contents into contents buff
will cause overflow. In this patch, we add an array reg[V_REGISTER_SIZE],
which is to hold the contents from V registers, and then copy useful
bits to buf.
gdb:
2015-11-18 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (pass_in_v): Add argument len. Add local array
reg. Callers updated.
Hi,
Some tests in gdb.threads/multiple-step-overs.exp fail on arm target
when the displaced stepping on, but they pass when displaced stepping
is off.
FAIL: gdb.threads/multiple-step-overs.exp: displaced=on: step: step
FAIL: gdb.threads/multiple-step-overs.exp: displaced=on: next: next
FAIL: gdb.threads/multiple-step-overs.exp: displaced=on: continue: continue
FAIL: gdb.threads/multiple-step-overs.exp: displaced=on: signal thr1: continue to sigusr1_handler
when displaced stepping is on,
Sending packet: $vCont;c#a8...infrun: infrun_async(1)^M <--- [1]
infrun: prepare_to_wait^M
infrun: target_wait (-1.0.0, status) =^M
infrun: -1.0.0 [Thread 0],^M
infrun: status->kind = ignore^M
infrun: TARGET_WAITKIND_IGNORE^M
infrun: prepare_to_wait^M
Packet received: T05swbreak:;0b:f8faffbe;0d:409ee7b6;0f:d0880000;thread:p635.636;core:0;^M
infrun: target_wait (-1.0.0, status) =^M
infrun: 1589.1590.0 [Thread 1590],^M
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP^M
infrun: TARGET_WAITKIND_STOPPED^M
infrun: stop_pc = 0x88d0^M
infrun: context switch^M
infrun: Switching context from Thread 1591 to Thread 1590^
GDB resumes the whole process (all threads) rather than the specific
thread for which GDB wants to step over the breakpoint (as shown in [1]).
That is wrong because we resume a single thread and leave others stopped
when doing a normal step over where we temporarily remove the breakpoint,
single-step, reinsert the breakpoint, is that if we let other threads run
in the period while the breakpoint is removed, then these other threads
could miss the breakpoint. Since with displaced stepping, we don't ever
remove the breakpoint, it should be fine to let other threads run. However,
there's another reason that we should not let other threads run: that is
the case where some of those threads are also stopped for a breakpoint that
itself needs to be stepped over. If we just let those threads run, then
they immediately re-trap their breakpoint again.
when displaced stepping is off, GDB behaves correctly, only resumes
the specific thread (as shown in [2]).
Sending packet: $vCont;c:p611.613#b2...infrun: infrun_async(1)^M <-- [2]
infrun: prepare_to_wait^M
infrun: target_wait (-1.0.0, status) =^M
infrun: -1.0.0 [Thread 0],^M
infrun: status->kind = ignore^M
infrun: TARGET_WAITKIND_IGNORE^M
infrun: prepare_to_wait^M
Packet received: T05swbreak:;0b:f8faffbe;0d:409e67b6;0f:48880000;thread:p611.613;core:1;^M
infrun: target_wait (-1.0.0, status) =^M
infrun: 1553.1555.0 [Thread 1555],^M
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP^M
infrun: TARGET_WAITKIND_STOPPED^M
infrun: clear_step_over_info^M
infrun: stop_pc = 0x8848
The current logic in GDB on deciding the set of threads to resume is:
/* Decide the set of threads to ask the target to resume. */
if ((step || thread_has_single_step_breakpoints_set (tp))
&& tp->control.trap_expected)
{
/* We're allowing a thread to run past a breakpoint it has
hit, by single-stepping the thread with the breakpoint
removed. In which case, we need to single-step only this
thread, and keep others stopped, as they can miss this
breakpoint if allowed to run. */
resume_ptid = inferior_ptid;
}
else
resume_ptid = internal_resume_ptid (user_step);
it doesn't handle the case correctly that GDB continue (instead of
single step) the thread for displaced stepping.
I also update the comment below to reflect the code. I remove the
"with the breakpoint removed" comment, because GDB doesn't remove
breakpoints in displaced stepping, so we don't have to worry that
other threads may miss the breakpoint.
Patch is regression tested on both x86_64-linux and arm-linux.
gdb:
2015-11-17 Yao Qi <yao.qi@linaro.org>
* infrun.c (resume): Check control.trap_expected only
when deciding the set of threads to resume.
We currently throw exceptions from signal handlers (e.g., for
Quit/ctrl-c). But throwing C++ exceptions from signal handlers is
undefined. (That doesn't restore signal masks, like siglongjmp does,
and, because asynchronous signals can arrive at any instruction, we'd
have to build _everything_ with -fasync-unwind-tables to make it
reliable.) It happens to work on x86_64 GNU/Linux at least, but it's
likely broken on other ports.
Until we stop throwing from signal handlers, use setjmp/longjmp based
exceptions in C++ mode as well.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* common/common-exceptions.h (GDB_XCPT_SJMP, GDB_XCPT_TRY)
(GDB_XCPT_RAW_TRY, GDB_XCPT): Define.
Replace __cplusplus checks with GDB_XCPT checks throughout.
* common/common-exceptions.c: Replace __cplusplus checks with
GDB_XCPT checks throughout.
Cross building gdbserver for --host=x86_64-w64-mingw32 with gcc 4.8.4
20141219 (Fedora MinGW 4.8.4-1.fc20), I get:
src/gdb/gdbserver/tracepoint.c: In function 'cmd_qtdp':
src/gdb/gdbserver/tracepoint.c:2577:7: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Defined %stracepoint %d at 0x%s, "
^
src/gdb/gdbserver/tracepoint.c:2577:7: error: unknown conversion type character 'l' in format [-Werror=format=]
src/gdb/gdbserver/tracepoint.c:2577:7: error: too many arguments for format [-Werror=format-extra-args]
src/gdb/gdbserver/tracepoint.c: In function 'stop_tracing':
src/gdb/gdbserver/tracepoint.c:3447:7: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Stopping the trace because "
^
src/gdb/gdbserver/tracepoint.c:3447:7: error: too many arguments for format [-Werror=format-extra-args]
src/gdb/gdbserver/tracepoint.c: In function 'collect_data_at_tracepoint':
src/gdb/gdbserver/tracepoint.c:4651:3: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Making new traceframe for tracepoint %d at 0x%s, hit %" PRIu64,
^
src/gdb/gdbserver/tracepoint.c:4651:3: error: too many arguments for format [-Werror=format-extra-args]
src/gdb/gdbserver/tracepoint.c: In function 'collect_data_at_step':
src/gdb/gdbserver/tracepoint.c:4687:3: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Making new step traceframe for "
^
trace_debug is a macro that calls:
static void trace_vdebug (const char *, ...) ATTRIBUTE_PRINTF (1, 2);
The calls that fail checking use PRIu64, etc., like:
trace_debug ("Defined %stracepoint %d at 0x%s, "
"enabled %d step %" PRIu64 " pass %" PRIu64,
tpoint->type == fast_tracepoint ? "fast "
: tpoint->type == static_tracepoint ? "static " : "",
tpoint->number, paddress (tpoint->address), tpoint->enabled,
tpoint->step_count, tpoint->pass_count);
gnulib's stdio/printf module replacements may make %llu, etc. work on
mingw, instead of the MS-specific %I64u, and thus may make PRIu64
expand to %llu. However, gcc isn't aware of that, because libiberty's
ansidecl.h defines ATTRIBUTE_PRINTF as using attribute format(printf).
But, with that format, gcc checks for MS-style format strings (%I64u).
In order to have gcc expect gnu/standard formats, we need to use
gnu_printf format instead. Which version to use (printf/gnu_printf)
depends on msvcrt and mingw version, and so gnulib has a
configure-time check, and defines _GL_ATTRIBUTE_FORMAT_PRINTF
accordingly.
Since _GL_ATTRIBUTE_FORMAT_PRINTF is compatible with ATTRIBUTE_PRINTF,
the fix is simply to make use of the former.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* common/common-defs.h (ATTRIBUTE_PRINTF): Redefine in terms of
_GL_ATTRIBUTE_FORMAT_PRINTF after including ansidecl.h.
With some toolchains, building in C++ mode stumbles on many instances
of:
In file included from ../../src/gdb/../include/splay-tree.h:43:0,
from ../../src/gdb/dcache.c:26:
build-gnulib/import/inttypes.h:61:3: error: #error "This file assumes that 'int' has exactly 32 bits. Please report your platform and compiler to <bug-gnulib@gnu.org>."
# error "This file assumes that 'int' has exactly 32 bits. Please report your platform and compiler to <bug-gnulib@gnu.org>."
^
make: *** [dcache.o] Error 1
That's:
#if !(INT_MIN == INT32_MIN && INT_MAX == INT32_MAX)
# error "This file assumes that 'int' has exactly 32 bits. Please report your platform and compiler to <bug-gnulib@gnu.org>."
#endif
I see it when cross building for --host=x86_64-w64-mingw32 using
Fedora 20's g++ (gcc version 4.8.4 20141219 (Fedora MinGW
4.8.4-1.fc20)), Simon reports seeing this on several cross compilers
too.
The issue is that on some hosts that predate C++11, when using C++ one
must define __STDC_CONSTANT_MACROS/__STDC_LIMIT_MACROS to make visible
the definitions of INTMAX_C / INTMAX_MAX etc.
This was a C99 requirement that later C++11 -- the first to define
stdint.h -- removed, and then C11 removed it as well.
https://www.gnu.org/software/gnulib/manual/html_node/stdint_002eh.html
says that gnulib's stdint.h fixes this, but because we run gnulib's
configure tests with a C compiler, gnulib determines that mingw's
stdint.h is C99-compliant, and doesn't actually replace it. Actually,
even though configuring gnulib with a C++ compiler does result in
gnulib replacing stdint.h, the resulting replacement is broken for
mingw, because it defines uintptr_t incorrectly. I sent a gnulib
patch upstream to fix that, here:
https://lists.gnu.org/archive/html/bug-gnulib/2015-11/msg00004.html
but then even with that, gnulib still stumbles on other
configured-with-C++-compiler problems.
So for now, until gnulib + C++ is fixed upstream and then gdb's copy
is updated, which may take a while, I think it's best to keep
configuring gnulib in C, and define
__STDC_LIMIT_MACROS/__STDC_CONSTANT_MACROS ourselves, just like C99
intended.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* common/common-defs.h (__STDC_CONSTANT_MACROS)
(__STDC_LIMIT_MACROS): Define before including stdint.h.
Building in C++ errors out with:
../../src/gdb/windows-nat.c: In function 'int get_windows_debug_event(target_ops*, int, target_waitstatus*)':
../../src/gdb/windows-nat.c:1503:13: warning: invalid conversion from 'int' to 'gdb_signal' [-fpermissive]
last_sig = 1;
^
../../src/gdb/windows-nat.c:1533:43: warning: invalid conversion from 'int' to 'gdb_signal' [-fpermissive]
windows_resume (ops, minus_one_ptid, 0, 1);
^
../../src/gdb/windows-nat.c:1228:1: warning: initializing argument 4 of 'void windows_resume(target_ops*, ptid_t, int, gdb_signal)' [-fpermissive]
windows_resume (struct target_ops *ops,
^
Looking at the code, I can't figure out why we treat first chance
exceptions any different here.
AFAICS, we set last_sig to 1, and then call windows_resume passing
signal==1, so the DBG_EXCEPTION_NOT_HANDLED code path in win32_resume
is taken:
~~~
if (sig != GDB_SIGNAL_0)
{
if (current_event.dwDebugEventCode != EXCEPTION_DEBUG_EVENT)
{
OUTMSG (("Cannot continue with signal %d here.\n", sig));
}
else if (sig == last_sig)
continue_status = DBG_EXCEPTION_NOT_HANDLED;
else
OUTMSG (("Can only continue with recieved signal %d.\n", last_sig));
}
~~~
Fix this by removing this special casing. gdbserver also goes
straight to continuing with DBG_EXCEPTION_NOT_HANDLED, AFAICS.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* windows-nat.c (handle_exception): Return 0 for first chance
exceptions.
(get_windows_debug_event): Adjust.
Fixes:
../../src/gdb/windows-nat.c:287:11: error: invalid conversion from 'int' to 'gdb_signal' [-fpermissive]
{-1, -1}};
^
The signal number here doesn't really matter.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* windows-nat.c (xslate): Use GDB_SIGNAL_UNKNOWN instead of -1 as
signal number for terminator.
Fixes a set of errors like:
../../src/gdb/windows-nat.c: In function 'void _initialize_loadable()':
../../src/gdb/windows-nat.c:2778:30: error: invalid conversion from 'void*' to 'BOOL (*)(DWORD) {aka int (*)(long unsigned int)}' [-fpermissive]
DebugActiveProcessStop = (void *)
^
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* windows-nat.c (AdjustTokenPrivileges_ftype)
(DebugActiveProcessStop_ftype, DebugBreakProcess_ftype)
(DebugSetProcessKillOnExit_ftype, EnumProcessModules_ftype)
(GetCurrentConsoleFont_ftype, GetModuleInformation_ftype)
(LookupPrivilegeValueA_ftype, OpenProcessToken_ftype)
(GetConsoleFontSize_ftype): New typedefs.
(AdjustTokenPrivileges, DebugActiveProcessStop)
(DebugBreakProcess, DebugSetProcessKillOnExit, EnumProcessModules)
(GetConsoleFontSize, GetCurrentConsoleFont, GetModuleInformation)
(LookupPrivilegeValueA, OpenProcessToken, GetConsoleFontSize):
Adjust.
(GetModuleFileNameEx_ftype): New typedef.
(GetModuleFileNameEx): Use it.
(_initialize_loadable): Define GPA macro and use it.
c_string_type contains values meant to be OR'ed together (even though
some bits are mutually exclusive), so it makes sense to make it an
enum flags type.
gdb/ChangeLog:
2015-11-17 Simon Marchi <simon.marchi@ericsson.com>
* c-exp.y (exp): Adjust, change enum c_string_type to
c_string_type.
(parse_string_or_char): Likewise.
* c-lang.c (charset_for_string_type): Likewise.
(classify_type): Likewise.
(c_printchar): Likewise.
(c_printstr): Likewise.
(evaluate_subexp_c): Likewise. And change cast to enum
c_string_type_values.
* c-lang.h: Include "common/enum_flags.h".
(enum c_string_type): Rename to...
(enum c_string_type_values): ...this.
(c_string_type): Define new enum flags type.
This patch fixes C++ build errors like this:
/home/pedro/gdb/mygit/cxx-convertion/src/gdb/linux-tdep.c:1126:35: error: invalid conversion from ‘int’ to ‘filterflags’ [-fpermissive]
| COREFILTER_HUGETLB_PRIVATE);
^
This is a case of enums used as bit flags. Unlike "regular" enums,
these values are supposed to be or'ed together. However, in C++, the
type of "(ENUM1 | ENUM2)" is int, and you then can't assign an int to
an enum variable without a cast. That means that this:
enum foo_flags flags = 0;
if (...)
flags |= FOO_FLAG1;
if (...)
flags |= FOO_FLAG2;
... would have to be written as:
enum foo_flags flags = (enum foo_flags) 0;
if (...)
flags = (enum foo_flags) (flags | FOO_FLAG1);
if (...)
flags = (enum foo_flags) (flags | FOO_FLAG2);
which is ... ugly. Alternatively, we'd have to use an int for the
variable's type, which isn't ideal either.
This patch instead adds an "enum flags" class. "enum flags" are
exactly the enums where the values are bits that are meant to be ORed
together.
This allows writing code like the below, while with raw enums this
would fail to compile without casts to enum type at the assignments to
'f':
enum some_flag
{
flag_val1 = 1 << 1,
flag_val2 = 1 << 2,
flag_val3 = 1 << 3,
flag_val4 = 1 << 4,
};
DEF_ENUM_FLAGS_TYPE(enum some_flag, some_flags)
some_flags f = flag_val1 | flag_val2;
f |= flag_val3;
It's also possible to assign literal zero to an enum flags variable
(meaning, no flags), dispensing either adding an awkward explicit "no
value" value to the enumeration or the cast to assignments from 0.
For example:
some_flags f = 0;
f |= flag_val3 | flag_val4;
Note that literal integers other than zero do fail to compile:
some_flags f = 1; // error
C is still supported -- DEF_ENUM_FLAGS_TYPE is just a typedef in that
case.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* btrace.h: Include common/enum-flags.h.
(btrace_insn_flags): Define.
(struct btrace_insn) <flags>: Change type.
(btrace_function_flags): Define.
(struct btrace_function) <flags>: Change type.
(btrace_thread_flags): Define.
(struct btrace_thread_info) <flags>: Change type.
* c-exp.y (token_flags): Rename to ...
(token_flag): ... this.
(token_flags): Define.
(struct token) <flags>: Change type.
* common/enum-flags.h: New file.
* compile/compile-c-types.c (convert_qualified): Change type of
'quals' local.
* compile/compile-internal.h: Include "common/enum-flags.h".
(gcc_qualifiers_flags): Define.
* completer.c (enum reg_completer_targets): Rename to ...
(enum reg_completer_target): ... this.
(reg_completer_targets): Define.
(reg_or_group_completer_1): Change type of 'targets' parameter.
* disasm.c (do_mixed_source_and_assembly_deprecated): Change type
of 'psl_flags' local.
(do_mixed_source_and_assembly): Change type of 'psl_flags' local.
* infrun.c: Include "common/enum-flags.h".
(enum step_over_what): Rename to ...
(enum step_over_what_flag): ... this.
(step_over_what): Change type.
(start_step_over): Change type of 'step_what' local.
(thread_still_needs_step_over): Now returns a step_over_what.
Adjust.
(keep_going_pass_signal): Change type of 'step_what' local.
* linux-tdep.c: Include "common/enum-flags.h".
(enum filterflags): Rename to ...
(enum filter_flag): ... this.
(filter_flags): Define.
(dump_mapping_p): Change type of 'filterflags' parameter.
(linux_find_memory_regions_full): Change type of 'filterflags'
local.
(linux_find_memory_regions_full): Pass the address of an unsigned
int to sscanf instead of the address of an enum.
* record-btrace.c (btrace_print_lines): Change type of local
'psl_flags'.
(btrace_call_history): Replace 'flags' parameter
with 'int_flags' parameter. Adjust.
(record_btrace_call_history, record_btrace_call_history_range)
(record_btrace_call_history_from): Rename 'flags' parameter to
'int_flags'. Use record_print_flags.
* record.h: Include "common/enum-flags.h".
(record_print_flags): Define.
* source.c: Include "common/enum-flags.h".
(print_source_lines_base, print_source_lines): Change type of
flags parameter.
* symtab.h: Include "common/enum-flags.h".
(enum print_source_lines_flags): Rename to ...
(enum print_source_lines_flag): ... this.
(print_source_lines_flags): Define.
(print_source_lines): Change prototype.
Instead of adding a cast at the memory_error call, as needed for C++,
and have the reader understand the indirection, make it simple and
hardcode the generic memory error at the memory_error call site.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* guile/scm-disasm.c (gdbscm_disasm_read_memory): Return -1 on
error instead of TARGET_XFER_E_IO.
(gdbscm_disasm_memory_error): Always pass TARGET_XFER_E_IO to
memory_error.
This patch fixes all occurences of left-shifting negative constants in C cod
which is undefined by the C standard.
gdb/ChangeLog:
* hppa-tdep.c (hppa_sign_extend, hppa_low_hppa_sign_extend)
(prologue_inst_adjust_sp, hppa_frame_cache): Fix left shift of negative
value.
* dwarf2read.c (read_subrange_type): Likewise.
Hi,
I build GDB with -fsanitize=address, and run testsuite. In
gdb.base/callfuncs.exp, I see the following error,
p/c fun1()
=================================================================^M
==9601==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffee858530 at pc 0x6df079 bp 0x7fffee8583a0 sp 0x7fffee858398
WRITE of size 16 at 0x7fffee858530 thread T0
#0 0x6df078 in regcache_raw_read /home/yao/SourceCode/gnu/gdb/git/gdb/regcache.c:673
#1 0x6dfe1e in regcache_cooked_read /home/yao/SourceCode/gnu/gdb/git/gdb/regcache.c:751
#2 0x4696a3 in aarch64_extract_return_value /home/yao/SourceCode/gnu/gdb/git/gdb/aarch64-tdep.c:1708
#3 0x46ae57 in aarch64_return_value /home/yao/SourceCode/gnu/gdb/git/gdb/aarch64-tdep.c:1918
We are extracting return value from V registers (128 bit), but only
allocate X_REGISTER_SIZE-byte array, which isn't sufficient. This
patch changes the array to V_REGISTER_SIZE.
gdb:
2015-11-16 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_extract_return_value): Change array
buf's length to V_REGISTER_SIZE.
This patch changes the last argument of functions pass_in_x_or_stack,
pass_in_v_or_stack, pass_on_stack, and pass_in_x to type value *.
gdb:
2015-11-16 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (pass_in_x_or_stack): Change argument type
from bfd_byte * to value *. Caller updated.
(pass_in_x): Likewise.
(pass_in_v_or_stack): Likewise.
(pass_on_stack): Likewise.
Both aarch64_push_dummy_call and bfin_push_dummy_call only use args[i]
contents but then never write to them, so that we can use
value_contents instead.
gdb:
2015-11-16 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_push_dummy_call): Call value_contents instead
of value_contents_writeable.
* bfin-tdep.c (bfin_push_dummy_call): Likewise.
When I build GDB with -fsanitize=address, and run testsuite,
some gdb.base/*.exp test triggers the ERROR below,
=================================================================
==7646==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x603000242810 at pc 0x487844 bp 0x7fffe32e84e0 sp 0x7fffe32e84d8
READ of size 4 at 0x603000242810 thread T0
#0 0x487843 in push_stack_item /home/yao/SourceCode/gnu/gdb/git/gdb/arm-tdep.c:3405
#1 0x48998a in arm_push_dummy_call /home/yao/SourceCode/gnu/gdb/git/gdb/arm-tdep.c:3960
In that path, GDB passes value on stack, in an INT_REGISTER_SIZE slot,
but the value contents' length can be less than INT_REGISTER_SIZE, so
the contents will be accessed out of the bound. This patch adds an
array buf[INT_REGISTER_SIZE], and copy val to buf before writing them
to stack.
gdb:
2015-11-16 Yao Qi <yao.qi@linaro.org>
* arm-tdep.c (arm_push_dummy_call): New array buf. Store regval
to buf. Pass buf instead of val to push_stack_item.
This patch teaches GDB to support gnu vector in inferior calls. As a
result, fails in gdb.base/gnu_vector.exp are fixed. The calling
convention of gnu vector isn't documented in the AAPCS, because it
is the GCC extension. I checked the gcc/config/arm/arm.c, understand
how GCC pass arguments and return values, and do the same in GDB side.
The patch is tested with both hard float and soft float on arm-linux.
gdb:
2015-11-13 Yao Qi <yao.qi@linaro.org>
PR tdep/19051
* arm-tdep.c (arm_type_align): Return the right alignment
value for vector.
(arm_vfp_cprc_sub_candidate): Return true for 64-bit and
128-bit vector types.
(arm_return_in_memory): Handel vector type.
Current arm_return_in_memory isn't friendly to adding new things in it.
Moreover, a lot of stuff are about APCS, which is not used nowadays (AAPCS
is being used). This patch is to refactor arm_return_in_memory, so that
some code can be shared for both APCS and AAPCS at the beginning of
arm_return_in_memory, and then each ABI (APCS and AAPCS) are processed
separately.
gdb:
2015-11-13 Yao Qi <yao.qi@linaro.org>
* arm-tdep.c (arm_return_in_memory): Rewrite it.
(arm_return_value): Call arm_return_in_memory for
TYPE_CODE_COMPLEX.
These casts uses the typedef target type (long int *) instead of the
typedef name. This was a little mistake in one of the big C++ cast
patches.
gdb/ChangeLog:
* inf-ptrace.c (inf_ptrace_fetch_register): Change long int *
cast to PTRACE_TYPE_RET *.
(inf_ptrace_store_register): Likewise.
Switch to using 'add_info' function for creating basic info
sub-commands.
gdb/ChangeLog:
* avr-tdep.c (_initialize_avr_tdep): Switch to 'add_info' for creating
info sub-commands.
* gnu-nat.c (add_task_commands): Likewise.
* macrocmd.c (_initialize_macrocmd): Likewise.
The 'add_info' function is used for creating info commands, these
commands should be created as 'class_info' rather than 'no_class'.
gdb/ChangeLog:
* cli/cli-decode.c (add_info): Switch to class_info.
Consider a function with the following signature...
function F (R : out Rec_Type) return Enum_Type;
... where Rec_Type is a simple record:
type Rec_Type is record
Cur : Integer;
end record;
Trying to "finish" from that function causes GDB to SEGV:
(gdb) fin
Run till exit from #0 bar.f (r=...) at bar.adb:5
0x00000000004022fe in foo () at foo.adb:5
5 I : Enum_Type := F (R);
[1] 18949 segmentation fault (core dumped) /[..]/gdb
This is related to the fact that funtion F has a parameter (R)
which is an "out" parameter being passed by copy. For those,
GNAT transforms the return value to be a record with multiple
fields: The first one is called "RETVAL" and contains the return
value shown in the source, and the remaining fields have the same
name as the "out" or "in out" parameters which are passed by copy.
So, in the example above, function F returns a struct that has
one field who name is "r".
Because "RETVAL" starts with "R", GDB thinks it's a wrapper field,
because it looks like the encoding used for variant records:
-- member_name ::= {choice} | others_choice
-- choice ::= simple_choice | range_choice
-- simple_choice ::= S number
-- range_choice ::= R number T number <<<<<----- here
-- number ::= {decimal_digit} [m]
-- others_choice ::= O (upper case letter O)
See ada_is_wrapper_field:
return (name != NULL
&& (startswith (name, "PARENT")
|| strcmp (name, "REP") == 0
|| startswith (name, "_parent")
|| name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
As a result of this, when trying to print the RETURN value,
we think that RETVAL is a wrapper, and thus recurse into
print_field_values...
if (ada_is_wrapper_field (type, i))
{
comma_needed =
print_field_values (TYPE_FIELD_TYPE (type, i),
valaddr,
(offset
+ TYPE_FIELD_BITPOS (type, i) / HOST_CHAR_BIT),
stream, recurse, val, options,
comma_needed, type, offset, language);
... which is a problem since print_field_values assumes that
the type it is given ("TYPE_FIELD_TYPE (type, i)" here), is also
a record type. However, that's not the case, since RETVAL is
an enum. That eventually leads GDB to a NULL type when trying to
extract fields out of the enum, which then leads to a SEGV when
trying to dereference it.
Ideally, we'd want to be a little more careful in identifying
wrapper fields, by enhancing ada_is_wrapper_field to be a little
more complete in its analysis of the field name before declaring
it a variant record wrapper. However, it's not super easy to do
so, considering that the choices can be combined together when
complex choices are used. Eg:
-- [...] the choice 1 .. 4 | 7 | -10 would be represented by
-- R1T4S7S10m
Given that we are working towards getting rid of GNAT encodings,
which means that the above will eventually disappear, we took
the more pragmatic approach is just treating RETVAL as a special
case.
gdb/ChangeLog:
* ada-lang.c (ada_is_wrapper_field): Add special handling
for fields called "RETVAL".
gdb/testsuite/ChangeLog:
* gdb.ada/fin_fun_out: New testcase.
We've already has the definition like this,
#define ELF_STRING_ARM_unwind ".ARM.exidx"
so it is better to use the macro rather than the string.
gdb:
2015-11-09 Yao Qi <yao.qi@linaro.org>
* arm-tdep.c (arm_exidx_new_objfile): Use
ELF_STRING_ARM_unwind.
This patch adds a new function displaced_step_in_progress_thread,
which returns whether the thread is in progress of displaced
stepping.
gdb:
2015-11-09 Yao Qi <yao.qi@linaro.org>
* infrun.c (displaced_step_in_progress_thread): New function.
(handle_inferior_event_1): Call it.
gdb:
2015-11-05 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_displaced_step_copy_insn): Call
aarch64_decode_insn and decode instruction by aarch64_inst.
This patch convert aarch64_analyze_prologue to using aarch64_decode_insn
to decode instructions. After this change, aarch64_analyze_prologue
looks much simple, and some aarch64_decode_* functions are removed
accordingly.
gdb:
2015-11-05 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (extract_signed_bitfield): Remove.
(decode_masked_match): Remove.
(aarch64_decode_add_sub_imm): Remove.
(aarch64_decode_br): Remove.
(aarch64_decode_eret): Remove.
(aarch64_decode_movz): Remove.
(aarch64_decode_orr_shifted_register_x): Remove.
(aarch64_decode_ret): Remove.
(aarch64_decode_stp_offset): Remove.
(aarch64_decode_stur): Remove.
(aarch64_analyze_prologue): Call aarch64_decode_insn
and use aarch64_inst to decode instructions.
This patch combines both aarch64_decode_stp_offset_wb and
aarch64_decode_stp_offset together.
gdb:
2015-11-05 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_decode_stp_offset): New argument
wback.
(aarch64_decode_stp_offset_wb): Removed.
(aarch64_analyze_prologue): Don't use
aarch64_decode_stp_offset_wb.
This is needed to avoid O(n**2) complexity when recording MVCLE and other
partial execution instructions.
gdb/ChangeLog:
PR/18376
* gdb/s390-linux-tdep.c (s390_is_partial_instruction): New function.
(s390_software_single_step): New function.
(s390_displaced_step_hw_singlestep): New function.
(s390_gdbarch_init): Fill gdbarch slots with the above.
gdb/ChangeLog:
PR/18376
* gdb/configure.tgt: Add linux-record.o to s390*-linux.
* gdb/s390-linux-tdep.c: #include "linux-record.h", "record-full.h"
(s390_linux_record_tdep): New static global variable.
(s390x_linux_record_tdep): New static global variable.
(s390_all_but_pc_registers_record): New function.
(s390_canonicalize_syscall): New function.
(s390_linux_syscall_record): New function.
(s390_linux_record_signal): New function.
(s390_record_calc_disp_common): New function.
(s390_record_calc_disp): New function.
(s390_record_calc_disp_vsce): New function.
(s390_record_calc_rl): New function.
(s390_record_gpr_g): New function.
(s390_record_gpr_h): New function.
(s390_record_vr): New function.
(s390_process_record): New function.
(s390_init_linux_record_tdep): New function.
(s390_gdbarch_init): Fill record function slots.
gdb/testsuite/ChangeLog:
* gdb.reverse/s390-mvcle.c: New test.
* gdb.reverse/s390-mvcle.exp: New file.
* lib/gdb.exp: Enable reverse tests on s390*-linux.
On the newly added s390 target, it's possible for a single instruction
to write practically unbounded amount of memory (eg. MVCLE). This caused
a stack overflow when alloca was used.
gdb/ChangeLog:
* record-full.c (record_full_exec_insn): Use xmalloc for temporary
memory storage.
Add support for the /s modifier of the "record instruction-history" command. It
behaves exactly like /m and prints disassembled instructions in the order in
which they were recorded with interleaved sources. We accept /s in addition
to /m to align with the "disassemble" command.
The "record instruction-history" modifiers were not documented. Document
all of them.
gdb/
* record.c (get_insn_history_modifiers): Set DISASSEMBLY_SOURCE
instead of DISASSEMBLY_SOURCE_DEPRECATED. Also accept /s.
(_initialize_record): Document the /s modifier.
* NEWS: Announce record instruction-history's new /s modifier.
doc/
* gdb.texinfo (Process Record and Replay): Document "record
instruction-history" modifiers.
The /m modifier interleaves source lines with the disassembly of recorded
instructions. This calls disasm.c's gdb_disassembly once for each recorded
instruction to be printed.
This doesn't really work because gdb_disassembly may choose not to print
anything in some situations. And if it does print something, the output
interferes with btrace_insn_history's output around it.
It further results in a separate asm_insns list for each instruction in MI.
Even though there is no MI support for target record, yet, we fix this obvious
issue.
Change record instruction-history /m to use the new gdb_pretty_print_insn
function for printing a single instruction and interleave source lines as
appropriate.
We cannot reuse the new disasm.c do_mixed_source_and_assembly function without
significant changes to it.
gdb/
* record-btrace.c (struct btrace_line_range): New.
(btrace_mk_line_range, btrace_line_range_add)
(btrace_line_range_is_empty, btrace_line_range_contains_range)
(btrace_find_line_range, btrace_print_lines): New.
(btrace_insn_history): Add source interleaving algorithm.
The "record instruction-history" command prints for each instruction in
addition to the instruction's disassembly:
- the instruction number in the recorded execution trace
- a '?' before the instruction if it was executed speculatively
To allow the "record instruction-history" command to use GDB's disassembly
infrastructure, we extend gdb_pretty_print_insn to optionally print those
additional fields and export the function.
Add a new struct disasm_insn to add additional fields describing the
to-be-disassembled instruction. The additional fields are:
number an optional instruction number, zero if omitted.
is_speculative a predicate saying whether the instruction was
executed speculatively.
If non-zero, the instruction number is printed first. It will also appear
as a new optional field "insn-number" in MI. The field will be present if
insn_num is non-zero.
If is_speculative is set, speculative execution will be indicated by a "?"
following the new instruction number field. Unless the PC is omitted, it
will overwrite the first byte of the PC prefix. It will appear as a new
optional field "is-speculative" in MI. The field will contain "?" and will
be present if is_speculative is set.
The speculative execution indication is guarded by a new flag
DISASSEMBLY_SPECULATION.
Replace the PC parameter of gdb_pretty_print_insn with a pointer to the above
struct. GDB's "disassemble" command does not use the new fields.
gdb/
* disasm.h (DISASSEMBLY_SPECULATION): New.
(struct disasm_insn): New.
(gdb_pretty_print_insn): New.
* disasm.c (gdb_pretty_print_insn): Replace parameter PC with INSN.
Update users. Print instruction number and indicate speculative
execution, if requested.
Split disasm.c's dump_insn into two parts:
- print a single instruction
- loop over the specified address range
The first part will be refined in subsequent patches so it can be reused.
gdb/
* disasm.c (dump_insns): Split into this and ...
(gdb_pretty_print_insn): ... this.
This actually fixes the build in C:
/home/simark/src/binutils-gdb/gdb/xtensa-linux-nat.c💯1: error: no previous prototype for ‘supply_gregset_reg’ [-Werror=missing-prototypes]
supply_gregset_reg (struct regcache *regcache,
^
/home/simark/src/binutils-gdb/gdb/xtensa-linux-nat.c:257:1: error: no previous prototype for ‘xtensa_linux_fetch_inferior_registers’ [-Werror=missing-prototypes]
xtensa_linux_fetch_inferior_registers (struct target_ops *ops,
^
/home/simark/src/binutils-gdb/gdb/xtensa-linux-nat.c:272:1: error: no previous prototype for ‘xtensa_linux_store_inferior_registers’ [-Werror=missing-prototypes]
xtensa_linux_store_inferior_registers (struct target_ops *ops,
^
cc1: all warnings being treated as errors
These functions are local to this file, so they should be static.
gdb/ChangeLog:
* xtensa-linux-nat.c (supply_gregset_reg): Make static.
(xtensa_linux_fetch_inferior_registers): Likewise.
(xtensa_linux_store_inferior_registers): Likewise.
Mostly some casts from "generic arg" void* to the actual type.
There are two (enum gdb_signal) casts. I tried to see if it would have
been better to change the type of sigrc, but it has a double role, as an
enum and as an integer, so I left it as is.
gdb/ChangeLog:
* remote-sim.c (check_for_duplicate_sim_descriptor): Add casts.
(get_sim_inferior_data): Likewise.
(sim_inferior_data_cleanup): Likewise.
(gdbsim_close_inferior): Likewise.
(gdbsim_resume_inferior): Likewise.
(gdbsim_wait): Likewise.
(simulator_command): Likewise.
(sim_command_completer): Likewise.
Assuming displaced stepping is enabled, and a breakpoint is set in the
memory region of the scratch pad, things break. One of two cases can
happen:
#1 - The breakpoint wasn't inserted yet (all threads were stopped), so
after setting up the displaced stepping scratch pad with the
adjusted copy of the instruction we're trying to single-step, we
insert the breakpoint, which corrupts the scratch pad, and the
inferior executes the wrong instruction. (Example below.)
This is clearly unacceptable.
#2 - The breakpoint was already inserted, so setting up the displaced
stepping scratch pad overwrites the breakpoint. This is OK in
the sense that we already assume that no thread is going to
executes the code in the scratch pad range (after initial
startup) anyway.
This commit addresses both cases by simply punting on displaced
stepping if we have a breakpoint in the scratch pad range.
The #1 case above explains a few regressions exposed by the AS/NS
series on x86:
Running ./gdb.dwarf2/callframecfa.exp ...
FAIL: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa
FAIL: gdb.dwarf2/callframecfa.exp: step 1 for call-frame-cfa
FAIL: gdb.dwarf2/callframecfa.exp: step 2 for call-frame-cfa
FAIL: gdb.dwarf2/callframecfa.exp: step 3 for call-frame-cfa
FAIL: gdb.dwarf2/callframecfa.exp: step 4 for call-frame-cfa
Running ./gdb.dwarf2/typeddwarf.exp ...
FAIL: gdb.dwarf2/typeddwarf.exp: continue to breakpoint: continue to typeddwarf.c:53
FAIL: gdb.dwarf2/typeddwarf.exp: check value of x at typeddwarf.c:53
FAIL: gdb.dwarf2/typeddwarf.exp: check value of y at typeddwarf.c:53
FAIL: gdb.dwarf2/typeddwarf.exp: check value of z at typeddwarf.c:53
FAIL: gdb.dwarf2/typeddwarf.exp: continue to breakpoint: continue to typeddwarf.c:73
FAIL: gdb.dwarf2/typeddwarf.exp: check value of w at typeddwarf.c:73
FAIL: gdb.dwarf2/typeddwarf.exp: check value of x at typeddwarf.c:73
FAIL: gdb.dwarf2/typeddwarf.exp: check value of y at typeddwarf.c:73
FAIL: gdb.dwarf2/typeddwarf.exp: check value of z at typeddwarf.c:73
Enabling "maint set target-non-stop on" implies displaced stepping
enabled as well, and it's the latter that's to blame here. We can see
the same failures with "maint set target-non-stop off + set displaced
on".
Diffing (good/bad) gdb.log for callframecfa.exp shows:
@@ -99,29 +99,29 @@ Breakpoint 2 at 0x80481b0: file q.c, lin
continue
Continuing.
-Breakpoint 2, func (arg=77) at q.c:2
+Breakpoint 2, func (arg=52301) at q.c:2
2 in q.c
(gdb) PASS: gdb.dwarf2/callframecfa.exp: continue to breakpoint: continue to breakpoint for call-frame-cfa
display arg
-1: arg = 77
-(gdb) PASS: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa
+1: arg = 52301
+(gdb) FAIL: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa
The problem is here, when setting up the func call:
Breakpoint 1, main (argc=-13345, argv=0x0) at q.c:7
7 in q.c
(gdb) disassemble
Dump of assembler code for function main:
0x080481bb <+0>: push %ebp
0x080481bc <+1>: mov %esp,%ebp
0x080481be <+3>: sub $0x4,%esp
=> 0x080481c1 <+6>: movl $0x4d,(%esp)
0x080481c8 <+13>: call 0x80481b0 <func>
0x080481cd <+18>: leave
0x080481ce <+19>: ret
End of assembler dump.
(gdb) disassemble /r
Dump of assembler code for function main:
0x080481bb <+0>: 55 push %ebp
0x080481bc <+1>: 89 e5 mov %esp,%ebp
0x080481be <+3>: 83 ec 04 sub $0x4,%esp
=> 0x080481c1 <+6>: c7 04 24 4d 00 00 00 movl $0x4d,(%esp)
0x080481c8 <+13>: e8 e3 ff ff ff call 0x80481b0 <func>
0x080481cd <+18>: c9 leave
0x080481ce <+19>: c3 ret
End of assembler dump.
Note the breakpoint at main is set at 0x080481c1. Right at the
instruction that sets up func's argument. Executing that instruction
should write 0x4d to the address pointed at by $esp. However, if we
stepi, the program manages to write 52301/0xcc4d there instead (0xcc
is int3, the x86 breakpoint instruction), because the breakpoint
address is 4 bytes inside the scratch pad location, which is
0x080481bd:
(gdb) p 0x080481c1 - 0x080481bd
$1 = 4
IOW, instead of executing:
"c7 04 24 4d 00 00 00" [ movl $0x4d,(%esp) ]
the inferior executes:
"c7 04 24 4d cc 00 00" [ movl $0xcc4d,(%esp) ]
gdb/ChangeLog:
2015-10-30 Pedro Alves <palves@redhat.com>
* breakpoint.c (breakpoint_in_range_p)
(breakpoint_location_address_range_overlap): New functions.
* breakpoint.h (breakpoint_in_range_p): New declaration.
* infrun.c (displaced_step_prepare_throw): If there's a breakpoint
in the scratch pad range, don't displaced step.
60 bytes is the size of glibc's struct termios, the one used by kernel is
36 bytes long.
gdb/ChangeLog:
* aarch64-linux-tdep.c (aarch64_linux_init_abi): Fix size_termios.
* amd64-linux-tdep.c (amd64_linux_init_abi): Fix size_termios.
(amd64_x32_linux_init_abi): Fix size_termios.
We have to use extract_unsigned_integer to read paramaters structure - target
pointers can have different endianness and size.
gdb/ChangeLog:
* linux-record.c (record_linux_system_call): Fix old_select.
Memory size for getgroups16 needs to be multiplied by entry count, and only
needs recording if the pointer is non-NULL. setgroups16, on the other hand,
doesn't write to user memory and doesn't need special handling at all.
gdb/ChangeLog:
* linux-record.c (record_linux_system_call): Fix [gs]etgroups16.
The code failed to account for padding between the int and subsequent
pointer present on 64-bit architectures.
gdb/ChangeLog:
* linux-record.c (record_linux_msghdr): Fix msg_namelen handling.
getdents buffer size is given in bytes, not dirent entries (which have
variable size anyway). We don't need size_dirent and size_dirent64 for
this reason.
readdir, on the other hand, needs size of old_linux_dirent, which is
a somewhat different structure. Accordingly, rename size_dirent
to size_old_dirent.
gdb/ChangeLog:
* aarch64-linux-tdep.c (aarch64_linux_init_abi): Remove
size_dirent{,64}, add size_old_dirent.
* amd64-linux-tdep.c (amd64_linux_init_abi): Remove size_dirent{,64},
add size_old_dirent.
(amd64_x32_linux_init_abi): Remove size_dirent{,64}, add
size_old_dirent.
* arm-linux-tdep.c (arm_linux_init_abi): Remove size_dirent{,64},
add size_old_dirent.
* i386-linux-tdep.c (i386_linux_init_abi): Remove size_dirent{,64},
add size_old_dirent.
* linux-record.c (record_linux_system_call): Fix handling of readdir
and getdents{,64}.
* linux-record.h (struct linux_record_tdep): Remove size_dirent{,64},
add size_old_dirent.
* ppc-linux-tdep.c (ppc_init_linux_record_tdep): Remove
size_dirent{,64}, add size_old_dirent.
i386 and arm wrongly set them to 2, when it should be 4. size_[ug]id is used
by getgroups32 etc syscalls, while size_old_[ug]id is used for getgroups16
and friends.
gdb/ChangeLog:
* arm-linux-tdep.c (arm_linux_init_abi): Fix size_[ug]id.
* i386-linux-tdep.c (i386_linux_init_abi): Fix size_[ug]id.
This fixes this error in C++ mode:
/home/pedro/gdb/mygit/cxx-convertion/src/gdb/mdebugread.c:654:11: error: invalid conversion from ‘int’ to ‘address_class’ [-fpermissive]
theclass = mdebug_register_index;
^
The "theclass" local is of type enum address_class, however, what it
really holds is an address class index. Class index values by design
match the address class values up until LOC_FINAL_VALUE, but extend
beyond that, so it's not really right to store an address class index
in an enum address_class.
The fix is really the same making the 'theclass' local be of type int,
but while we're at it, we get rid of the goto, and thus the local
becomes the 'aclass_index' parameter in the new add_data_symbol
function.
gdb/ChangeLog:
2015-10-29 Pedro Alves <palves@redhat.com>
* mdebugread.c (add_data_symbol): New function, factored out from
...
(parse_symbol): ... here. Delete 'theclass' local.
We could change the signature of the function. However, it would
require changing gdb_target_read in jit-reader.h, which is an exported
interface. It's probably better to just add a cast in our code than to
break other people's code.
gdb/ChangeLog:
* jit.c (jit_target_read_impl): Add cast.
There is no enum value representing 0. It seems like the value of the
name field is irrelevant here.
gdb/ChangeLog:
* dwarf2read.c (partial_die_full_name): Add cast.
Fixes this in C++:
../../src/gdb/break-catch-sig.c: In function ‘int VEC_gdb_signal_type_iterate(const VEC_gdb_signal_type*, unsigned int, gdb_signal_type*)’:
../../src/gdb/common/vec.h:576:12: error: invalid conversion from ‘int’ to ‘gdb_signal_type {aka gdb_signal}’ [-fpermissive]
*ptr = 0; \
^
../../src/gdb/common/vec.h:417:1: note: in expansion of macro ‘DEF_VEC_FUNC_P’
DEF_VEC_FUNC_P(T) \
^
../../src/gdb/break-catch-sig.c:37:1: note: in expansion of macro ‘DEF_VEC_I’
DEF_VEC_I (gdb_signal_type);
^
I actually carried a different fix in the C++ branch that removed this
assignment and then adjusted all callers that depended on it. The
thinking was that this is for the case where we're returning false,
indicating end of iteration. But that results in a much larger and
tricker patch; looking back it seems quite pointless. I looked at the
history of GCC's C++ conversion and saw that they added this same cast
to their version of vec.h, FWIW. (GCC's vec.h is completely different
nowadays, having been converted to templates meanwhile.)
gdb/ChangeLog:
2015-10-29 Pedro Alves <palves@redhat.com>
* common/vec.h (DEF_VEC_FUNC_P) [iterate]: Cast 0 to type T.