This patch is related to PR python/16699, and is an improvement over the
patch posted here:
<https://sourceware.org/ml/gdb-patches/2014-03/msg00301.html>
Keith noticed that, when using the "complete" command on GDB to complete
a Python command, some strange things could happen. In order to
understand what can go wrong, I need to explain how the Python
completion mechanism works.
When the user requests a completion of a Python command by using TAB,
GDB will first try to determine the right set of "brkchars" that will be
used when doing the completion. This is done by actually calling the
"complete" method of the Python class. Then, when we already know the
"brkchars" that will be used, we call the "complete" method again, for
the same values.
If you read the thread mentioned above, you will see that one of the
design decisions was to make the "cmdpy_completer_helper" (which is the
function the does the actual calling of the "complete" method) cache the
first result of the completion, since this result will be used in the
second call, to do the actual completion.
The problem is that the "complete" command does not process the
brkchars, and the current Python completion mechanism (improved by the
patch mentioned above) relies on GDB trying to determine the brkchars,
and then doing the completion itself. Therefore, when we use the
"complete" command instead of doing a TAB-completion on GDB, there is a
scenario where we can use the invalid cache of a previous Python command
that was completed before. For example:
(gdb) A <TAB>
(gdb) complete B
B value1
B value10
B value2
B value3
B value4
B value5
B value6
B value7
B value8
B value9
(gdb) B <TAB>
comp1 comp2 comp4 comp6 comp8
comp10 comp3 comp5 comp7 comp9
Here, we see that "complete B " gave a different result than "B <TAB>".
The reason for that is because "A <TAB>" was called before, and its
completion results were "value*", so when GDB tried to "complete B " it
wrongly answered with the results for A. The problem here is using a
wrong cache (A's cache) for completing B.
We tried to come up with a solution that would preserve the caching
mechanism, but it wasn't really possible. So I decided to completely
remove the cache, and doing the method calling twice for every
completion. This is not optimal, but I do not think it will impact
users noticeably.
It is worth mentioning another small issue that I found. The code was
doing:
wordobj = PyUnicode_Decode (word, sizeof (word), host_charset (), NULL);
which is totally wrong, because using "sizeof" here will lead to always
the same result. So I changed this to use "strlen". The testcase also
catches this problem.
Keith kindly expanded the existing testcase to cover the problem
described above, and everything is passing.
gdb/ChangeLog:
2015-04-08 Sergio Durigan Junior <sergiodj@redhat.com>
PR python/16699
* python/py-cmd.c (cmdpy_completer_helper): Adjust function to not
use a caching mechanism. Adjust comments and code to reflect
that. Replace 'sizeof' by 'strlen' when fetching 'wordobj'.
(cmdpy_completer_handle_brkchars): Adjust call to
cmdpy_completer_helper. Call Py_XDECREF for 'resultobj'.
(cmdpy_completer): Likewise.
gdb/testsuite/ChangeLog:
2015-04-08 Keith Seitz <keiths@redhat.com>
PR python/16699
* gdb.python/py-completion.exp: New tests for completion.
* gdb.python/py-completion.py (CompleteLimit1): New class.
(CompleteLimit2): Likewise.
(CompleteLimit3): Likewise.
(CompleteLimit4): Likewise.
(CompleteLimit5): Likewise.
(CompleteLimit6): Likewise.
(CompleteLimit7): Likewise.
All these were caught by actually making TRY/CATCH use try/catch
behind the scenes, which then resulted in the build failing (on x86_64
Fedora 20) because there was code between the try and catch blocks.
gdb/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
* breakpoint.c (save_breakpoints): Adjust to avoid code between
TRY and CATCH.
* gdbtypes.c (safe_parse_type): Remove empty line.
(types_deeply_equal):
* guile/scm-frame.c (gdbscm_frame_name):
* linux-thread-db.c (find_new_threads_once):
* python/py-breakpoint.c (bppy_get_commands):
* record-btrace.c (record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_start_replaying)
(record_btrace_start_replaying): Adjust to avoid code between TRY
and CATCH.
This patch splits the TRY_CATCH macro into three, so that we go from
this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
}
if (ex.reason < 0)
{
}
~~~
to this:
~~~
TRY
{
}
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
~~~
Thus, we'll be getting rid of the local volatile exception object, and
declaring the caught exception in the catch block.
This allows reimplementing TRY/CATCH in terms of C++ exceptions when
building in C++ mode, while still allowing to build GDB in C mode
(using setjmp/longjmp), as a transition step.
TBC, after this patch, is it _not_ valid to have code between the TRY
and the CATCH blocks, like:
TRY
{
}
// some code here.
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
Just like it isn't valid to do that with C++'s native try/catch.
By switching to creating the exception object inside the CATCH block
scope, we can get rid of all the explicitly allocated volatile
exception objects all over the tree, and map the CATCH block more
directly to C++'s catch blocks.
The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was
done with a script, rerun from scratch at every rebase, no manual
editing involved. After the mechanical conversion, a few places
needed manual intervention, to fix preexisting cases where we were
using the exception object outside of the TRY_CATCH block, and cases
where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH
after this patch]. The result was folded into this patch so that GDB
still builds at each incremental step.
END_CATCH is necessary for two reasons:
First, because we name the exception object in the CATCH block, which
requires creating a scope, which in turn must be closed somewhere.
Declaring the exception variable in the initializer field of a for
block, like:
#define CATCH(EXCEPTION, mask) \
for (struct gdb_exception EXCEPTION; \
exceptions_state_mc_catch (&EXCEPTION, MASK); \
EXCEPTION = exception_none)
would avoid needing END_CATCH, but alas, in C mode, we build with C90,
which doesn't allow mixed declarations and code.
Second, because when TRY/CATCH are wired to real C++ try/catch, as
long as we need to handle cleanup chains, even if there's no CATCH
block that wants to catch the exception, we need for stop at every
frame in the unwind chain and run cleanups, then rethrow. That will
be done in END_CATCH.
After we require C++, we'll still need TRY/CATCH/END_CATCH until
cleanups are completely phased out -- TRY/CATCH in C++ mode will
save/restore the current cleanup chain, like in C mode, and END_CATCH
catches otherwise uncaugh exceptions, runs cleanups and rethrows, so
that C++ cleanups and exceptions can coexist.
IMO, this still makes the TRY/CATCH code look a bit more like a
newcomer would expect, so IMO worth it even if we weren't considering
C++.
gdb/ChangeLog.
2015-03-07 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (struct catcher) <exception>: No
longer a pointer to volatile exception. Now an exception value.
<mask>: Delete field.
(exceptions_state_mc_init): Remove all parameters. Adjust.
(exceptions_state_mc): No longer pop the catcher here.
(exceptions_state_mc_catch): New function.
(throw_exception): Adjust.
* common/common-exceptions.h (exceptions_state_mc_init): Remove
all parameters.
(exceptions_state_mc_catch): Declare.
(TRY_CATCH): Rename to ...
(TRY): ... this. Remove EXCEPTION and MASK parameters.
(CATCH, END_CATCH): New.
All callers adjusted.
gdb/gdbserver/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH
instead.
This normalizes some exception catch blocks that check for ex.reason
to look like this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ALL)
{
...
}
if (ex.reason < 0)
{
...
}
~~~
This is a preparation step for running a script that converts all
TRY_CATCH uses to look like this instead:
~~~
TRY
{
...
}
CATCH (ex, RETURN_MASK_ALL)
{
...
}
END_CATCH
~~~
The motivation for that change is being able to reimplent TRY/CATCH in
terms of C++ try/catch.
This commit makes it so that:
- no condition other than ex.reason < 0 is checked in the if
predicate
- there's no "else" block to check whether no exception was caught
- there's no code between the TRY_CATCH (TRY) block and the
'if (ex.reason < 0)' block (CATCH).
- the exception object is no longer referred to outside the if/catch
block. Note the local volatile exception objects that are
currently defined inside functions that use TRY_CATCH will
disappear. In cases it's more convenient to still refer to the
exception outside the catch block, a new non-volatile local is
added and copy to that object is made within the catch block.
The following patches should make this all clearer.
gdb/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
* amd64-tdep.c (amd64_frame_cache, amd64_sigtramp_frame_cache)
(amd64_epilogue_frame_cache): Normal exception handling code.
* break-catch-throw.c (check_status_exception_catchpoint)
(re_set_exception_catchpoint): Ditto.
* cli/cli-interp.c (safe_execute_command):
* cli/cli-script.c (script_from_file): Ditto.
* compile/compile-c-symbols.c (generate_c_for_for_one_variable):
Ditto.
* compile/compile-object-run.c (compile_object_run): Ditto.
* cp-abi.c (baseclass_offset): Ditto.
* cp-valprint.c (cp_print_value): Ditto.
* exceptions.c (catch_exceptions_with_msg):
* frame-unwind.c (frame_unwind_try_unwinder): Ditto.
* frame.c (get_frame_address_in_block_if_available): Ditto.
* i386-tdep.c (i386_frame_cache, i386_epilogue_frame_cache)
(i386_sigtramp_frame_cache): Ditto.
* infcmd.c (post_create_inferior): Ditto.
* linespec.c (parse_linespec, find_linespec_symbols):
* p-valprint.c (pascal_object_print_value): Ditto.
* parse.c (parse_expression_for_completion): Ditto.
* python/py-finishbreakpoint.c (bpfinishpy_init): Ditto.
* remote.c (remote_get_noisy_reply): Ditto.
* s390-linux-tdep.c (s390_frame_unwind_cache): Ditto.
* solib-svr4.c (solib_svr4_r_map): Ditto.
This commit introduces a new inline common function "startswith"
which takes two string arguments and returns nonzero if the first
string starts with the second. It also updates the 295 places
where this logic was written out longhand to use the new function.
gdb/ChangeLog:
* common/common-utils.h (startswith): New inline function.
All places where this logic was used updated to use the above.
Fixes this in C++ mode:
src/gdb/python/python-internal.h: At global scope:
src/gdb/python/python-internal.h:313:13: error: use of enum ‘ext_lang_rc’ without previous declaration
extern enum ext_lang_rc gdbpy_apply_val_pretty_printer
^
src/gdb/python/python-internal.h:320:41: error: invalid type in declaration before ‘;’ token
const struct language_defn *language);
^
gdb/ChangeLog:
2015-02-27 Pedro Alves <palves@redhat.com>
* python/python-internal.h: Include "extension-priv.h".
Compiling python.c in C++ mode, we get:
...src/gdb/python/python.c: At global scope:
...src/gdb/python/python.c:106:31: error: storage size of ‘GdbMethods’ isn’t known
static PyMethodDef GdbMethods[];
^
Fix it by making the affected array objects extern.
gdb/ChangeLog:
2015-02-27 Pedro Alves <palves@redhat.com>
* python/python.c (GdbMethods): Rename to ...
(python_GdbMethods): ... this and make extern.
(GdbModuleDef): Rename to ...
(python_GdbModuleDef): ... this and make extern.
This patch renames symbols that happen to have names which are
reserved keywords in C++.
Most of this was generated with Tromey's cxx-conversion.el script.
Some places where later hand massaged a bit, to fix formatting, etc.
And this was rebased several times meanwhile, along with re-running
the script, so re-running the script from scratch probably does not
result in the exact same output. I don't think that matters anyway.
gdb/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
gdb/gdbserver/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
Now when the code is exception safe we can let RETURN_QUIT to pass through as
all the installed cleanups with handle that.
gdb/ChangeLog
2015-02-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* python/py-framefilter.c (py_print_single_arg, enumerate_locals)
(py_print_frame): Use RETURN_MASK_ERROR.
gdb/ChangeLog
2015-02-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* python/py-framefilter.c (py_print_frame): Mention RETURN_QUIT in
function comment. Wrap all function that can throw in cleanups.
(gdbpy_apply_frame_filter): Wrap all function that can throw in
cleanups.
goto error patters are sometimes AFAIK used in C for the cases like:
int retval=-1;
if (!(a=malloc())) goto error;
if (!(b=malloc())) goto error_a;
if (!(c=malloc())) goto error_b;
retval=0;
error_c: free(c);
error_b: free(b);
error_a: free(a);
error: return retval;
But here there is single error label with one do_cleanups() which I do not find
it worth the goto complication. Without goto one can then furher merge code in
the exit paths in the next patches and ... after all it is all the same, just
without a goto.
gdb/ChangeLog
2015-02-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* python/py-framefilter.c (py_print_frame): Substitute goto error.
Remove the error label.
Nothing significant but I find code more clear with less deep indentation.
gdb/ChangeLog
2015-02-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* python/py-framefilter.c (py_print_frame): Put conditional code paths
with goto first, indent the former else codepath left. Put variable
'elided' to a new inner block.
In C, we can forward declare static structure instances. That doesn't
work in C++ though. C++ treats these as definitions. So then the
compiler complains about symbol redefinition, like:
src/gdb/elfread.c:1569:29: error: redefinition of ‘const sym_fns elf_sym_fns_lazy_psyms’
src/gdb/elfread.c:53:29: error: ‘const sym_fns elf_sym_fns_lazy_psyms’ previously declared here
The intent of static here is naturally to avoid making these objects
visible outside the compilation unit. The equivalent in C++ would be
to instead define the objects in the anonymous namespace. But given
that it's desirable to leave the codebase compiling as both C and C++
for a while, this just makes the objects extern.
(base_breakpoint_ops is already declared in breakpoint.h, so we can
just remove the forward declare from breakpoint.c)
gdb/ChangeLog:
2015-02-11 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
* breakpoint.c (base_breakpoint_ops): Delete.
* dwarf2loc.c (dwarf_expr_ctx_funcs): Make extern.
* elfread.c (elf_sym_fns_gdb_index, elf_sym_fns_lazy_psyms): Make extern.
* guile/guile.c (guile_extension_script_ops, guile_extension_ops): Make extern.
* ppcnbsd-tdep.c (ppcnbsd2_sigtramp): Make extern.
* python/py-arch.c (arch_object_type): Make extern.
* python/py-block.c (block_syms_iterator_object_type): Make extern.
* python/py-bpevent.c (breakpoint_event_object_type): Make extern.
* python/py-cmd.c (cmdpy_object_type): Make extern.
* python/py-continueevent.c (continue_event_object_type)
* python/py-event.h (GDBPY_NEW_EVENT_TYPE): Remove 'qual'
parameter. Update all callers.
* python/py-evtregistry.c (eventregistry_object_type): Make extern.
* python/py-exitedevent.c (exited_event_object_type): Make extern.
* python/py-finishbreakpoint.c (finish_breakpoint_object_type): Make extern.
* python/py-function.c (fnpy_object_type): Make extern.
* python/py-inferior.c (inferior_object_type, membuf_object_type): Make extern.
* python/py-infevents.c (call_pre_event_object_type)
(inferior_call_post_event_object_type).
(memory_changed_event_object_type): Make extern.
* python/py-infthread.c (thread_object_type): Make extern.
* python/py-lazy-string.c (lazy_string_object_type): Make extern.
* python/py-linetable.c (linetable_entry_object_type)
(linetable_object_type, ltpy_iterator_object_type): Make extern.
* python/py-newobjfileevent.c (new_objfile_event_object_type)
(clear_objfiles_event_object_type): Make extern.
* python/py-objfile.c (objfile_object_type): Make extern.
* python/py-param.c (parmpy_object_type): Make extern.
* python/py-progspace.c (pspace_object_type): Make extern.
* python/py-signalevent.c (signal_event_object_type): Make extern.
* python/py-symtab.c (symtab_object_type, sal_object_type): Make extern.
* python/py-type.c (type_object_type, field_object_type)
(type_iterator_object_type): Make extern.
* python/python.c (python_extension_script_ops)
(python_extension_ops): Make extern.
* stap-probe.c (stap_probe_ops): Make extern.
on Fedora Rawhide (==22) i686 using --with-python=/usr/bin/python3 one gets:
./python/py-value.c:1696:3: error: initialization from incompatible pointer type [-Werror]
valpy_hash, /*tp_hash*/
^
./python/py-value.c:1696:3: error: (near initialization for ‘value_object_type.tp_hash’) [-Werror]
cc1: all warnings being treated as errors
Makefile:2628: recipe for target 'py-value.o' failed
This is because in Python 2 tp_hash was:
typedef long (*hashfunc)(PyObject *);
while in Python 3 tp_hash is:
typedef Py_hash_t (*hashfunc)(PyObject *);
Py_hash_t is int for 32-bit hosts and long for 64-bit hosts. While on 32-bit
hosts sizeof(long)==sizeof(int) still the hashfunc type is formally
incompatible. As this patch should have no compiled code change it is not
really necessary for gdb-7.9, it would fix there just this non-fatal
compilation warning:
./python/py-value.c:1696:3: warning: initialization from incompatible pointer type
valpy_hash, /*tp_hash*/
^
./python/py-value.c:1696:3: warning: (near initialization for ‘value_object_type.tp_hash’)
gdb/ChangeLog
2015-02-04 Jan Kratochvil <jan.kratochvil@redhat.com>
* python/python-internal.h (Py_hash_t): Define it for Python <3.2.
* python/py-value.c (valpy_fetch_lazy): Use it. Remove cast to the
return type.
gdb/ChangeLog:
* NEWS: Mention gdb.Objfile.username.
* python/py-objfile.c (objfpy_get_username): New function.
(objfile_getset): Add "username".
gdb/doc/ChangeLog:
* python.texi (Objfiles In Python): Document Objfile.username.
gdb/testsuite/ChangeLog:
* gdb.python/py-objfile.exp: Add tests for objfile.username.
Add test for objfile.filename, objfile.username after objfile
has been unloaded.
gdb/Changelog:
* objfiles.c (objfile_filename): New function.
* objfiles.h (objfile_filename): Declare it.
(objfile_name): Add function comment.
* python/py-objfile.c (objfpy_lookup_objfile_by_name): Try both the
bfd file name (which may be realpath'd), and the original name.
gdb/testsuite/ChangeLog:
* gdb.python/py-objfile.exp: Test gdb.lookup_objfile on symlinked
binary.
The following python command fails:
(gdb) python print gdb.lookup_type('char').array(1, 0)
Traceback (most recent call last):
File "<string>", line 1, in <module>
ValueError: Array length must not be negative
Error while executing Python code.
The above is trying to create an empty array, which is fairly command
in Ada.
gdb/ChangeLog:
* python/py-type.c (typy_array_1): Do not raise negative-length
exception if N2 is equal to N1 - 1.
gdb/testsuite/ChangeLog:
* gdb.python/py-type.exp: Add a couple test about empty
array creation, and negative-length array creation.
gdb/ChangeLog:
* ada-lang.c (user_select_syms): Only fetch symtab if symbol is
objfile-owned.
(cache_symbol): Ignore symbols that are not objfile-owned.
* block.c (block_objfile): New function.
(block_gdbarch): New function.
* block.h (block_objfile): Declare.
(block_gdbarch): Declare.
* c-exp.y (classify_name): Remove call to
language_lookup_primitive_type. No longer necessary.
* gdbtypes.c (lookup_typename): Call lookup_symbol_in_language.
Remove call to language_lookup_primitive_type. No longer necessary.
* guile/scm-symbol.c (syscm_gdbarch_data_key): New static global.
(syscm_gdbarch_data): New struct.
(syscm_init_arch_symbols): New function.
(syscm_get_symbol_map): Renamed from syscm_objfile_symbol_map.
All callers updated. Handle symbols owned by arches.
(gdbscm_symbol_symtab): Handle symbols owned by arches.
(gdbscm_initialize_symbols): Initialize syscm_gdbarch_data_key.
* language.c (language_lookup_primitive_type_1): New function.
(language_lookup_primitive_type): Call it.
(language_alloc_type_symbol): New function.
(language_init_primitive_type_symbols): New function.
(language_lookup_primitive_type_as_symbol): New function.
* language.h (struct language_arch_info) <primitive_type_symbols>:
New member.
(language_lookup_primitive_type): Add function comment.
(language_lookup_primitive_type_as_symbol): Declare.
* printcmd.c (address_info): Handle arch-owned symbols.
* python/py-symbol.c (sympy_get_symtab): Ditto.
(set_symbol): Ditto.
(sympy_dealloc): Ditto.
* symmisc.c (print_symbol): Ditto.
* symtab.c (fixup_symbol_section): Ditto.
(lookup_symbol_aux): Initialize block_found.
(basic_lookup_symbol_nonlocal): Try looking up the symbol as a
primitive type.
(initialize_objfile_symbol_1): New function.
(initialize_objfile_symbol): Call it.
(allocate_symbol): Call it.
(allocate_template_symbol): Call it.
(symbol_objfile): Assert symbol is objfile-owned.
(symbol_arch, symbol_symtab, symbol_set_symtab): Ditto.
* symtab.h (struct symbol) <owner>: Replaces member "symtab".
(struct symbol) <is_objfile_owned>: New member.
(SYMBOL_OBJFILE_OWNED): New macro.
* cp-namespace.c (cp_lookup_bare_symbol): New arg langdef.
All callers updated. Try to find the symbol as a primitive type.
(lookup_namespace_scope): New arg langdef. All callers updated.
Call cp_lookup_bare_symbol directly for simple bare symbols.
The type of the function pointer PyOS_ReadlineFunctionPointer (part of the
Python C API), which we use, slightly changed starting with Python 3.4. The
signature went from
PyAPI_DATA(char) *(*PyOS_ReadlineFunctionPointer)(FILE *, FILE *, char *);
to
PyAPI_DATA(char) *(*PyOS_ReadlineFunctionPointer)(FILE *, FILE *, const char *);
The parameter that changed is the prompt text.
This commits adjust gdb accordingly by making the prompt_arg parameter
const, as well as the fallouts of that. I needed to rework how
annotations are added to the prompt, since the it is now const. If
annotations are enabled, it will make a copy of the prompt overwrite the
prompt variable that is used throughout the function. Otherwise, no copy
is done and the original prompt_arg value is passed.
I changed the signature of deprecated_readline_hook. I would've changed any
user of it, but it seems like nothing is using it,
Built-tested with python 2.7.x, 3.3.y and 3.4.z.
gdb/ChangeLog:
* defs.h (gdb_readline): Constify argument.
(gdb_readline_wrapper): Same.
(command_line_input): Same.
(deprecated_readline_hook): Same.
* top.c (deprecated_readline_hook): Same.
(gdb_readline): Same.
(gdb_readline_wrapper): Same.
(command_line_input): Constify argument. Pass prompt to
called functions instead of local_prompt, overwriting prompt
if using annotations.
* event-top.h (display_gdb_prompt): Constify argument.
* event-top.c (display_gdb_prompt): Same.
* python/py-gdb-readline.c (gdbpy_readline_wrapper): Constify
argument if building with Python 3.4 and up.
Signed-off-by: Simon Marchi <simon.marchi@ericsson.com>
It seems like using os.getcwdu() here is wrong both for Python 2 and Python 3.
For Python 2, this returns a 'unicode' object, which tries to get concatenated
to a 'str' object in substitute_prompt. The implicit conversion works when the
unicode string contains no accent. When it does contain an accent though,
displaying the prompt results in the following error:
(gdb) set extended-prompt \w
...
File "/home/simark/build/binutils-gdb-python2/gdb/data-directory/python/gdb/prompt.py", line 138, in substitute_prompt
result += str(cmd(arg))
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in position 49: ordinal not in range(128)
When using os.getcwd() instead, it works correctly. I suppose that Python does
the necessary decoding internally.
For Python 3, this method simply does not exist. It works fine with os.getcwd().
gdb/ChangeLog:
* python/lib/gdb/prompt.py (_prompt_pwd): Use os.getcwd() instead of
os.getcwdu().
Currently "symtabs" in gdb are stored as a single linked list of
struct symtab that contains both symbol symtabs (the blockvectors)
and file symtabs (the linetables).
This has led to confusion, bugs, and performance issues.
This patch is conceptually very simple: split struct symtab into
two pieces: one part containing things common across the entire
compilation unit, and one part containing things specific to each
source file.
Example.
For the case of a program built out of these files:
foo.c
foo1.h
foo2.h
bar.c
foo1.h
bar.h
Today we have a single list of struct symtabs:
objfile -> foo.c -> foo1.h -> foo2.h -> bar.c -> foo1.h -> bar.h -> NULL
where "->" means the "next" pointer in struct symtab.
With this patch, that turns into:
objfile -> foo.c(cu) -> bar.c(cu) -> NULL
| |
v v
foo.c bar.c
| |
v v
foo1.h foo1.h
| |
v v
foo2.h bar.h
| |
v v
NULL NULL
where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
and the files foo.c, etc. are struct symtab objects.
So now, for example, when we want to iterate over all blockvectors
we can now just iterate over the compunit_symtab list.
Plus a lot of the data that was either unused or replicated for each
symtab in a compilation unit now lives in struct compunit_symtab.
E.g., the objfile pointer, the producer string, etc.
I thought of moving "language" out of struct symtab but there is
logic to try to compute the language based on previously seen files,
and I think that's best left as is for now.
With my standard monster benchmark with -readnow (which I can't actually
do, but based on my calculations), whereas today the list requires
77MB to store all the struct symtabs, it now only requires 37MB.
A modest space savings given the gigabytes needed for all the debug info,
etc. Still, it's nice. Plus, whereas today we create a copy of dirname
for each source file symtab in a compilation unit, we now only create one
for the compunit.
So this patch is basically just a data structure reorg,
I don't expect significant performance improvements from it.
Notes:
1) A followup patch can do a similar split for struct partial_symtab.
I have left that until after I get the changes I want in to
better utilize .gdb_index (it may affect how we do partial syms).
2) Another followup patch *could* rename struct symtab.
The term "symtab" is ambiguous and has been a source of confusion.
In this patch I'm leaving it alone, calling it the "historical" name
of "filetabs", which is what they are now: just the file-name + line-table.
gdb/ChangeLog:
Split struct symtab into two: struct symtab and compunit_symtab.
* amd64-tdep.c (amd64_skip_xmm_prologue): Fetch producer from compunit.
* block.c (blockvector_for_pc_sect): Change "struct symtab *" argument
to "struct compunit_symtab *". All callers updated.
(set_block_compunit_symtab): Renamed from set_block_symtab. Change
"struct symtab *" argument to "struct compunit_symtab *".
All callers updated.
(get_block_compunit_symtab): Renamed from get_block_symtab. Change
result to "struct compunit_symtab *". All callers updated.
(find_iterator_compunit_symtab): Renamed from find_iterator_symtab.
Change result to "struct compunit_symtab *". All callers updated.
* block.h (struct global_block) <compunit_symtab>: Renamed from symtab.
hange type to "struct compunit_symtab *". All uses updated.
(struct block_iterator) <d.compunit_symtab>: Renamed from "d.symtab".
Change type to "struct compunit_symtab *". All uses updated.
* buildsym.c (struct buildsym_compunit): New struct.
(subfiles, buildsym_compdir, buildsym_objfile, main_subfile): Delete.
(buildsym_compunit): New static global.
(finish_block_internal): Update to fetch objfile from
buildsym_compunit.
(make_blockvector): Delete objfile argument.
(start_subfile): Rewrite to use buildsym_compunit. Don't initialize
debugformat, producer.
(start_buildsym_compunit): New function.
(free_buildsym_compunit): Renamed from free_subfiles_list.
All callers updated.
(patch_subfile_names): Rewrite to use buildsym_compunit.
(get_compunit_symtab): New function.
(get_macro_table): Delete argument comp_dir. All callers updated.
(start_symtab): Change result to "struct compunit_symtab *".
All callers updated. Create the subfile of the main source file.
(watch_main_source_file_lossage): Rewrite to use buildsym_compunit.
(reset_symtab_globals): Update.
(end_symtab_get_static_block): Update to use buildsym_compunit.
(end_symtab_without_blockvector): Rewrite.
(end_symtab_with_blockvector): Change result to
"struct compunit_symtab *". All callers updated.
Update to use buildsym_compunit. Don't set symtab->dirname,
instead set it in the compunit.
Explicitly make sure main symtab is first in its list.
Set debugformat, producer, blockvector, block_line_section, and
macrotable in the compunit.
(end_symtab_from_static_block): Change result to
"struct compunit_symtab *". All callers updated.
(end_symtab, end_expandable_symtab): Ditto.
(set_missing_symtab): Change symtab argument to
"struct compunit_symtab *". All callers updated.
(augment_type_symtab): Ditto.
(record_debugformat): Update to use buildsym_compunit.
(record_producer): Update to use buildsym_compunit.
* buildsym.h (struct subfile) <dirname>: Delete.
<producer, debugformat>: Delete.
<buildsym_compunit>: New member.
(get_compunit_symtab): Declare.
* dwarf2read.c (struct type_unit_group) <compunit_symtab>: Renamed
from primary_symtab. Change type to "struct compunit_symtab *".
All uses updated.
(dwarf2_start_symtab): Change result to "struct compunit_symtab *".
All callers updated.
(dwarf_decode_macros): Delete comp_dir argument. All callers updated.
(struct dwarf2_per_cu_quick_data) <compunit_symtab>: Renamed from
symtab. Change type to "struct compunit_symtab *". All uses updated.
(dw2_instantiate_symtab): Change result to "struct compunit_symtab *".
All callers updated.
(dw2_find_last_source_symtab): Ditto.
(dw2_lookup_symbol): Ditto.
(recursively_find_pc_sect_compunit_symtab): Renamed from
recursively_find_pc_sect_symtab. Change result to
"struct compunit_symtab *". All callers updated.
(dw2_find_pc_sect_compunit_symtab): Renamed from
dw2_find_pc_sect_symtab. Change result to
"struct compunit_symtab *". All callers updated.
(get_compunit_symtab): Renamed from get_symtab. Change result to
"struct compunit_symtab *". All callers updated.
(recursively_compute_inclusions): Change type of immediate_parent
argument to "struct compunit_symtab *". All callers updated.
(compute_compunit_symtab_includes): Renamed from
compute_symtab_includes. All callers updated. Rewrite to compute
includes of compunit_symtabs and not symtabs.
(process_full_comp_unit): Update to work with struct compunit_symtab.
(process_full_type_unit): Ditto.
(dwarf_decode_lines_1): Delete argument comp_dir. All callers updated.
(dwarf_decode_lines): Remove special case handling of main subfile.
(macro_start_file): Delete argument comp_dir. All callers updated.
(dwarf_decode_macro_bytes): Ditto.
* guile/scm-block.c (bkscm_print_block_syms_progress_smob): Update to
use struct compunit_symtab.
* i386-tdep.c (i386_skip_prologue): Fetch producer from compunit.
* jit.c (finalize_symtab): Build compunit_symtab.
* jv-lang.c (get_java_class_symtab): Change result to
"struct compunit_symtab *". All callers updated.
* macroscope.c (sal_macro_scope): Fetch macro table from compunit.
* macrotab.c (struct macro_table) <compunit_symtab>: Renamed from
comp_dir. Change type to "struct compunit_symtab *".
All uses updated.
(new_macro_table): Change comp_dir argument to cust,
"struct compunit_symtab *". All callers updated.
* maint.c (struct cmd_stats) <nr_compunit_symtabs>: Renamed from
nr_primary_symtabs. All uses updated.
(count_symtabs_and_blocks): Update to handle compunits.
(report_command_stats): Update output, "primary symtabs" renamed to
"compunits".
* mdebugread.c (new_symtab): Change result to
"struct compunit_symtab *". All callers updated.
(parse_procedure): Change type of search_symtab argument to
"struct compunit_symtab *". All callers updated.
* objfiles.c (objfile_relocate1): Loop over blockvectors in a
separate loop.
* objfiles.h (struct objfile) <compunit_symtabs>: Renamed from
symtabs. Change type to "struct compunit_symtab *". All uses updated.
(ALL_OBJFILE_FILETABS): Renamed from ALL_OBJFILE_SYMTABS.
All uses updated.
(ALL_OBJFILE_COMPUNITS): Renamed from ALL_OBJFILE_PRIMARY_SYMTABS.
All uses updated.
(ALL_FILETABS): Renamed from ALL_SYMTABS. All uses updated.
(ALL_COMPUNITS): Renamed from ALL_PRIMARY_SYMTABS. All uses updated.
* psympriv.h (struct partial_symtab) <compunit_symtab>: Renamed from
symtab. Change type to "struct compunit_symtab *". All uses updated.
* psymtab.c (psymtab_to_symtab): Change result type to
"struct compunit_symtab *". All callers updated.
(find_pc_sect_compunit_symtab_from_partial): Renamed from
find_pc_sect_symtab_from_partial. Change result type to
"struct compunit_symtab *". All callers updated.
(lookup_symbol_aux_psymtabs): Change result type to
"struct compunit_symtab *". All callers updated.
(find_last_source_symtab_from_partial): Ditto.
* python/py-symtab.c (stpy_get_producer): Fetch producer from compunit.
* source.c (forget_cached_source_info_for_objfile): Fetch debugformat
and macro_table from compunit.
* symfile-debug.c (debug_qf_find_last_source_symtab): Change result
type to "struct compunit_symtab *". All callers updated.
(debug_qf_lookup_symbol): Ditto.
(debug_qf_find_pc_sect_compunit_symtab): Renamed from
debug_qf_find_pc_sect_symtab, change result type to
"struct compunit_symtab *". All callers updated.
* symfile.c (allocate_symtab): Delete objfile argument.
New argument cust.
(allocate_compunit_symtab): New function.
(add_compunit_symtab_to_objfile): New function.
* symfile.h (struct quick_symbol_functions) <lookup_symbol>:
Change result type to "struct compunit_symtab *". All uses updated.
<find_pc_sect_compunit_symtab>: Renamed from find_pc_sect_symtab.
Change result type to "struct compunit_symtab *". All uses updated.
* symmisc.c (print_objfile_statistics): Compute blockvector count in
separate loop.
(dump_symtab_1): Update test for primary source symtab.
(maintenance_info_symtabs): Update to handle compunit symtabs.
(maintenance_check_symtabs): Ditto.
* symtab.c (set_primary_symtab): Delete.
(compunit_primary_filetab): New function.
(compunit_language): New function.
(iterate_over_some_symtabs): Change type of arguments "first",
"after_last" to "struct compunit_symtab *". All callers updated.
Update to loop over symtabs in each compunit.
(error_in_psymtab_expansion): Rename symtab argument to cust,
and change type to "struct compunit_symtab *". All callers updated.
(find_pc_sect_compunit_symtab): Renamed from find_pc_sect_symtab.
Change result type to "struct compunit_symtab *". All callers updated.
(find_pc_compunit_symtab): Renamed from find_pc_symtab.
Change result type to "struct compunit_symtab *". All callers updated.
(find_pc_sect_line): Only loop over symtabs within selected compunit
instead of all symtabs in the objfile.
* symtab.h (struct symtab) <blockvector>: Moved to compunit_symtab.
<compunit_symtab> New member.
<block_line_section>: Moved to compunit_symtab.
<locations_valid>: Ditto.
<epilogue_unwind_valid>: Ditto.
<macro_table>: Ditto.
<dirname>: Ditto.
<debugformat>: Ditto.
<producer>: Ditto.
<objfile>: Ditto.
<call_site_htab>: Ditto.
<includes>: Ditto.
<user>: Ditto.
<primary>: Delete
(SYMTAB_COMPUNIT): New macro.
(SYMTAB_BLOCKVECTOR): Update definition.
(SYMTAB_OBJFILE): Update definition.
(SYMTAB_DIRNAME): Update definition.
(struct compunit_symtab): New type. Common members among all source
symtabs within a compilation unit moved here. All uses updated.
(COMPUNIT_OBJFILE): New macro.
(COMPUNIT_FILETABS): New macro.
(COMPUNIT_DEBUGFORMAT): New macro.
(COMPUNIT_PRODUCER): New macro.
(COMPUNIT_DIRNAME): New macro.
(COMPUNIT_BLOCKVECTOR): New macro.
(COMPUNIT_BLOCK_LINE_SECTION): New macro.
(COMPUNIT_LOCATIONS_VALID): New macro.
(COMPUNIT_EPILOGUE_UNWIND_VALID): New macro.
(COMPUNIT_CALL_SITE_HTAB): New macro.
(COMPUNIT_MACRO_TABLE): New macro.
(ALL_COMPUNIT_FILETABS): New macro.
(compunit_symtab_ptr): New typedef.
(DEF_VEC_P (compunit_symtab_ptr)): New vector type.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp: Update expected output.
gdb/ChangeLog:
* NEWS: Mention ability add attributes to gdb.Objfile and
gdb.Progspace objects.
* python/py-objfile.c (objfile_object): New member dict.
(objfpy_dealloc): Py_XDECREF dict.
(objfpy_initialize): Initialize dict.
(objfile_getset): Add __dict__.
(objfile_object_type): Set tp_dictoffset member.
* python/py-progspace.c (progspace_object): New member dict.
(pspy_dealloc): Py_XDECREF dict.
(pspy_initialize): Initialize dict.
(pspace_getset): Add __dict__.
(pspace_object_type): Set tp_dictoffset member.
gdb/doc/ChangeLog:
* python.texi (Progspaces In Python): Document ability to add
random attributes to gdb.Progspace objects.
(Objfiles In Python): Document ability to add random attributes to
gdb.objfile objects.
gdb/testsuite/ChangeLog:
* gdb.python/py-objfile.exp: Add tests for setting random attributes
in objfiles.
* gdb.python/py-progspace.exp: Add tests for setting random attributes
in progspaces.
In gdb/command/prompt.py:before_prompt_hook, the '\' in the new prompt
is replaced with '\\', shown as below,
> def before_prompt_hook(self, current):
> if self.value is not '':
> newprompt = gdb.prompt.substitute_prompt(self.value)
> return newprompt.replace('\\', '\\\\')
> else:
> return None
I don't see any explanations on this in comments nor email. As doc
said, "set extended-prompt \w" substitute the current working
directory, but it prints something different from what pwd or
os.getcwdu() prints on mingw32 host.
(gdb) python print os.getcwdu()^M
\\build2-lucid-cs\yqi\yqi\arm-none-eabi
(gdb) pwd^M
Working directory \\build2-lucid-cs\yqi\yqi\arm-none-eabi
(gdb) set extended-prompt \w
\\\\build2-lucid-cs\\yqi\\yqi\\arm-none-eabi
This makes me think whether the substitution in before_prompt_hook is
necessary or not. This patch is to remove this substitution.
Run gdb.python on x86_64-linux and arm-none-eabi on mingw32 host. No
regressions.
gdb:
2014-10-30 Yao Qi <yao@codesourcery.com>
* python/lib/gdb/command/prompt.py (before_prompt_hook): Don't
replace '\\' with '\\\\'.
If one is watching new_objfile events in python, it helps to know
when the list of objfiles is cleared. This patch adds a new
clear_objfiles event to support this.
This patch is all just cut-n-paste-n-tweak derived from
the new_objfiles event.
gdb/ChangeLog:
* NEWS: Mention new event gdb.clear_objfiles.
* python/py-event.h (emit_clear_objfiles_event): Clear
* python/py-events.h (events_object): New member clear_objfiles.
* python/py-evts.c (gdbpy_initialize_py_events): Add clear_objfiles
event.
* python/py-inferior.c (python_new_objfile): If objfile is NULL,
emit clear_objfiles event.
* python/py-newobjfileevent.c (create_clear_objfiles_event_object): New
function.
(emit_clear_objfiles_event): New function.
(clear_objfiles): New event.
* python/python-internal.h (gdbpy_initialize_clear_objfiles_event):
Declare.
* python/python.c (_initialize_python): Call
gdbpy_initialize_clear_objfiles_event.
gdb/doc/ChangeLog:
* python.texi (Events In Python): Document clear_objfiles event.
gdb/testsuite/ChangeLog:
* gdb.python/py-events.exp: Update expected output for clear_objfiles
event.
* gdb.python/py-events.py: Add clear_objfiles event.
gdb/ChangeLog:
* NEWS: Mention new gdb.Objfile.progspace attribute.
* python/py-objfile.c (objfpy_get_progspace): New function.
(objfile_getset): New entry for "progspace".
gdb/doc/ChangeLog:
* python.texi (Objfiles In Python): Document new progspace attribute.
gdb/testsuite/ChangeLog:
* gdb.python/py-objfile.exp: Test progspace attribute.
gdb/ChangeLog:
* python/lib/gdb/__init__.py (packages): Add "printer".
* python/lib/gdb/command/bound_registers.py: Moved to ...
* python/lib/gdb/printer/bound_registers.py: ... here.
Add printer to global set of builtin printers. Rename printer from
"bound" to "mpx_bound128".
* python/lib/gdb/printing.py (_builtin_pretty_printers): New global,
registered as global "builtin" printer.
(add_builtin_pretty_printer): New function.
* data-directory/Makefile.in (PYTHON_FILE_LIST): Update, and add
gdb/printer/__init__.py.
gdb/ChangeLog:
* py-objfile.c (objfpy_initialize): New function.
(objfpy_new, objfile_to_objfile_object): Call it.
* py-progspace.c (pspy_initialize): New function.
(pspy_new, pspace_to_pspace_object): Call it.