Commit graph

252 commits

Author SHA1 Message Date
Pedro Alves
7a26bd4d83 constify set_breakpoint_condition
gdb:

2015-03-20  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (set_breakpoint_condition): Make argument "exp" const.
	* breakpoint.h (set_breakpoint_condition): Update declaration.
2015-03-20 17:39:24 +00:00
Sergio Durigan Junior
badd37cec8 Implement breakpoint_find_if
This commit implements the 'breakpoint_find_if' function, which allows
code external to gdb/breakpoint.c to iterate through the list of
'struct breakpoint *'.  This is needed in order to create the
'gdb/break-catch-syscall.c' file, because one of its functions
(catching_syscall_number) needs to do this iteration.

My first thought was to share the ALL_BREAKPOINTS* macros on
gdb/breakpoint.h, but they use a global variable local to
gdb/breakpoint.c, and I did not want to share that variable.  So, in
order to keep the minimal separation, I decided to implement this
way of iterating through the existing 'struct breakpoint *'.

This function was based on BFD's bfd_sections_find_if.  If the
user-provided function returns 0, the iteration proceeds.  Otherwise,
the iteration stops and the function returns the 'struct breakpoint *'
that is being processed.  This means that the return value of this
function can be either NULL or a pointer to a 'struct breakpoint'.

gdb/ChangeLog:
2015-03-11  Sergio Durigan Junior  <sergiodj@redhat.com>

	* breakpoint.c (breakpoint_find_if): New function.
	* breakpoint.h (breakpoint_find_if): New prototype.
2015-03-11 14:13:49 -04:00
Pedro Alves
1cf4d9513a Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic.  This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.

The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.

The root cause is a fundamental problem with moribund locations.  For
example, the stepped_breakpoint logic added by af48d08f breaks in this
case (which is what happens with that test):

 - Step thread A, no breakpoint is set at PC.

 - The kernel doesn't schedule thread A yet.

 - Insert breakpoint at A's PC, for some reason (e.g., a step-resume
   breakpoint for thread B).

 - Kernel finally schedules thread A.

 - thread A's stepped_breakpoint flag is not set, even though it now
   stepped a breakpoint instruction.

 - adjust_pc_after_break gets the PC wrong, because PC == PREV_PC, but
   stepped_breakpoint is not set.

We needed the stepped_breakpoint logic to workaround moribund
locations, because otherwise adjust_pc_after_break could apply an
adjustment when it shouldn't just because there _used_ to be a
breakpoint at PC (a moribund breakpoint location).  For example, on
x86, that's wrong if the thread really hasn't executed an int3, but
instead executed some other 1-byte long instruction.  Getting the PC
adjustment wrong of course leads to the inferior executing the wrong
instruction.

Other problems with moribund locations are:

 - if a true SIGTRAP happens to be raised when the program is
   executing the PC that used to have a breakpoint, GDB will assume
   that is a trap for a breakpoint that has recently been removed, and
   thus we miss reporting the random signal to the user.

 - to minimize that, we get rid of moribund location after a while.
   That while is defined as just a certain number of events being
   processed.  That number of events sometimes passes by before a
   delayed breakpoint is processed, and GDB confuses the trap for a
   random signal, thus reporting the random trap.  Once the user
   resumes the thread, the program crashes because the PC was not
   adjusted...

The fix for all this is to bite the bullet and get rid of heuristics
and instead rely on the target knowing accurately what caused the
SIGTRAP.  The target/kernel/stub is in the best position to know what
that, because it can e.g. consult priviledged CPU flags GDB has no
access to, or by knowing which exception vector entry was called when
the instruction trapped, etc.  Most debug APIs I've seen to date
report breakpoint hits as a distinct event in some fashion.  For
example, on the Linux kernel, whether a breakpoint was executed is
exposed to userspace in the si_code field of the SIGTRAP's siginfo.
On Windows, the debug API reports a EXCEPTION_BREAKPOINT exception
code.

We needed to keep around deleted breakpoints in an on-the-side list
(the moribund locations) for two main reasons:

  - Know that a SIGTRAP actually is a delayed event for a hit of a
    breakpoint that was removed before the event was processed, and
    thus should not be reported as a random signal.

  - So we still do the decr_pc_after_break adjustment in that case, so
    that the thread is resumed at the correct address.

In the new model, if GDB processes an event the target tells is a
breakpoint trap, and GDB doesn't find the corresponding breakpoint in
its breakpoint tables, it means that event is a delayed event for a
breakpoint that has since been removed, and thus the event should be
ignored.

For the decr_pc_after_after issue, it ends up being much simpler that
on targets that can reliably tell whether a breakpoint trapped, for
the breakpoint trap to present the PC already adjusted.  Proper
multi-threading support already implies that targets needs to be doing
decr_pc_after_break adjustment themselves, otherwise for example, in
all-stop if two threads hit a breakpoint simultaneously, and the user
does "info threads", he'll see the non-event thread that hit the
breakpoint stopped at the wrong PC.

This way (target adjusts) also ends up eliminating the need for some
awkward re-incrementing of the PC in the record-full and Linux targets
that we do today, and the need for the target_decr_pc_after_break
hook.

If the target always adjusts, then there's a case where GDB needs to
re-increment the PC.  Say, on x86, an "int3" instruction that was
explicitly written in the program traps.  In this case, GDB should
report a random SIGTRAP signal to the user, with the PC pointing at
the instruction past the int3, just like if GDB was not debugging the
program.  The user may well decide to pass the SIGTRAP to the program
because the program being debugged has a SIGTRAP handler that handles
its own breakpoints, and expects the PC to be unadjusted.

Tested on x86-64 Fedora 20.

gdb/ChangeLog:
2015-03-04  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (need_moribund_for_location_type): New function.
	(bpstat_stop_status): Don't skipping checking moribund locations
	of breakpoint types which the target tell caused a stop.
	(program_breakpoint_here_p): New function, factored out from ...
	(bp_loc_is_permanent): ... this.
	(update_global_location_list): Don't create a moribund location if
	the target supports reporting stops of the type of the removed
	breakpoint.
	* breakpoint.h (program_breakpoint_here_p): New declaration.
	* infrun.c (adjust_pc_after_break): Return early if the target has
	already adjusted the PC.  Add comments.
	(handle_signal_stop): If nothing explains a signal, and the target
	tells us the stop was caused by a software breakpoint, check if
	there's a breakpoint instruction in the memory.  If so, adjust the
	PC before presenting the stop to the user.  Otherwise, ignore the
	trap.  If nothing explains a signal, and the target tells us the
	stop was caused by a hardware breakpoint, ignore the trap.
	* target.h (struct target_ops) <to_stopped_by_sw_breakpoint,
	to_supports_stopped_by_sw_breakpoint, to_stopped_by_hw_breakpoint,
	to_supports_stopped_by_hw_breakpoint>: New fields.
	(target_stopped_by_sw_breakpoint)
	(target_supports_stopped_by_sw_breakpoint)
	(target_stopped_by_hw_breakpoint)
	(target_supports_stopped_by_hw_breakpoint): Define.
	* target-delegates.c: Regenerate.
2015-03-04 20:41:15 +00:00
Pedro Alves
64166036b3 breakpoint.h: move enum ‘print_stop_action’
Building GDB in C++, we get:

  src/gdb/breakpoint.h:529:8: error: use of enum ‘print_stop_action’ without previous declaration

We can't forward declare enums in C++.

gdb/ChangeLog:
2015-02-27  Pedro Alves  <palves@redhat.com>

	* breakpoint.h (enum print_stop_action): Move further up in the
	file.
2015-02-27 17:40:35 +00:00
Pedro Alves
9c02b52532 linux-nat.c: better starvation avoidance, handle non-stop mode too
Running the testsuite with a series that reimplements user-visible
all-stop behavior on top of a target running in non-stop mode revealed
problems related to event starvation avoidance.

For example, I see
gdb.threads/signal-while-stepping-over-bp-other-thread.exp failing.
What happens is that GDB core never gets to see the signal event.  It
ends up processing the events for the same threads over an over,
because Linux's waitpid(-1, ...) returns that first task in the task
list that has an event, starving threads on the tail of the task list.

So I wrote a non-stop mode test originally inspired by
signal-while-stepping-over-bp-other-thread.exp, to stress this
independently of all-stop on top of non-stop.  Fixing it required the
changes described below.  The test will be added in a following
commit.

1) linux-nat.c has code in place that picks an event LWP at random out
of all that have had events.  This is because on the kernel side,
"waitpid(-1, ...)"  just walks the task list linearly looking for the
first that had an event.  But, this code is currently only used in
all-stop mode.  So with a multi-threaded program that has multiple
events triggering debug events in parallel, GDB ends up starving some
threads.

To make the event randomization work in non-stop mode too, the patch
makes us pull out all the already pending events on the kernel side,
with waitpid, before deciding which LWP to report to the core.

There's some code in linux_wait that takes care of leaving events
pending if they were for LWPs the caller is not interested in.  The
patch moves that to linux_nat_filter_event, so that we only have one
place that leaves events pending.  With that in place, conceptually,
the flow is simpler and more normalized:

 #1 - walk the LWP list looking for an LWP with a pending event to report.
 #2 - if no pending event, pull events out of the kernel, and store
      them in the LWP structures as pending.
 #3- goto #1.

2) Then, currently the event randomization code only considers SIGTRAP
(or trap-like) events.  That means that if e.g., have have multiple
threads stepping in parallel that hit a breakpoint that needs stepping
over, and one gets a signal, the signal may end up never getting
processed, because GDB will always be giving priority to the SIGTRAPs.
The patch fixes this by making the randomization code consider all
kinds of pending events.

3) If multiple threads hit a breakpoint, we report one of those, and
"cancel" the others.  Cancelling means decrementing the PC, and
discarding the event.  If the next time the LWP is resumed the
breakpoint is still installed, the LWP should hit it again, and we'll
report the hit then.  The problem I found is that this delays threads
from advancing too much, with the kernel potentially ending up
scheduling the same threads over and over, and others not advancing.
So the patch switches away from cancelling the breakpoints, and
instead remembering that the LWP had stopped for a breakpoint.  If on
resume the breakpoint is still installed, we report it.  If it's no
longer installed, we discard the pending event then.  This is actually
how GDBserver used to handle this before d50171e4 (Teach linux
gdbserver to step-over-breakpoints), but with the difference that back
then we'd delay adjusting the PC until resuming, which made it so that
"info threads" could wrongly see threads with unadjusted PCs.

gdb/
2015-01-09  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (hardware_breakpoint_inserted_here_p): New
	function.
	* breakpoint.h (hardware_breakpoint_inserted_here_p): New
	declaration.
	* linux-nat.c (linux_nat_status_is_event): Move higher up in file.
	(linux_resume_one_lwp): Store the thread's PC.  Adjust to clear
	stop_reason.
	(check_stopped_by_watchpoint): New function.
	(save_sigtrap): Reimplement.
	(linux_nat_stopped_by_watchpoint): Adjust.
	(linux_nat_lp_status_is_event): Delete.
	(stop_wait_callback): Only call save_sigtrap after storing the
	pending status.
	(status_callback): If the thread had been stopped for a breakpoint
	that has since been removed, discard the event and resume the LWP.
	(count_events_callback, select_event_lwp_callback): Use
	lwp_status_pending_p instead of linux_nat_lp_status_is_event.
	(cancel_breakpoint): Rename to ...
	(check_stopped_by_breakpoint): ... this.  Record whether the LWP
	stopped for a software breakpoint or hardware breakpoint.
	(select_event_lwp): Only give preference to the stepping LWP in
	all-stop mode.  Adjust comments.
	(stop_and_resume_callback): Remove references to new_pending_p.
	(linux_nat_filter_event): Likewise.  Leave exit events of the
	leader thread pending here.  Handle signal short circuiting here.
	Only call save_sigtrap after storing the pending waitstatus.
	(linux_nat_wait_1): Remove 'retry' label.  Remove references to
	new_pending.  Don't handle leaving events the caller is not
	interested in pending here, nor handle signal short-circuiting
	here.  Also give equal priority to all LWPs that have had events
	in non-stop mode.  If reporting a software breakpoint event,
	unadjust the LWP's PC.
	* linux-nat.h (enum lwp_stop_reason): New.
	(struct lwp_info) <stop_pc>: New field.
	(struct lwp_info) <stopped_by_watchpoint>: Delete field.
	(struct lwp_info) <stop_reason>: New field.
	* x86-linux-nat.c (x86_linux_prepare_to_resume): Adjust.
2015-01-09 14:42:03 +00:00
Joel Brobecker
32d0add0a6 Update year range in copyright notice of all files owned by the GDB project.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2015-01-01 13:32:14 +04:00
Pedro Alves
1a853c5224 make "permanent breakpoints" per location and disableable
"permanent"-ness is currently a property of the breakpoint.  But, it
should actually be an implementation detail of a _location_.  Consider
this bit in infrun.c:

  /* Normally, by the time we reach `resume', the breakpoints are either
     removed or inserted, as appropriate.  The exception is if we're sitting
     at a permanent breakpoint; we need to step over it, but permanent
     breakpoints can't be removed.  So we have to test for it here.  */
  if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
    {
      if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
	gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
      else
	error (_("\
The program is stopped at a permanent breakpoint, but GDB does not know\n\
how to step past a permanent breakpoint on this architecture.  Try using\n\
a command like `return' or `jump' to continue execution."));
    }

This will wrongly skip a non-breakpoint instruction if we have a
multiple location breakpoint where the whole breakpoint was set to
"permanent" because one of the locations happened to be permanent,
even if the one GDB is resuming from is not.

Related, because the permanent breakpoints are only marked as such in
init_breakpoint_sal, we currently miss marking momentary breakpoints
as permanent.  A test added by a following patch trips on that.
Making permanent-ness be per-location, and marking locations as such
in add_location_to_breakpoint, the natural place to do this, fixes
this issue...

... and then exposes a latent issue with mark_breakpoints_out.  It's
clearing the inserted flag of permanent breakpoints.  This results in
assertions failing like this:

 Breakpoint 1, main () at testsuite/gdb.base/callexit.c:32
 32        return 0;
 (gdb) call callexit()
 [Inferior 1 (process 15849) exited normally]
 gdb/breakpoint.c:12854: internal-error: allegedly permanent breakpoint is not actually inserted
 A problem internal to GDB has been detected,
 further debugging may prove unreliable.

The call dummy breakpoint, which is a momentary breakpoint, is set on
top of a manually inserted breakpoint instruction, and so is now
rightfully marked as a permanent breakpoint.  See "Write a legitimate
instruction at the point where the infcall breakpoint is going to be
inserted." comment in infcall.c.

Re. make_breakpoint_permanent.  That's only called by solib-pa64.c.
Permanent breakpoints were actually originally invented for HP-UX [1].
I believe that that call (the only one in the tree) is unnecessary
nowadays, given that nowadays the core breakpoints code analyzes the
instruction under the breakpoint to automatically detect whether it's
setting a breakpoint on top of a breakpoint instruction in the
program.  I know close to nothing about HP-PA/HP-UX, though.

[1] https://sourceware.org/ml/gdb-patches/1999-q3/msg00245.html, and
    https://sourceware.org/ml/gdb-patches/1999-q3/msg00242.html

In addition to the per-location issue, "permanent breakpoints" are
currently always displayed as enabled=='n':

 (gdb) b main
 Breakpoint 3 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29.
 (gdb) info breakpoints
 Num     Type           Disp Enb Address            What
 3       breakpoint     keep n   0x000000000040053c ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29

But OTOH they're always enabled; there's no way to disable them...

In turn, this means that if one adds commands to such a breakpoint,
they're _always_ run:

 (gdb) start
 Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.arch/i386-permbkpt
 ...
 Temporary breakpoint 1, main () at ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29
 29              int3
 (gdb) b main
 Breakpoint 2 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29.
 (gdb) info breakpoints
 Num     Type           Disp Enb Address            What
 2       breakpoint     keep n   0x000000000040053c ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29
 (gdb) commands
 Type commands for breakpoint(s) 2, one per line.
 End with a line saying just "end".
 >echo "hello!"
 >end
 (gdb) disable 2
 (gdb) start
 The program being debugged has been started already.
 Start it from the beginning? (y or n) y
 Temporary breakpoint 3 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29.
 Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.arch/i386-permbkpt

 Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29
 29              int3
 "hello!"(gdb)

IMO, one should be able to disable such a breakpoint, and GDB should
then behave just like if the user hadn't created the breakpoint in the
first place (that is, report a SIGTRAP).

By making permanent-ness a property of the location, and eliminating
the bp_permanent enum enable_state state ends up fixing that as well.

No tests are added for these changes yet; they'll be added in a follow
up patch, as skipping permanent breakpoints is currently broken and
trips on an assertion in infrun.

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/ChangeLog:
2014-11-12  Pedro Alves  <palves@redhat.com>

	Mark locations as permanent, not the whole breakpoint.
	* breakpoint.c (remove_breakpoint_1, remove_breakpoint): Adjust.
	(mark_breakpoints_out): Don't mark permanent breakpoints as
	uninserted.
	(breakpoint_init_inferior): Use mark_breakpoints_out.
	(breakpoint_here_p): Adjust.
	(bpstat_stop_status, describe_other_breakpoints): Remove handling
	of permanent breakpoints.
	(make_breakpoint_permanent): Mark each location as permanent,
	instead of marking the breakpoint.
	(add_location_to_breakpoint): If the location is permanent, mark
	it as such, and as inserted.
	(init_breakpoint_sal): Don't make the breakpoint permanent here.
	(bp_location_compare, update_global_location_list): Adjust.
	(update_breakpoint_locations): Don't make the breakpoint permanent
	here.
	(disable_breakpoint, enable_breakpoint_disp): Don't skip permanent
	breakpoints.
	* breakpoint.h (enum enable_state) <bp_permanent>: Delete field.
	(struct bp_location) <permanent>: New field.
	* guile/scm-breakpoint.c (bpscm_enable_state_to_string): Remove
	reference to bp_permanent.
2014-11-12 10:37:57 +00:00
Pedro Alves
441ef17f09 garbage collect gdb/breakpoint.c:breakpoint_thread_match
Used to be necessary for the thread-hop code, but that's gone now.
Nothing uses this anymore.

gdb/
2014-11-04  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (breakpoint_thread_match): Delete function.
	* breakpoint.h (breakpoint_thread_match): Delete declaration.
2014-11-04 18:42:28 +00:00
Pedro Alves
34b7e8a6ad Make single-step breakpoints be per-thread
This patch finally makes each thread have its own set of single-step
breakpoints.  This paves the way to have multiple threads software
single-stepping, though this patch doesn't flip that switch on yet.
That'll be done on a subsequent patch.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (single_step_breakpoints): Delete global.
	(insert_single_step_breakpoint): Adjust to store the breakpoint
	pointer in the current thread.
	(single_step_breakpoints_inserted, remove_single_step_breakpoints)
	(cancel_single_step_breakpoints): Delete functions.
	(breakpoint_has_location_inserted_here): Make extern.
	(single_step_breakpoint_inserted_here_p): Adjust to walk the
	breakpoint list.
	* breakpoint.h (breakpoint_has_location_inserted_here): New
	declaration.
	(single_step_breakpoints_inserted, remove_single_step_breakpoints)
	(cancel_single_step_breakpoints): Remove declarations.
	* gdbthread.h (struct thread_control_state)
	<single_step_breakpoints>: New field.
	(delete_single_step_breakpoints)
	(thread_has_single_step_breakpoints_set)
	(thread_has_single_step_breakpoint_here): New declarations.
	* infrun.c (follow_exec): Also clear the single-step breakpoints.
	(singlestep_breakpoints_inserted_p, singlestep_ptid)
	(singlestep_pc): Delete globals.
	(infrun_thread_ptid_changed): Remove references to removed
	globals.
	(resume_cleanups): Delete the current thread's single-step
	breakpoints.
	(maybe_software_singlestep): Remove references to removed globals.
	(resume): Adjust to use thread_has_single_step_breakpoints_set and
	delete_single_step_breakpoints.
	(init_wait_for_inferior): Remove references to removed globals.
	(delete_thread_infrun_breakpoints): Delete the thread's
	single-step breakpoints too.
	(delete_just_stopped_threads_infrun_breakpoints): Don't delete
	single-step breakpoints here.
	(delete_stopped_threads_single_step_breakpoints): New function.
	(adjust_pc_after_break): Adjust to use
	thread_has_single_step_breakpoints_set.
	(handle_inferior_event): Remove references to removed globals.
	Use delete_stopped_threads_single_step_breakpoints.
	(handle_signal_stop): Adjust to per-thread single-step
	breakpoints.  Swap test order to do cheaper tests first.
	(switch_back_to_stepped_thread): Extend debug output.  Remove
	references to removed globals.
	* record-full.c (record_full_wait_1): Adjust to per-thread
	single-step breakpoints.
	* thread.c (delete_single_step_breakpoints)
	(thread_has_single_step_breakpoints_set)
	(thread_has_single_step_breakpoint_here): New functions.
	(clear_thread_inferior_resources): Also delete the thread's
	single-step breakpoints.
2014-10-15 20:18:32 +01:00
Pedro Alves
a1fd2fa599 Remove deprecated_insert_raw_breakpoint and friends
There are no users of deprecated_{insert,remove}_raw_breakpoint left.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (regular_breakpoint_inserted_here_p): Inline ...
	(breakpoint_inserted_here_p): ... here.  Remove special case for
	software single-step breakpoints.
	(find_non_raw_software_breakpoint_inserted_here): Inline ...
	(software_breakpoint_inserted_here_p): ... here.  Remove special
	case for software single-step breakpoints.
	(bp_target_info_copy_insertion_state)
	(deprecated_insert_raw_breakpoint)
	(deprecated_remove_raw_breakpoint): Delete functions.
	* breakpoint.h (deprecated_insert_raw_breakpoint)
	(deprecated_remove_raw_breakpoint): Remove declarations.
2014-10-15 20:18:31 +01:00
Pedro Alves
7c16b83e05 Put single-step breakpoints on the bp_location chain
This patch makes single-step breakpoints "real" breakpoints on the
global location list.

There are several benefits to this:

- It removes the currently limitation that only 2 single-step
  breakpoints can be inserted.  See an example here of a discussion
  around a case that wants more than 2, possibly unbounded:

  https://sourceware.org/ml/gdb-patches/2014-03/msg00663.html

- makes software single-step work on read-only code regions.

  The logic to convert a software breakpoint to a hardware breakpoint
  if the memory map says the breakpoint address is in read only memory
  is in insert_bp_location.  Because software single-step breakpoints
  bypass all that go and straight to target_insert_breakpoint, we
  can't software single-step over read only memory.  This patch
  removes that limitation, and adds a test that makes sure that works,
  by forcing a code region to read-only with "mem LOW HIGH ro" and
  then stepping through that.

- Fixes PR breakpoints/9649

  This is an assertion failure in insert_single_step_breakpoint in
  breakpoint.c, because we may leave stale single-step breakpoints
  behind on error.

  The tests for stepping through read-only regions exercise the root
  cause of the bug, which is that we leave single-step breakpoints
  behind if we fail to insert any single-step breakpoint.  Deleting
  the single-step breakpoints in resume_cleanups,
  delete_just_stopped_threads_infrun_breakpoints, and
  fetch_inferior_event fixes this.  Without that, we'd no longer hit
  the assertion, as that code is deleted, but we'd instead run into
  errors/warnings trying to insert/remove the stale breakpoints on
  next resume.

- Paves the way to have multiple threads software single-stepping at
  the same time, leaving update_global_location_list to worry about
  duplicate locations.

- Makes the moribund location machinery aware of software single-step
  breakpoints, paving the way to enable software single-step on
  non-stop, instead of forcing serialized displaced stepping for all
  single steps.

- It's generaly cleaner.

  We no longer have to play games with single-step breakpoints
  inserted at the same address as regular breakpoints, like we
  recently had to do for 7.8.  See this discussion:

  https://sourceware.org/ml/gdb-patches/2014-06/msg00052.html.

Tested on x86_64 Fedora 20, on top of my 'single-step breakpoints on
x86' series.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	PR breakpoints/9649
	* breakpoint.c (single_step_breakpoints, single_step_gdbarch):
	Delete array globals.
	(single_step_breakpoints): New global.
	(breakpoint_xfer_memory): Remove special handling for single-step
	breakpoints.
	(update_breakpoints_after_exec): Delete bp_single_step
	breakpoints.
	(detach_breakpoints): Remove special handling for single-step
	breakpoints.
	(breakpoint_init_inferior): Delete bp_single_step breakpoints.
	(bpstat_stop_status): Add comment.
	(bpstat_what, bptype_string, print_one_breakpoint_location)
	(adjust_breakpoint_address, init_bp_location): Handle
	bp_single_step.
	(new_single_step_breakpoint): New function.
	(set_momentary_breakpoint, bkpt_remove_location): Remove special
	handling for single-step breakpoints.
	(insert_single_step_breakpoint, single_step_breakpoints_inserted)
	(remove_single_step_breakpoints, cancel_single_step_breakpoints):
	Rewrite.
	(detach_single_step_breakpoints, find_single_step_breakpoint):
	Delete functions.
	(breakpoint_has_location_inserted_here): New function.
	(single_step_breakpoint_inserted_here_p): Rewrite.
	* breakpoint.h: Remove FIXME.
	(enum bptype) <bp_single_step>: New enum value.
	(insert_single_step_breakpoint): Update comment.
	* infrun.c (resume_cleanups)
	(delete_step_thread_step_resume_breakpoint): Remove single-step
	breakpoints.
	(fetch_inferior_event): Install a cleanup that removes infrun
	breakpoints.
	(switch_back_to_stepped_thread) <expect thread advanced also>:
	Clear step-over info.

gdb/testsuite/
2014-10-15  Pedro Alves  <palves@redhat.com>

	PR breakpoints/9649
	* gdb.base/breakpoint-in-ro-region.c (main): Add more instructions.
	* gdb.base/breakpoint-in-ro-region.exp
	(probe_target_hardware_step): New procedure.
	(top level): Probe hardware stepping and hardware breakpoint
	support.  Test stepping through a read-only region, with both
	"breakpoint auto-hw" on and off and both "always-inserted" on and
	off.
2014-10-15 20:18:31 +01:00
Maciej W. Rozycki
0d5ed15352 Avoid software breakpoint's instruction shadow inconsistency
This change:

commit b775012e84
Author: Luis Machado <luisgpm@br.ibm.com>
Date:   Fri Feb 24 15:10:59 2012 +0000

    2012-02-24  Luis Machado  <lgustavo@codesourcery.com>

	* remote.c (remote_supports_cond_breakpoints): New forward
	declaration.
[...]

changed the way breakpoints are inserted and removed such that
`insert_bp_location' can now be called with the breakpoint being handled
already in place, while previously the call was only ever made for
breakpoints that have not been put in place.  This in turn caused an
issue for software breakpoints and targets for which a breakpoint's
`placed_address' may not be the same as the original requested address.

The issue is `insert_bp_location' overwrites the previously adjusted
value in `placed_address' with the original address, that is only
replaced back with the correct adjusted address later on when
`gdbarch_breakpoint_from_pc' is called.  Meanwhile there's a window
where the value in `placed_address' does not correspond to data stored
in `shadow_contents', leading to incorrect instruction bytes being
supplied when `one_breakpoint_xfer_memory' is called to supply the
instruction overlaid by the breakpoint.

And this is exactly what happens on the MIPS target with software
breakpoints placed in microMIPS code.  In this case not only
`placed_address' is not the original address because of the ISA bit, but
`mips_breakpoint_from_pc' has to read the original instruction to
determine which one of the two software breakpoint instruction encodings
to choose as well.  The 16-bit encoding is used to replace 16-bit
instructions and similarly the 32-bit one is used with 32-bit
instructions, to satisfy branch delay slot size requirements.

The mismatch between `placed_address' and the address data in
`shadow_contents' has been obtained from leads to the wrong encoding
being used in some cases, which in the case of a 32-bit software
breakpoint instruction replacing a 16-bit instruction causes corruption
to the adjacent following instruction and leads the debug session astray
if execution reaches there e.g. with a jump.

To address this problem I made the change below, that adds a
`reqstd_address' field to `struct bp_target_info' and leaves
`placed_address' unchanged once it has been set.  This ensures data in
`shadow_contents' is always consistent with `placed_address'.

This approach also has this good side effect that all the places that
examine the breakpoint's address see a consistent value, either
`reqstd_address' or `placed_address', as required.  Currently some
places see either the original or the adjusted address in
`placed_address', depending on whether they have been called before
`gdbarch_remote_breakpoint_from_pc' or afterwards.  This is in
particular true for subsequent calls to
`gdbarch_remote_breakpoint_from_pc' itself, e.g. from
`one_breakpoint_xfer_memory'.  This is also important for places like
`find_single_step_breakpoint' where a breakpoint's address is compared
to the raw value of $pc.

	* breakpoint.h (bp_target_info): Add `reqstd_address' member,
	update comments.
	* breakpoint.c (one_breakpoint_xfer_memory): Use `reqstd_address'
	for the breakpoint's address.  Don't preinitialize `placed_size'.
	(insert_bp_location): Set `reqstd_address' rather than
	`placed_address'.
	(bp_target_info_copy_insertion_state): Also copy `placed_address'.
	(bkpt_insert_location): Use `reqstd_address' for the breakpoint's
	address.
	(bkpt_remove_location): Likewise.
	(deprecated_insert_raw_breakpoint): Likewise.
	(deprecated_remove_raw_breakpoint): Likewise.
	(find_single_step_breakpoint): Likewise.
	* mem-break.c (default_memory_insert_breakpoint): Use
	`reqstd_address' for the breakpoint's address.  Don't set
	`placed_address' or `placed_size' if breakpoint contents couldn't
	have been determined.
	* remote.c (remote_insert_breakpoint): Use `reqstd_address' for
	the breakpoint's address.
	(remote_insert_hw_breakpoint): Likewise.  Don't set
	`placed_address' or `placed_size' if breakpoint couldn't have been
	set.
	* aarch64-linux-nat.c (aarch64_linux_insert_hw_breakpoint): Use
	`reqstd_address' for the breakpoint's address.
	* arm-linux-nat.c (arm_linux_hw_breakpoint_initialize): Likewise.
	* ia64-tdep.c (ia64_memory_insert_breakpoint): Likewise.
	* m32r-tdep.c (m32r_memory_insert_breakpoint): Likewise.
	* microblaze-linux-tdep.c
	(microblaze_linux_memory_remove_breakpoint): Likewise.
	* monitor.c (monitor_insert_breakpoint): Likewise.
	* nto-procfs.c (procfs_insert_breakpoint): Likewise.
	(procfs_insert_hw_breakpoint): Likewise.
	* ppc-linux-nat.c (ppc_linux_insert_hw_breakpoint): Likewise.
	* ppc-linux-tdep.c (ppc_linux_memory_remove_breakpoint): Likewise.
	* remote-m32r-sdi.c (m32r_insert_breakpoint): Likewise.
	* remote-mips.c (mips_insert_breakpoint): Likewise.
	* x86-nat.c (x86_insert_hw_breakpoint): Likewise.
2014-10-03 12:54:34 +01:00
Pedro Alves
b57bacecd5 Fix non-stop regressions caused by "breakpoints always-inserted off" changes
Commit a25a5a45 (Fix "breakpoint always-inserted off"; remove
"breakpoint always-inserted auto") regressed non-stop remote
debugging.

This was exposed by mi-nsintrall.exp intermittently failing with a
spurious SIGTRAP.

The problem is that when debugging with "target remote", new threads
the target has spawned but have never reported a stop aren't visible
to GDB until it explicitly resyncs its thread list with the target's.

For example, in a program like this:

 int
 main (void)
 {
   pthread_t child_thread;
   pthread_create (&child_thread, NULL, child_function, NULL);
   return 0;  <<<< set breakpoint here
 }

If the user sets a breakpoint at the "return" statement, and runs the
program, when that breakpoint hit is reported, GDB is only aware of
the main thread.  So if we base the decision to remove or insert
breakpoints from the target based on whether all the threads we know
about are stopped, we'll miss that child_thread is running, and thus
we'll remove breakpoints from the target, even through they should
still remain inserted, otherwise child_thread will miss them.

The break-while-running.exp test actually should also be exposing this
thread-list-out-of-synch problem.  That test sets a breakpoint while
the main thread is stopped, but other threads are running.  Because
other threads are running, the breakpoint is supposed to be inserted
immediately.  But, unless something forces a refetch of the thread
list, like, e.g., "info threads", GDB won't be aware of the other
threads that had been spawned by the main thread, and so won't insert
new or old breakpoints in the target.  And it turns out that the test
is exactly doing an explicit "info threads", masking out the
problem...  This commit adjust the test to exercise the case of not
issuing "info threads".  The test then fails without the GDB fix.

In the ni-nsintrall.exp case, what happens is that several threads hit
the same breakpoint, and when the first thread reports the stop,
because GDB wasn't aware other threads exist, all threads known to GDB
are found stopped, so GDB removes the breakpoints from the target.
The other threads follow up with SIGTRAPs too for that same
breakpoint, which has already been removed.  For the first few
threads, the moribund breakpoints machinery suppresses the SIGTRAPs,
but after a few events (precisely '3 * thread_count () + 1' at the
time the breakpoint was removed, see update_global_location_list), the
moribund breakpoint machinery is no longer aware of the removed
breakpoint, and the SIGTRAP is reported as a spurious stop.

The fix is naturally then to stop assuming that if no thread in the
list is executing, then the target is fully stopped.  We can't know
that until we fully sync the thread list.  Because updating the thread
list on every stop would be too much RSP traffic, I chose instead to
update it whenever we're about to present a stop to the user.

Actually updating the thread list at that point happens to be an item
I had added to the local/remote parity wiki page a while ago:

  Native GNU/Linux debugging adds new threads to the thread list as
  the program creates them "The [New Thread foo] messages". Remote
  debugging can't do that, and it's arguable whether we shouldn't even
  stop native debugging from doing that, as it hinders inferior
  performance. However, a related issue is that with remote targets
  (and gdbserver), even after the program stops, the user still needs
  to do "info threads" to pull an updated thread list. This, should
  most likely be addressed, so that GDB pulls the list itself, perhaps
  just before presenting a stop to the user.

With that in place, the need to delay "Program received signal FOO"
was actually caught by the manythreads.exp test.  Without that bit, I
was getting:

  [Thread 0x7ffff7f13700 (LWP 4499) exited]
  [New Thread 0x7ffff7f0b700 (LWP 4500)]
  ^C
  Program received signal SIGINT, Interrupt.
  [New Thread 0x7ffff7f03700 (LWP 4501)]           <<< new output
  [Switching to Thread 0x7ffff7f0b700 (LWP 4500)]
  __GI___nptl_death_event () at events.c:31
  31      {
  (gdb) FAIL: gdb.threads/manythreads.exp: stop threads 1

That is, I was now getting "New Thread" lines after the "Program
received signal" line, and the test doesn't expect them.  As the
number of new threads discovered before and after the "Program
received signal" output is unbounded, it's much nicer to defer
"Program received signal" until after synching the thread list, thus
close to the "switching to thread" output and "current frame/source"
info:

  [Thread 0x7ffff7863700 (LWP 7647) exited]
  ^C[New Thread 0x7ffff786b700 (LWP 7648)]

  Program received signal SIGINT, Interrupt.
  [Switching to Thread 0x7ffff7fc4740 (LWP 6243)]
  __GI___nptl_create_event () at events.c:25
  25      {
  (gdb) PASS: gdb.threads/manythreads.exp: stop threads 1

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-02  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (breakpoints_should_be_inserted_now): Use
	threads_are_executing.
	* breakpoint.h (breakpoints_should_be_inserted_now): Add
	describing comment.
	* gdbthread.h (threads_are_executing): Declare.
	(handle_signal_stop) <random signals>: Don't print about the
	signal here if stopping.
	(end_stepping_range): Don't notify observers here.
	(normal_stop): Update the thread list.  If stopped by a random
	signal or a stepping range ended, notify observers.
	* thread.c (threads_executing): New global.
	(init_thread_list): Clear 'threads_executing'.
	(set_executing): Set or clear 'threads_executing'.
	(threads_are_executing): New function.
	(update_threads_executing): New function.
	(update_thread_list): Use it.

gdb/testsuite/
2014-10-02  Pedro Alves  <palves@redhat.com>

	* gdb.threads/break-while-running.exp (test): Add new
	'update_thread_list' argument.  Skip "info threads" if false.
	(top level): Add new 'update_thread_list' axis.
2014-10-02 10:08:00 +01:00
Pedro Alves
a25a5a45ef Fix "breakpoint always-inserted off"; remove "breakpoint always-inserted auto"
By default, GDB removes all breakpoints from the target when the
target stops and the prompt is given back to the user.  This is useful
in case GDB crashes while the user is interacting, as otherwise,
there's a higher chance breakpoints would be left planted on the
target.

But, as long as any thread is running free, we need to make sure to
keep breakpoints inserted, lest a thread misses a breakpoint.  With
that in mind, in preparation for non-stop mode, we added a "breakpoint
always-inserted on" mode.  This traded off the extra crash protection
for never having threads miss breakpoints, and in addition is more
efficient if there's a ton of breakpoints to remove/insert at each
user command (e.g., at each "step").

When we added non-stop mode, and for a period, we required users to
manually set "always-inserted on" when they enabled non-stop mode, as
otherwise GDB removes all breakpoints from the target as soon as any
thread stops, which means the other threads still running will miss
breakpoints.  The test added by this patch exercises this.

That soon revealed a nuisance, and so later we added an extra
"breakpoint always-inserted auto" mode, that made GDB behave like
"always-inserted on" when non-stop was enabled, and "always-inserted
off" when non-stop was disabled.  "auto" was made the default at the
same time.

In hindsight, this "auto" setting was unnecessary, and not the ideal
solution.  Non-stop mode does depends on breakpoints always-inserted
mode, but only as long as any thread is running.  If no thread is
running, no breakpoint can be missed.  The same is true for all-stop
too.  E.g., if, in all-stop mode, and the user does:

 (gdb) c&
 (gdb) b foo

That breakpoint at "foo" should be inserted immediately, but it
currently isn't -- currently it'll end up inserted only if the target
happens to trip on some event, and is re-resumed, e.g., an internal
breakpoint triggers that doesn't cause a user-visible stop, and so we
end up in keep_going calling insert_breakpoints.  The test added by
this patch also covers this.

IOW, no matter whether in non-stop or all-stop, if the target fully
stops, we can remove breakpoints.  And no matter whether in all-stop
or non-stop, if any thread is running in the target, then we need
breakpoints to be immediately inserted.  And then, if the target has
global breakpoints, we need to keep breakpoints even when the target
is stopped.

So with that in mind, and aiming at reducing all-stop vs non-stop
differences for all-stop-on-stop-of-non-stop, this patch fixes
"breakpoint always-inserted off" to not remove breakpoints from the
target until it fully stops, and then removes the "auto" setting as
unnecessary.  I propose removing it straight away rather than keeping
it as an alias, unless someone complains they have scripts that need
it and that can't adjust.

Tested on x86_64 Fedora 20.

gdb/
2014-09-22  Pedro Alves  <palves@redhat.com>

	* NEWS: Mention merge of "breakpoint always-inserted" modes "off"
	and "auto" merged.
	* breakpoint.c (enum ugll_insert_mode): New enum.
	(always_inserted_mode): Now a plain boolean.
	(show_always_inserted_mode): No longer handle AUTO_BOOLEAN_AUTO.
	(breakpoints_always_inserted_mode): Delete.
	(breakpoints_should_be_inserted_now): New function.
	(insert_breakpoints): Pass UGLL_INSERT to
	update_global_location_list instead of calling
	insert_breakpoint_locations manually.
	(create_solib_event_breakpoint_1): New, factored out from ...
	(create_solib_event_breakpoint): ... this.
	(create_and_insert_solib_event_breakpoint): Use
	create_solib_event_breakpoint_1 instead of calling
	insert_breakpoint_locations manually.
	(update_global_location_list): Change parameter type from boolean
	to enum ugll_insert_mode.  All callers adjusted.  Adjust to use
	breakpoints_should_be_inserted_now and handle UGLL_INSERT.
	(update_global_location_list_nothrow): Change parameter type from
	boolean to enum ugll_insert_mode.
	(_initialize_breakpoint): "breakpoint always-inserted" option is
	now a boolean command.  Update help text.
	* breakpoint.h (breakpoints_always_inserted_mode): Delete declaration.
	(breakpoints_should_be_inserted_now): New declaration.
	* infrun.c (handle_inferior_event) <TARGET_WAITKIND_LOADED>:
	Remove breakpoints_always_inserted_mode check.
	(normal_stop): Adjust to use breakpoints_should_be_inserted_now.
	* remote.c (remote_start_remote): Likewise.

gdb/doc/
2014-09-22  Pedro Alves  <palves@redhat.com>

	* gdb.texinfo (Set Breaks): Document that "set breakpoint
	always-inserted off" is the default mode now.  Delete
	documentation of "set breakpoint always-inserted auto".

gdb/testsuite/
2014-09-22  Pedro Alves  <palves@redhat.com>

	* gdb.threads/break-while-running.exp: New file.
	* gdb.threads/break-while-running.c: New file.
2014-09-22 10:07:04 +01:00
Patrick Palka
bb9d5f81c3 Fix PR12526: -location watchpoints for bitfield arguments
PR 12526 reports that -location watchpoints against bitfield arguments
trigger false positives when bits around the bitfield, but not the
bitfield itself, are modified.

This happens because -location watchpoints naturally operate at the
byte level, not at the bit level.  When the address of a bitfield
lvalue is taken, information about the bitfield (i.e. its offset and
size) is lost in the process.

This information must first be retained throughout the lifetime of the
-location watchpoint.  This patch achieves this by adding two new
fields to the watchpoint struct: val_bitpos and val_bitsize.  These
fields are set when a watchpoint is first defined in watch_command_1.
They are both equal to zero if the watchpoint is not a -location
watchpoint or if the argument is not a bitfield.

Then these bitfield parameters are used inside update_watchpoint and
watchpoint_check to extract the actual value of the bitfield from the
watchpoint address, with the help of a local helper function
extract_bitfield_from_watchpoint_value.

Finally when creating a HW breakpoint pointing to a bitfield, we
optimize the address and length of the breakpoint.  By skipping over
the bytes that don't cover the bitfield, this step reduces the
frequency at which a read watchpoint for the bitfield is triggered.
It also reduces the number of times a false-positive call to
check_watchpoint is triggered for a write watchpoint.

gdb/
	PR breakpoints/12526
	* breakpoint.h (struct watchpoint): New fields val_bitpos and
	val_bitsize.
	* breakpoint.c (watch_command_1): Use these fields to retain
	bitfield information.
	(extract_bitfield_from_watchpoint_value): New function.
	(watchpoint_check): Use it.
	(update_watchpoint): Use it.  Optimize the address and length of a
	HW watchpoint pointing to a bitfield.
	* value.h (unpack_value_bitfield): New prototype.
	* value.c (unpack_value_bitfield): Make extern.

gdb/testsuite/
	PR breakpoints/12526
	* gdb.base/watch-bitfields.exp: New file.
	* gdb.base/watch-bitfields.c: New file.
2014-09-16 17:40:06 +01:00
Pedro Alves
f37f681c2b [IRIX] eliminate deprecated_insert_raw_breakpoint uses
The IRIX support wants to set a breakpoint to be hit when the startup
phase is complete, which is where shared libraries have been mapped
in.  AFAIU, for most IRIX ports, that location is the entry point.

For MIPS IRIX however, GDB needs to set a breakpoint earlier, in
__dbx_link, as explained by:

 #ifdef SYS_syssgi
   /* On mips-irix, we need to stop the inferior early enough during
      the startup phase in order to be able to load the shared library
      symbols and insert the breakpoints that are located in these shared
      libraries.  Stopping at the program entry point is not good enough
      because the -init code is executed before the execution reaches
      that point.

      So what we need to do is to insert a breakpoint in the runtime
      loader (rld), more precisely in __dbx_link().  This procedure is
      called by rld once all shared libraries have been mapped, but before
      the -init code is executed.  Unfortuantely, this is not straightforward,
      as rld is not part of the executable we are running, and thus we need
      the inferior to run until rld itself has been mapped in memory.

      For this, we trace all syssgi() syscall exit events.  Each time
      we detect such an event, we iterate over each text memory maps,
      get its associated fd, and scan the symbol table for __dbx_link().
      When found, we know that rld has been mapped, and that we can insert
      the breakpoint at the symbol address.  Once the dbx_link() breakpoint
      has been inserted, the syssgi() notifications are no longer necessary,
      so they should be canceled.  */
   proc_trace_syscalls_1 (pi, SYS_syssgi, PR_SYSEXIT, FLAG_SET, 0);
 #endif

The loop in irix_solib_create_inferior_hook then runs until whichever
breakpoint is hit first, the one set by solib-irix.c or the one set by
procfs.c.

Note the comment in disable_break talks about __dbx_init, but I think
that's a typo for __dbx_link:

 -  /* Note that it is possible that we have stopped at a location that
 -     is different from the location where we inserted our breakpoint.
 -     On mips-irix, we can actually land in __dbx_init(), so we should
 -     not check the PC against our breakpoint address here.  See procfs.c
 -     for more details.  */

This looks very much like referring to the loop in
irix_solib_create_inferior_hook stopping at __dbx_link instead of at
the entry point.

What this patch does is convert these deprecated raw breakpoints to
standard solib_event breakpoints.  When the first solib-event
breakpoint is hit, we delete all solib-event breakpoints.  We do that
in the so_ops->handle_event hook.

This allows getting rid of the loop in irix_solib_create_inferior_hook
completely, which should allow properly handling signals and other
events in the early startup phase, like in SVR4.

Built on x86_64 Fedora 20 with --enable-targets=all (builds
solib-irix.c).

Joel tested that with an earlier version of this patch "info shared"
after starting a program gave the same list of shared libraries as
before.

gdb/ChangeLog:
2014-09-12  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (remove_solib_event_breakpoints_at_next_stop)
	(create_and_insert_solib_event_breakpoint): New functions.
	* breakpoint.h (create_and_insert_solib_event_breakpoint)
	(remove_solib_event_breakpoints_at_next_stop): New declarations.
	* procfs.c (dbx_link_bpt_addr, dbx_link_bpt): Delete globals.
	(remove_dbx_link_breakpoint): Delete function.
	(insert_dbx_link_bpt_in_file): Use
	create_and_insert_solib_event_breakpoint instead of
	deprecated_insert_raw_breakpoint.
	(procfs_wait): Don't check whether we hit __dbx_link here.
	(procfs_mourn_inferior): Don't delete the __dbx_link breakpoint
	here.
	* solib-irix.c (base_breakpoint): Delete global.
	(disable_break): Delete function.
	(enable_break): Use create_solib_event_breakpoint
	instead of deprecated_insert_raw_breakpoint.
	(irix_solib_handle_event): New function.
	(irix_solib_create_inferior_hook): Don't run the target or disable
	the mapping-complete breakpoint here.
	(_initialize_irix_solib): Install irix_solib_handle_event as
	so_ops->handle_event hook.
2014-09-12 20:02:01 +01:00
Tom Tromey
82ae6c8d79 use cmd_sfunc_ftype and cmd_cfunc_ftype more
This patch changes a few more spots to use either cmd_sfunc_ftype or
cmd_cfunc_ftype, as appropriate.  This is a bit cleaner.

Tested by rebuilding.

2014-07-01  Tom Tromey  <tromey@redhat.com>

	* breakpoint.c (add_catch_command): Use cmd_sfunc_ftype.
	* breakpoint.h (add_catch_command): Use cmd_sfunc_ftype.
	* cli/cli-decode.c (cmd_cfunc_eq, add_cmd, add_prefix_cmd)
	(add_abbrev_prefix_cmd, add_info, add_com): Use cmd_cfunc_ftype.
	* command.h (cmd_cfunc_ftype): Move earlier.
	(add_cmd, add_prefix_cmd, add_abbrev_prefix_cmd, cmd_cfunc_eq)
	(add_com, add_info): Use cmd_cfunc_ftype.
2014-07-01 10:21:10 -06:00
Yao Qi
b67a2c6fd4 Associate dummy_frame with ptid
This patch is to add ptid into dummy_frame and extend frame_id to
dummy_frame_id (which has a ptid field).  With this change, GDB uses
dummy_frame_id (thread ptid and frame_id) to find the dummy frames.

Currently, dummy frames are looked up by frame_id, which isn't
accurate in non-stop or multi-process mode.  The test case
gdb.multi/dummy-frame-restore.exp shows the problem and this patch can
fix it.

Test dummy-frame-restore.exp makes two inferiors stop at
different functions, say, inferior 1 stops at f1 while inferior 2
stops at f2.  Set a breakpoint to a function, do the inferior call
in two inferiors, and GDB has two dummy frames of the same frame_id.
When the inferior call is finished, GDB will look up a dummy frame
from its stack/list and restore the inferior's regcache.  Two
inferiors are finished in different orders, the inferiors' states are
restored differently, which is wrong.  Running dummy-frame-restore.exp
under un-patched GDB, we'll get two fails:

FAIL: gdb.multi/dummy-frame-restore.exp: inf 2 first: after infcall: bt in inferior 2
FAIL: gdb.multi/dummy-frame-restore.exp: inf 2 first: after infcall: bt in inferior 1

With this patch applied, GDB will choose the correct dummy_frame to
restore for a given inferior, because ptid is considered when looking up
dummy frames.  Two fails above are fixed.

Regression tested on x86_64-linux, both native and gdbserver.

gdb:

2014-06-27  Yao Qi  <yao@codesourcery.com>

	* breakpoint.c (check_longjmp_breakpoint_for_call_dummy):
	Change parameter type to 'struct thread_info *'.  Caller
	updated.
	* breakpoint.h (check_longjmp_breakpoint_for_call_dummy):
	Update declaration.
	* dummy-frame.c (struct dummy_frame_id): New.
	(dummy_frame_id_eq): New function.
	(struct dummy_frame) <id>: Change its type to 'struct
	dummy_frame_id'.
	(dummy_frame_push): Add parameter ptid and save it in
	dummy_frame_id.
	(pop_dummy_frame_bpt): Use ptid of dummy_frame instead of
	inferior_ptid.
	(pop_dummy_frame): Assert that the ptid of dummy_frame equals
	to inferior_ptid.
	(lookup_dummy_frame): Change parameter type to 'struct
	dummy_frame_id *'.  Callers updated.  Call dummy_frame_id_eq
	instead of frame_id_eq.
	(dummy_frame_pop): Add parameter ptid.  Callers updated.
	Update comments.  Compose dummy_frame_id and pass it to
	lookup_dummy_frame.
	(dummy_frame_discard): Add parameter ptid.
	(dummy_frame_sniffer): Compose dummy_frame_id and call
	dummy_frame_id_eq instead of frame_id_eq.
	(fprint_dummy_frames): Print ptid.
	* dummy-frame.h: Remove comments.
	(dummy_frame_push): Add ptid in declaration.
	(dummy_frame_pop, dummy_frame_discard): Likewise.

gdb/testsuite:

2014-06-27  Yao Qi  <yao@codesourcery.com>

	* gdb.multi/dummy-frame-restore.exp: New.
	* gdb.multi/dummy-frame-restore.c: New.

gdb/doc:

2014-06-27  Yao Qi  <yao@codesourcery.com>

	* gdb.texinfo (Maintenance Commands): Update the output of
	'maint print dummy-frames' command.
2014-06-27 20:06:56 +08:00
Pedro Alves
2adfaa28b5 Fix for even more missed events; eliminate thread-hop code.
Even with deferred_step_ptid out of the way, GDB can still lose
watchpoints.

If a watchpoint triggers and the PC points to an address where a
thread-specific breakpoint for another thread is set, the thread-hop
code triggers, and we lose the watchpoint:

  if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
    {
      int thread_hop_needed = 0;
      struct address_space *aspace =
	get_regcache_aspace (get_thread_regcache (ecs->ptid));

      /* Check if a regular breakpoint has been hit before checking
         for a potential single step breakpoint.  Otherwise, GDB will
         not see this breakpoint hit when stepping onto breakpoints.  */
      if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
	{
	  if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
	    thread_hop_needed = 1;
	    ^^^^^^^^^^^^^^^^^^^^^
	}

And on software single-step targets, even without a thread-specific
breakpoint in the way, here in the thread-hop code:

      else if (singlestep_breakpoints_inserted_p)
	{
...
	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
	      && in_thread_list (singlestep_ptid))
	    {
	      /* If the PC of the thread we were trying to single-step
		 has changed, discard this event (which we were going
		 to ignore anyway), and pretend we saw that thread
		 trap.  This prevents us continuously moving the
		 single-step breakpoint forward, one instruction at a
		 time.  If the PC has changed, then the thread we were
		 trying to single-step has trapped or been signalled,
		 but the event has not been reported to GDB yet.

		 There might be some cases where this loses signal
		 information, if a signal has arrived at exactly the
		 same time that the PC changed, but this is the best
		 we can do with the information available.  Perhaps we
		 should arrange to report all events for all threads
		 when they stop, or to re-poll the remote looking for
		 this particular thread (i.e. temporarily enable
		 schedlock).  */

	     CORE_ADDR new_singlestep_pc
	       = regcache_read_pc (get_thread_regcache (singlestep_ptid));

	     if (new_singlestep_pc != singlestep_pc)
	       {
		 enum gdb_signal stop_signal;

		 if (debug_infrun)
		   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
				       " but expected thread advanced also\n");

		 /* The current context still belongs to
		    singlestep_ptid.  Don't swap here, since that's
		    the context we want to use.  Just fudge our
		    state and continue.  */
                 stop_signal = ecs->event_thread->suspend.stop_signal;
                 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
                 ecs->ptid = singlestep_ptid;
                 ecs->event_thread = find_thread_ptid (ecs->ptid);
                 ecs->event_thread->suspend.stop_signal = stop_signal;
                 stop_pc = new_singlestep_pc;
               }
             else
	       {
		 if (debug_infrun)
		   fprintf_unfiltered (gdb_stdlog,
				       "infrun: unexpected thread\n");

		 thread_hop_needed = 1;
		 stepping_past_singlestep_breakpoint = 1;
		 saved_singlestep_ptid = singlestep_ptid;
	       }
	    }
	}

we either end up with thread_hop_needed, ignoring the watchpoint
SIGTRAP, or switch to the stepping thread, again ignoring that the
SIGTRAP could be for some other event.

The new test added by this patch exercises both paths.

So the fix is similar to the deferred_step_ptid fix -- defer the
thread hop to _after_ the SIGTRAP had a change of passing through the
regular bpstat handling.  If the wrong thread hits a breakpoint, we'll
just end up with BPSTAT_WHAT_SINGLE, and if nothing causes a stop,
keep_going starts a step-over.

Most of the stepping_past_singlestep_breakpoint mechanism is really
not necessary -- setting the thread to step over a breakpoint with
thread->trap_expected is sufficient to keep all other threads locked.
It's best to still keep the flag in some form though, because when we
get to keep_going, the software single-step breakpoint we need to step
over is already gone -- an optimization done by a follow up patch will
check whether a step-over is still be necessary by looking to see
whether the breakpoint is still there, and would find the thread no
longer needs a step-over, while we still want it.

Special care is still needed to handle the case of PC of the thread we
were trying to single-step having changed, like in the old code.  We
can't just keep_going and re-step it, as in that case we can over-step
the thread (if it was already done with the step, but hasn't reported
it yet, we'd ask it to step even further).  That's now handled in
switch_back_to_stepped_thread.  As bonus, we're now using a technique
that doesn't lose signals, unlike the old code -- we now insert a
breakpoint at PC, and resume, which either reports the breakpoint
immediately, or any pending signal.

Tested on x86_64 Fedora 17, against pristine mainline, and against a
branch that implements software single-step on x86.

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (single_step_breakpoint_inserted_here_p): Make
	extern.
	* breakpoint.h (single_step_breakpoint_inserted_here_p): Declare.
	* infrun.c (saved_singlestep_ptid)
	(stepping_past_singlestep_breakpoint): Delete.
	(resume): Remove stepping_past_singlestep_breakpoint handling.
	(proceed): Store the prev_pc of the stepping thread too.
	(init_wait_for_inferior): Adjust.  Clear singlestep_ptid and
	singlestep_pc.
	(enum infwait_states): Delete infwait_thread_hop_state.
	(struct execution_control_state) <hit_singlestep_breakpoint>: New
	field.
	(handle_inferior_event): Adjust.
	(handle_signal_stop): Delete stepping_past_singlestep_breakpoint
	handling and the thread-hop code.  Before removing single-step
	breakpoints, check whether the thread hit a single-step breakpoint
	of another thread.  If it did, the trap is not a random signal.
	(switch_back_to_stepped_thread): If the event thread hit a
	single-step breakpoint, unblock it before switching to the
	stepping thread.  Handle the case of the stepped thread having
	advanced already.
	(keep_going): Handle the case of the current thread moving past a
	single-step breakpoint.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/step-over-trips-on-watchpoint.c: New file.
	* gdb.threads/step-over-trips-on-watchpoint.exp: New file.
2014-03-20 13:42:23 +00:00
Pedro Alves
31e77af205 PR breakpoints/7143 - Watchpoint does not trigger when first set
Say the program is stopped at a breakpoint, and the user sets a
watchpoint.  When the program is next resumed, GDB will first step
over the breakpoint, as explained in the manual:

  @value {GDBN} normally ignores breakpoints when it resumes
  execution, until at least one instruction has been executed.  If it
  it did not do this, you would be unable to proceed past a breakpoint
  without first disabling the breakpoint.  This rule applies whether
  or not the breakpoint already existed when your program stopped.

However, GDB currently also removes watchpoints, catchpoints, etc.,
and that means that the first instruction off the breakpoint does not
trigger the watchpoint, catchpoint, etc.

testsuite/gdb.base/watchpoint.exp has a kfail for this.

The PR proposes installing watchpoints only when stepping over a
breakpoint, but that misses catchpoints, etc.

A better fix would instead work from the opposite direction -- remove
only real breakpoints, leaving all other kinds of breakpoints
inserted.

But, going further, it's really a waste to constantly remove/insert
all breakpoints when stepping over a single breakpoint (generating a
pair of RSP z/Z packets for each breakpoint), so the fix goes a step
further and makes GDB remove _only_ the breakpoint being stepped over,
leaving all others installed.  This then has the added benefit of
reducing breakpoint-related RSP traffic substancialy when there are
many breakpoints set.

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	PR breakpoints/7143
	* breakpoint.c (should_be_inserted): Don't insert breakpoints that
	are being stepped over.
	(breakpoint_address_match): Make extern.
	* breakpoint.h (breakpoint_address_match): New declaration.
	* inferior.h (stepping_past_instruction_at): New declaration.
	* infrun.c (struct step_over_info): New type.
	(step_over_info): New global.
	(set_step_over_info, clear_step_over_info)
	(stepping_past_instruction_at): New functions.
	(handle_inferior_event): Clear the step-over info when
	trap_expected is cleared.
	(resume): Remove now stale comment.
	(clear_proceed_status): Clear step-over info.
	(proceed): Adjust step-over handling to set or clear the step-over
	info instead of removing all breakpoints.
	(handle_signal_stop): When setting up a thread-hop, don't remove
	breakpoints here.
	(stop_stepping): Clear step-over info.
	(keep_going): Adjust step-over handling to set or clear step-over
	info and then always inserting breakpoints, instead of removing
	all breakpoints when stepping over one.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	PR breakpoints/7143
	* gdb.base/watchpoint.exp: Mention bugzilla bug number instead of
	old gnats gdb/38.  Remove kfail.  Adjust to use gdb_test instead
	of gdb_test_multiple.
	* gdb.cp/annota2.exp: Remove kfail for gdb/38.
	* gdb.cp/annota3.exp: Remove kfail for gdb/38.
2014-03-20 13:41:08 +00:00
Yao Qi
5fa1d40e97 Remove argument optional_p from get_tracepoint_by_number
This patch is to remove parameter optional_p as it is always true,
in order to simplify get_tracepoint_by_number.

'optional_p' was added by this change,

1999-11-18  Tom Tromey  <tromey@cygnus.com>

	* tracepoint.h (get_tracepoint_by_number): Updated
	declaration.
	* tracepoint.c (trace_pass_command): Better error message.
	Fixed logic when `all' not specified.
	(get_tracepoint_by_number): Added `optional_p' argument.  Fixed
	all callers.

but after this patch,

 FYI: remove `static's from cli-utils.c
 https://sourceware.org/ml/gdb-patches/2011-03/msg00636.html

'optional_p' passed to get_tracepoint_by_number become always true.

gdb:

2014-03-06  Yao Qi  <yao@codesourcery.com>

	* breakpoint.c (get_tracepoint_by_number): Remove argument
	optional_p.  All callers updated.  Adjust comments.  Update
	output message.
	* breakpoint.h (get_tracepoint_by_number): Update declaration.
2014-03-06 15:03:38 +08:00
Tom Tromey
729662a522 change probes to be program-space-independent
This changes the probes to be independent of the program space.

After this, when a probe's address is needed, it is determined by
applying offsets at the point of use.

This introduces a bound_probe object, similar to bound minimal
symbols.  Objects of this type are used when it's necessary to pass a
probe and its corresponding objfile.

This removes the backlink from probe to objfile, which was primarily
used to fetch the architecture to use.

This adds a get_probe_address function which calls a probe method to
compute the probe's relocated address.  Similarly, it adds an objfile
parameter to the semaphore methods so they can do the relocation
properly as well.

2014-03-03  Tom Tromey  <tromey@redhat.com>

	* break-catch-throw.c (fetch_probe_arguments): Use bound probes.
	* breakpoint.c (create_longjmp_master_breakpoint): Use
	get_probe_address.
	(add_location_to_breakpoint, bkpt_probe_insert_location)
	(bkpt_probe_remove_location): Update.
	* breakpoint.h (struct bp_location) <probe>: Now a bound_probe.
	* elfread.c (elf_symfile_relocate_probe): Remove.
	(elf_probe_fns): Update.
	(insert_exception_resume_breakpoint): Change type of "probe"
	parameter to bound_probe.
	(check_exception_resume): Update.
	* objfiles.c (objfile_relocate1): Don't relocate probes.
	* probe.c (bound_probe_s): New typedef.
	(parse_probes): Use get_probe_address.  Set sal's objfile.
	(find_probe_by_pc): Return a bound_probe.
	(collect_probes): Return a VEC(bound_probe_s).
	(compare_probes): Update.
	(gen_ui_out_table_header_info): Change type of "probes"
	parameter.  Update.
	(info_probes_for_ops): Update.
	(get_probe_address): New function.
	(probe_safe_evaluate_at_pc): Update.
	* probe.h (struct probe_ops) <get_probe_address>: New field.
	<set_semaphore, clear_semaphore>: Add objfile parameter.
	(struct probe) <objfile>: Remove field.
	<arch>: New field.
	<address>: Update comment.
	(struct bound_probe): New.
	(find_probe_by_pc): Return a bound_probe.
	(get_probe_address): Declare.
	* solib-svr4.c (struct probe_and_action) <address>: New field.
	(hash_probe_and_action, equal_probe_and_action): Update.
	(register_solib_event_probe): Add address parameter.
	(solib_event_probe_at): Update.
	(svr4_create_probe_breakpoints): Add objfile parameter.  Use
	get_probe_address.
	* stap-probe.c (struct stap_probe) <sem_addr>: Update comment.
	(stap_get_probe_address): New function.
	(stap_can_evaluate_probe_arguments, compute_probe_arg)
	(compile_probe_arg): Update.
	(stap_set_semaphore, stap_clear_semaphore): Compute semaphore's
	address.
	(handle_stap_probe): Don't relocate the probe.
	(stap_relocate): Remove.
	(stap_gen_info_probes_table_values): Update.
	(stap_probe_ops): Remove stap_relocate.
	* symfile-debug.c (debug_sym_relocate_probe): Remove.
	(debug_sym_probe_fns): Update.
	* symfile.h (struct sym_probe_fns) <sym_relocate_probe>: Remove.
	* symtab.c (init_sal): Use memset.
	* symtab.h (struct symtab_and_line) <objfile>: New field.
	* tracepoint.c (start_tracing, stop_tracing): Update.
2014-03-03 12:47:20 -07:00
Doug Evans
ed3ef33944 Add Guile as an extension language.
* NEWS: Mention Guile scripting.
	* Makefile.in (SUBDIR_GUILE_OBS): New variable.
	(SUBDIR_GUILE_SRCS, SUBDIR_GUILE_DEPS): New variables
	(SUBDIR_GUILE_LDFLAGS, SUBDIR_GUILE_CFLAGS): New variables.
	(INTERNAL_CPPFLAGS): Add GUILE_CPPFLAGS.
	(CLIBS): Add GUILE_LIBS.
	(install-guile): New rule.
	(guile.o): New rule.
	(scm-arch.o, scm-auto-load.o, scm-block.o): New rules.
	(scm-breakpoint.o, scm-disasm.o, scm-exception.o): New rules.
	(scm-frame.o, scm-iterator.o, scm-lazy-string.o): New rules.
	(scm-math.o, scm-objfile.o, scm-ports.o): New rules.
	(scm-pretty-print.o, scm-safe-call.o, scm-gsmob.o): New rules.
	(scm-string.o, scm-symbol.o, scm-symtab.o): New rules.
	(scm-type.o, scm-utils.o, scm-value.o): New rules.
	* configure.ac: New option --with-guile.
	* configure: Regenerate.
	* config.in: Regenerate.
	* auto-load.c: Remove #include "python/python.h".  Add #include
	"gdb/section-scripts.h".
	(source_section_scripts): Handle Guile scripts.
	(_initialize_auto_load): Add name of Guile objfile script to
	scripts-directory help text.
	* breakpoint.c (condition_command): Tweak comment to include Scheme.
	* breakpoint.h (gdbscm_breakpoint_object): Add forward decl.
	(struct breakpoint): New member scm_bp_object.
	* defs.h (enum command_control_type): New value guile_control.
	* cli/cli-cmds.c: Remove #include "python/python.h".  Add #include
	"extension.h".
	(show_user): Update comment.
	(_initialize_cli_cmds): Update help text for "show user".  Update help
	text for max-user-call-depth.
	* cli/cli-script.c: Remove #include "python/python.h".  Add #include
	"extension.h".
	(multi_line_command_p): Add guile_control.
	(print_command_lines): Handle guile_control.
	(execute_control_command, recurse_read_control_structure): Ditto.
	(process_next_line): Recognize "guile" commands.
	* disasm.c (gdb_disassemble_info): Make non-static.
	* disasm.h: #include "dis-asm.h".
	(struct gdbarch): Add forward decl.
	(gdb_disassemble_info): Declare.
	* extension.c: #include "guile/guile.h".
	(extension_languages): Add guile.
	(get_ext_lang_defn): Handle EXT_LANG_GDB.
	* extension.h (enum extension_language): New value EXT_LANG_GUILE.
	* gdbtypes.c (get_unsigned_type_max): New function.
	(get_signed_type_minmax): New function.
	* gdbtypes.h (get_unsigned_type_max): Declare.
	(get_signed_type_minmax): Declare.
	* guile/README: New file.
	* guile/guile-internal.h: New file.
	* guile/guile.c: New file.
	* guile/guile.h: New file.
	* guile/scm-arch.c: New file.
	* guile/scm-auto-load.c: New file.
	* guile/scm-block.c: New file.
	* guile/scm-breakpoint.c: New file.
	* guile/scm-disasm.c: New file.
	* guile/scm-exception.c: New file.
	* guile/scm-frame.c: New file.
	* guile/scm-gsmob.c: New file.
	* guile/scm-iterator.c: New file.
	* guile/scm-lazy-string.c: New file.
	* guile/scm-math.c: New file.
	* guile/scm-objfile.c: New file.
	* guile/scm-ports.c: New file.
	* guile/scm-pretty-print.c: New file.
	* guile/scm-safe-call.c: New file.
	* guile/scm-string.c: New file.
	* guile/scm-symbol.c: New file.
	* guile/scm-symtab.c: New file.
	* guile/scm-type.c: New file.
	* guile/scm-utils.c: New file.
	* guile/scm-value.c: New file.
	* guile/lib/gdb.scm: New file.
	* guile/lib/gdb/boot.scm: New file.
	* guile/lib/gdb/experimental.scm: New file.
	* guile/lib/gdb/init.scm: New file.
	* guile/lib/gdb/iterator.scm: New file.
	* guile/lib/gdb/printing.scm: New file.
	* guile/lib/gdb/types.scm: New file.
	* data-directory/Makefile.in (GUILE_SRCDIR): New variable.
	(VPATH): Add $(GUILE_SRCDIR).
	(GUILE_DIR): New variable.
	(GUILE_INSTALL_DIR, GUILE_FILES): New variables.
	(all): Add stamp-guile dependency.
	(stamp-guile): New rule.
	(clean-guile, install-guile, uninstall-guile): New rules.
	(install-only): Add install-guile dependency.
	(uninstall): Add uninstall-guile dependency.
	(clean): Add clean-guile dependency.

	doc/
	* Makefile.in (GDB_DOC_FILES): Add guile.texi.
	* gdb.texinfo (Auto-loading): Add set/show auto-load guile-scripts.
	(Extending GDB): New menu entries Guile, Multiple Extension Languages.
	(Guile docs): Include guile.texi.
	(objfile-gdbdotext file): Add objfile-gdb.scm.
	(dotdebug_gdb_scripts section): Mention Guile scripts.
	(Multiple Extension Languages): New node.
	* guile.texi: New file.

	testsuite/
	* configure.ac (AC_OUTPUT): Add gdb.guile.
	* configure: Regenerate.
	* lib/gdb-guile.exp: New file.
	* lib/gdb.exp (get_target_charset): New function.
	* gdb.base/help.exp: Update expected output from "apropos apropos".
	* gdb.guile/Makefile.in: New file.
	* gdb.guile/guile.exp: New file.
	* gdb.guile/scm-arch.c: New file.
	* gdb.guile/scm-arch.exp: New file.
	* gdb.guile/scm-block.c: New file.
	* gdb.guile/scm-block.exp: New file.
	* gdb.guile/scm-breakpoint.c: New file.
	* gdb.guile/scm-breakpoint.exp: New file.
	* gdb.guile/scm-disasm.c: New file.
	* gdb.guile/scm-disasm.exp: New file.
	* gdb.guile/scm-equal.c: New file.
	* gdb.guile/scm-equal.exp: New file.
	* gdb.guile/scm-error.exp: New file.
	* gdb.guile/scm-error.scm: New file.
	* gdb.guile/scm-frame-args.c: New file.
	* gdb.guile/scm-frame-args.exp: New file.
	* gdb.guile/scm-frame-args.scm: New file.
	* gdb.guile/scm-frame-inline.c: New file.
	* gdb.guile/scm-frame-inline.exp: New file.
	* gdb.guile/scm-frame.c: New file.
	* gdb.guile/scm-frame.exp: New file.
	* gdb.guile/scm-generics.exp: New file.
	* gdb.guile/scm-gsmob.exp: New file.
	* gdb.guile/scm-iterator.c: New file.
	* gdb.guile/scm-iterator.exp: New file.
	* gdb.guile/scm-math.c: New file.
	* gdb.guile/scm-math.exp: New file.
	* gdb.guile/scm-objfile-script-gdb.in: New file.
	* gdb.guile/scm-objfile-script.c: New file.
	* gdb.guile/scm-objfile-script.exp: New file.
	* gdb.guile/scm-objfile.c: New file.
	* gdb.guile/scm-objfile.exp: New file.
	* gdb.guile/scm-ports.exp: New file.
	* gdb.guile/scm-pretty-print.c: New file.
	* gdb.guile/scm-pretty-print.exp: New file.
	* gdb.guile/scm-pretty-print.scm: New file.
	* gdb.guile/scm-section-script.c: New file.
	* gdb.guile/scm-section-script.exp: New file.
	* gdb.guile/scm-section-script.scm: New file.
	* gdb.guile/scm-symbol.c: New file.
	* gdb.guile/scm-symbol.exp: New file.
	* gdb.guile/scm-symtab-2.c: New file.
	* gdb.guile/scm-symtab.c: New file.
	* gdb.guile/scm-symtab.exp: New file.
	* gdb.guile/scm-type.c: New file.
	* gdb.guile/scm-type.exp: New file.
	* gdb.guile/scm-value-cc.cc: New file.
	* gdb.guile/scm-value-cc.exp: New file.
	* gdb.guile/scm-value.c: New file.
	* gdb.guile/scm-value.exp: New file.
	* gdb.guile/source2.scm: New file.
	* gdb.guile/types-module.cc: New file.
	* gdb.guile/types-module.exp: New file.
2014-02-09 19:40:01 -08:00
Joel Brobecker
ecd75fc8ee Update Copyright year range in all files maintained by GDB. 2014-01-01 07:54:24 +04:00
Doug Evans
4cb0213de5 Rename breakpoint_object to gdbpy_breakpoint_object.
* breakpoint.h (gdbpy_breakpoint_object): Renamed from
	breakpoint_object.  All uses updated.
	* python/python-internal.h (gdbpy_breakpoint_object): Renamed from
	breakpoint_object.  All uses updated.
	* python.c (*): All uses of breakpoint_object updated.
	* python.h (*): All uses of breakpoint_object updated.
	* python/py-breakpoint.c (*): All uses of breakpoint_object updated.
	* python/py-finishbreakpoint.c (*): Ditto.
2013-11-28 14:54:32 -08:00
Pedro Alves
47591c29ad Eliminate enum bpstat_signal_value, simplify random signal checks further.
After the previous patch, there's actually no breakpoint type that
returns BPSTAT_SIGNAL_HIDE, so we can go back to having
bpstat_explains_signal return a boolean.  The signal hiding actually
disappears.

gdb/
2013-11-14  Pedro Alves  <palves@redhat.com>

	* break-catch-sig.c (signal_catchpoint_explains_signal): Adjust to
	return a boolean.
	* breakpoint.c (bpstat_explains_signal): Adjust to return a
	boolean.
	(explains_signal_watchpoint, base_breakpoint_explains_signal):
	Adjust to return a boolean.
	* breakpoint.h (enum bpstat_signal_value): Delete.
	(struct breakpoint_ops) <explains_signal>: New returns a boolean.
	(bpstat_explains_signal): Likewise.
	* infrun.c (handle_inferior_event) <random signal checks>:
	bpstat_explains_signal now returns a boolean - adjust.  No longer
	consider hiding signals.
2013-11-14 19:51:15 +00:00
Joel Brobecker
349774efe2 New GDB/MI commands to catch Ada exceptions
This patch introduces two new GDB/MI commands implementing the equivalent
of the "catch exception" and  "catch assert" GDB/CLI commands.

gdb/ChangeLog:

        * breakpoint.h (init_ada_exception_breakpoint): Add parameter
        "enabled".
        * breakpoint.c (init_ada_exception_breakpoint): Add parameter
        "enabled".  Set B->ENABLE_STATE accordingly.
        * ada-lang.h (ada_exception_catchpoint_kind): Move here from
        ada-lang.c.
        (create_ada_exception_catchpoint): Add declaration.
        * ada-lang.c (ada_exception_catchpoint_kind): Move to ada-lang.h.
        (create_ada_exception_catchpoint): Make non-static. Add new
        parameter "disabled". Use it in call to
        init_ada_exception_breakpoint.
        (catch_ada_exception_command): Add parameter "enabled" in call
        to create_ada_exception_catchpoint.
        (catch_assert_command): Likewise.

        * mi/mi-cmds.h (mi_cmd_catch_assert, mi_cmd_catch_exception):
        Add declarations.
        * mi/mi-cmds.c (mi_cmds): Add the "catch-assert" and
        "catch-exception" commands.
        * mi/mi-cmd-catch.c: Add #include "ada-lang.h".
        (mi_cmd_catch_assert, mi_cmd_catch_exception): New functions.
2013-10-11 13:48:19 +00:00
Yao Qi
de6f69ad33 gdb/
* breakpoint.h: Include break-common.h.
	(enum target_hw_bp_type): Move to ...
	* common/break-common.h: ... here.  New.

gdb/gdbserver/

	* i386-low.c: Include break-common.h.
	(enum target_hw_bp_type): Remove.
2013-07-27 07:11:46 +00:00
Yao Qi
52d361e1b3 gdb/
* breakpoint.h (struct breakpoint_ops) <create_breakpoints_sal>:
	Remove parameter 'lsal'.
	* breakpoint.c (create_breakpoint): Move local variable 'lsal'
	to inner block.  Caller update.
	(base_breakpoint_create_breakpoints_sal): Update.
	(bkpt_create_breakpoints_sal): Likewise.
	(tracepoint_create_breakpoints_sal): Likewise.
	(strace_marker_create_breakpoints_sal): Get 'lsal' from the
	element 0 of vector 'canonical->sals'.
2013-07-06 07:14:54 +00:00
Hui Zhu
9d6e6e84f7 2013-06-25 Yao Qi <yao@codesourcery.com>
Hui Zhu  <hui@codesourcery.com>
	    Pedro Alves  <palves@redhat.com>

	PR breakpoints/15075
	PR breakpoints/15434
	* breakpoint.c (bpstat_stop_status): Call
	b->ops->after_condition_true.
	(update_dprintf_command_list): Don't append "continue" command
	to the command list of dprintf breakpoint.
	(base_breakpoint_after_condition_true): New function.
	(base_breakpoint_ops): Add base_breakpoint_after_condition_true.
	(dprintf_after_condition_true): New function.
	(initialize_breakpoint_ops): Set dprintf_after_condition_true.
	* breakpoint.h (breakpoint_ops): Add after_condition_true.

2013-06-25  Yao Qi  <yao@codesourcery.com>
	    Hui Zhu  <hui@codesourcery.com>
	    Pedro Alves  <palves@redhat.com>

	PR breakpoints/15075
	PR breakpoints/15434
	* gdb.base/dprintf-next.c: New file.
	* gdb.base/dprintf-next.exp: New file.
	* gdb.base/dprintf-non-stop.c: New file.
	* gdb.base/dprintf-non-stop.exp: New file.
	* gdb.base/dprintf.exp: Don't check "continue" in the output
	of "info breakpoints".
	* gdb.mi/mi-breakpoint-changed.exp (test_insert_delete_modify):
	Don't check "continue" in script field.
2013-06-25 11:37:48 +00:00
Tom Tromey
427cd150ee Fix PR cli/15603
This fixes PR cli/15603.

The bug here is that when a software watchpoint is being used, gdb
will stop responding to C-c.  This is a regression caused by the
"catch signal" patch.

The problem is that software watchpoints always end up on the bpstat
list.  However, this makes bpstat_explains_signal return
BPSTAT_SIGNAL_HIDE, causing infrun to think that the signal is not a
"random signal".

The fix is to change bpstat_explains_signal to handle this better.  I
chose to do it in a "clean API" way, by passing the signal value to
bpstat_explains_signal and then adding an explains_signal method for
watchpoints, which handles the specifics.

Built and regtested on x86-64 Fedora 18.
New test case included.

	* break-catch-sig.c (signal_catchpoint_explains_signal): Add 'sig'
	argument.
	* breakpoint.c (bpstat_explains_signal): Add 'sig' argument.
	Special case signals other than GDB_SIGNAL_TRAP.
	(explains_signal_watchpoint): New function.
	(base_breakpoint_explains_signal): Add 'sig' argument.
	(initialize_breakpoint_ops): Set 'explains_signal' method for
	watchpoints.
	* breakpoint.h (struct breakpoint_ops) <explains_signal>: Add
	signal argument.
	(bpstat_explains_signal): Likewise.
	* infrun.c (handle_syscall_event, handle_inferior_event): Update.

	* gdb.base/random-signal.c: New file.
	* gdb.base/random-signal.exp: New file.
2013-06-18 19:57:49 +00:00
Gary Benson
f9e148520a 2013-06-04 Gary Benson <gbenson@redhat.com>
* breakpoint.h (handle_solib_event): Moved function declaration
	to solib.h.
	* breakpoint.c (handle_solib_event): Moved function to solib.c.
	(bpstat_stop_status): Pass new argument to handle_solib_event.
	* solib.h (update_solib_breakpoints): New function declaration.
	(handle_solib_event): Moved function declaration from
	breakpoint.h.
	* solib.c (update_solib_breakpoints): New function.
	(handle_solib_event): Moved function from breakpoint.c.
	Updated to call solib_ops->handle_event if not NULL.
	* solist.h (target_so_ops): New fields "update_breakpoints" and
	"handle_event".
	* infrun.c (set_stop_on_solib_events): New function.
	(_initialize_infrun): Use the above for "set
	stop-on-solib-events".
	(handle_inferior_event): Pass new argument to handle_solib_event.
	* solib-svr4.c (probe.h): New include.
	(svr4_free_library_list): New forward declaration.
	(probe_action): New enum.
	(probe_info): New struct.
	(probe_info): New static variable.
	(NUM_PROBES): New definition.
	(svr4_info): New fields "using_xfer", "probes_table" and
	"solib_list".
	(free_probes_table): New function.
	(free_solib_list): New function.
	(svr4_pspace_data_cleanup): Free probes table and solib list.
	(svr4_copy_library_list): New function.
	(svr4_current_sos_via_xfer_libraries): New parameter "annex".
	(svr4_read_so_list): New parameter "prev_lm".
	(svr4_current_sos_direct): Renamed from "svr4_current_sos".
	(svr4_current_sos): New function.
	(probe_and_action): New struct.
	(hash_probe_and_action): New function.
	(equal_probe_and_action): Likewise.
	(register_solib_event_probe): Likewise.
	(solib_event_probe_at): Likewise.
	(solib_event_probe_action): Likewise.
	(solist_update_full): Likewise.
	(solist_update_incremental): Likewise.
	(disable_probes_interface_cleanup): Likewise.
	(svr4_handle_solib_event): Likewise.
	(svr4_update_solib_event_breakpoint): Likewise.
	(svr4_update_solib_event_breakpoints): Likewise.
	(svr4_create_solib_event_breakpoints): Likewise.
	(enable_break): Free probes table before creating breakpoints.
	Use svr4_create_solib_event_breakpoints to create breakpoints.
	(svr4_solib_create_inferior_hook): Free the solib list.
	(_initialize_svr4_solib): Initialise
	svr4_so_ops.handle_solib_event and svr4_so_ops.update_breakpoints.
2013-06-04 13:17:06 +00:00
Hui Zhu
c5867ab65c 2013-05-21 Hui Zhu <hui@codesourcery.com>
* breakpoint.c (dprintf_breakpoint_ops): Remove its static.
	* breakpoint.h (dprintf_breakpoint_ops): Add extern.
	* mi/mi-cmd-break.c (ctype.h): New include.
	(gdb_obstack.h): New include.
	(mi_argv_to_format, mi_cmd_break_insert_1): New.
	(mi_cmd_break_insert): Call mi_cmd_break_insert_1.
	(mi_cmd_dprintf_insert): New.
	* mi/mi-cmds.c (mi_cmds): Add "dprintf-insert".
	* mi/mi-cmds.h (mi_cmd_dprintf_insert): New extern.

2013-05-21  Hui Zhu  <hui@codesourcery.com>

	* gdb.texinfo (GDB/MI Breakpoint Commands): Describe the
	"-dprintf-insert" command.

2013-05-21  Hui Zhu  <hui@codesourcery.com>

	* gdb.mi/Makefile.in (PROGS): Add "mi-dprintf".
	* gdb.mi/mi-dprintf.exp, gdb.mi/mi-dprintf.c: New.
2013-05-21 04:18:55 +00:00
Tom Tromey
916703c090 * Makefile.in (SFILES): Add break-catch-throw.c
(COMMON_OBS): Add break-catch-throw.o.
	* break-catch-throw.c: New file.
	* breakpoint.c: Move exception-catching code to new file.
	(ep_parse_optional_if_clause): No longer static.
	* breakpoint.h (ep_parse_optional_if_clause): Declare.
2013-04-15 18:04:53 +00:00
Pedro Alves
f6de8ec262 create_breapoint / explicit mode: Error out if there's garbage after the breakpoint location.
If !PARSE_CONDITION_AND_THREAD, then ARG is just the location, nothing
else.  The fact that the describing comment of create_breakpoint
doesn't mention this just looks like an oversight of when extra_string
was added.  "parse_condition_and_thread" has been a misnomer ever
since extra_string was added -- better rename it avoid more confusion.
This makes it "parse_arg", as that'll remain stable even if/when more
explicit parameters are added.

gdb/
2013-04-08  Pedro Alves  <palves@redhat.com>
	    Keith Seitz  <keiths@redhat.com>

	* breakpoint.c (create_breakpoint): Rename
	"parse_condition_and_thread" parameter to "parse_arg".  Update
	describing comment.  If !PARSE_ARG, then error out if ARG is not
	the empty string after extracting the location.
	* breakpoint.h (create_breakpoint): Rename
	"parse_condition_and_thread" parameter to "parse_arg".

gdb/testsuite/
2013-04-08  Pedro Alves  <palves@redhat.com>

	* gdb.mi/mi-break.exp (test_error): Add tests with garbage after
	the location.
2013-04-08 14:09:30 +00:00
Keith Seitz
fb81d0169b * breakpoint.h (struct breakpoint): Add comment to
extra_string indicating that this member is mallod'd.
	* breakpoint.c (base_breakpoint_dtor): Free extra_string.
2013-03-20 22:17:18 +00:00
Jan Kratochvil
2f202fde0a gdb/
Code cleanup.
	* breakpoint.c (print_breakpoint_location): Replace bp_location field
	source_file references by symtab field references.  Remove variables
	sal and fullname.
	(momentary_breakpoint_from_master, add_location_to_breakpoint):
	(clear_command, say_where): Replace bp_location field source_file
	references by symtab field references.
	(bp_location_dtor): Remove the source_file reference.
	(update_static_tracepoint): Replace bp_location field source_file
	references by symtab field references.
	(breakpoint_free_objfile): New function.
	* breakpoint.h (struct bp_location): Extend the comment for line_number.
	Replace the field source_file by field symtab, extend its comment.
	(breakpoint_free_objfile): New declaration.
	* objfiles.c (free_objfile): Call breakpoint_free_objfile.
	* tui/tui-winsource.c (tui_update_breakpoint_info): Replace bp_location
	field source_file references by symtab field references.
2013-02-03 15:57:07 +00:00
Tom Tromey
ab04a2af2b 2013-01-03 Pedro Alves <palves@redhat.com>
Tom Tromey  <tromey@redhat.com>
	PR cli/7221:
	* NEWS: Add "catch signal".
	* breakpoint.c (base_breakpoint_ops): No longer static.
	(bpstat_explains_signal): New function.
	(init_catchpoint): No longer static.
	(base_breakpoint_explains_signal): New function.
	(base_breakpoint_ops): Initialize new field.
	* breakpoint.h (enum bpstat_signal_value): New.
	(struct breakpoint_ops) <explains_signal>: New field.
	(bpstat_explains_signal): Remove macro, declare as function.
	(base_breakpoint_ops, init_catchpoint): Declare.
	* break-catch-sig.c: New file.
	* inferior.h (signal_catch_update): Declare.
	* infrun.c (signal_catch): New global.
	(handle_syscall_event): Update for change to
	bpstat_explains_signal.
	(handle_inferior_event): Likewise.  Always handle random signals
	via bpstats.
	(signal_cache_update): Check signal_catch.
	(signal_catch_update): New function.
	(_initialize_infrun): Initialize signal_catch.
	* Makefile.in (SFILES): Add break-catch-sig.c.
	(COMMON_OBS): Add break-catch-sig.o.
gdb/doc
	* gdb.texinfo (Set Catchpoints): Document "catch signal".
	(Signals): Likewise.
gdb/testsuite
	* gdb.base/catch-signal.c: New file.
	* gdb.base/catch-signal.exp: New file.
2013-01-16 17:31:40 +00:00
Joel Brobecker
28e7fd6234 Update years in copyright notice for the GDB files.
Two modifications:
  1. The addition of 2013 to the copyright year range for every file;
  2. The use of a single year range, instead of potentially multiple
     year ranges, as approved by the FSF.
2013-01-01 06:33:28 +00:00
Mircea Gherzan
9198514297 MI: add the -catch-load and -catch-unload commands
They are equivalent to "catch load" and "catch unload" from CLI.

Rationale: GUIs might be interested in catching solib load or
unload events.

2012-11-16  Mircea Gherzan  <mircea.gherzan@intel.com>

	* Makefile.in (SUBDIR_MI_OBS): Add mi-cmd-catch.o.
	(SUBDIR_MI_SRCS): Add mi/mi-cmd-catch.c.
	* breakpoint.c (add_solib_catchpoint): New function that
	can be used by both CLI and MI, factored out from
	catch_load_or_unload.
	(catch_load_or_unload): Strip it down and make it use the
	new add_solib_catchpoint.
	* breakpoint.h (add_solib_catchpoint): Declare it.
	* mi/mi-cmd-break.h: New file.
	* mi/mi-cmd-break.c: Include mi-cmd-break.h.
	(setup_breakpoint_reporting): New function used for both
	catchpoints and breakpoints.
	(mi_cmd_break_insert): Use setup_breakpoint_reporting.
	* mi/mi-cmd-catch.c: New file.
	* mi/mi-cmds.c (mi_cmds): Add the handlers for -catch-load
	and -catch-unload.
	* mi/mi-cmds.h: Declare the handlers for -catch-load and
	-catch-unload.
2012-12-12 21:20:13 +00:00
Tom Tromey
270140bd25 * ada-exp.y (write_object_renaming, write_var_or_type)
(write_ambiguous_var, write_var_from_sym): Make blocks const.
	* ada-lang.c (replace_operator_with_call)
	(find_old_style_renaming_symbol): Make blocks const.
	* ada-lang.h (ada_find_renaming_symbol): Update.
	(struct ada_symbol_info) <block>: Now const.
	* breakpoint.c (watch_command_1): Update.
	* breakpoint.h (struct watchpoint) <exp_valid_block,
	cond_exp_valid_block>: Now const.
	* c-exp.y (classify_inner_name, classify_name): Make block
	argument const.
	* expprint.c (print_subexp_standard) <OP_VAR_VALUE>: Make 'b'
	const.
	* expression.h (innermost_block, parse_exp_1): Update.
	(union exp_element) <block>: Now const.
	* gdbtypes.c (lookup_template_type, lookup_enum, lookup_union)
	(lookup_struct): Make block argument const.
	* gdbtypes.h (lookup_template_type): Update.
	* go-exp.y (classify_name, classify_packaged_name)
	(package_name_p): Make block argument const.
	* objc-lang.c (lookup_struct_typedef): Make block argument const.
	* objc-lang.h (lookup_struct_typedef): Update.
	* parse.c (parse_exp_in_context, parse_exp_1)
	(write_exp_elt_block): Make block arguments const.
	(expression_context_block, innermost_block): Now const.
	* parser-defs.h (write_exp_elt_block): Update.
	(expression_context_block, innermost_block, block_found): Now
	const.
	* printcmd.c (struct display) <block>: Now const.
	* symtab.h (lookup_struct, lookup_union, lookup_enum): Update.
	* valops.c (address_of_variable): Make block argument const.
	* value.h (value_of_variable): Update.
	* varobj.c (struct varobj_root) <valid_block>: Now const.
2012-12-03 19:59:14 +00:00
Yao Qi
19ca11c580 gdb/
PR breakpoints/13898
	* breakpoint.h (tracepoint_breakpoint_ops): Forward declaration.
	* mi/mi-cmd-break.c (mi_cmd_break_insert): Set breakpoint_ops
	per breakpoint type.
2012-09-26 23:53:53 +00:00
Joel Brobecker
d80ee84fe2 Change detach_breakpoints to take a ptid instead of a pid
Before this change, detach_breakpoints would take a pid, and then
set inferior_ptid to a ptid that it constructs using pid_to_ptid (pid).
Unfortunately, this ptid is not necessarily valid.  Consider for
instance the case of ia64-hpux, where ttrace refuses a register-read
operation if the LWP is not provided.

This problems shows up when GDB is trying to handle fork events.
Assuming GDB is configured to follow the parent, GDB will try to
detach from the child. But before doing so, it needs to remove
all breakpoints inside that child.  On ia64, this involves reading
inferior (the child's) memory. And on ia64-hpux, reading memory
requires us to read the bsp and bspstore registers, in order to
determine where that memory is relative to the value of those
registers, and thus to determine which ttrace operation to use in
order to fetch that memory (see ia64_hpux_xfer_memory).

This patch therefore changes detach_breakpoints to take a ptid instead
of a pid, and then updates all callers.

One of the consequences of this patch is that it trips an assert
on GNU/Linux targets.  But this assert appears to have not actual
purpose, and is thus removed.

gdb/ChangeLog:

        * breakpoint.h (detach_breakpoints): pid parameter is now a ptid.
        * breakpoint.c (detach_breakpoints): Change pid parameter into
        a ptid.  Adjust code accordingly.
        * infrun.c (handle_inferior_event): Delete variable child_pid.
        Update call to detach_breakpoints to pass the child ptid for
        fork events.
        * linux-nat.c (linux_nat_iterate_watchpoint_lwps): Remove
        assert that inferior_ptid's lwp is zero.
        (linux_handle_extended_wait): Update call to detach_breakpoints.
        * inf-ttrace.c (inf_ttrace_follow_fork): Update call to
        detach_breakpoints.
2012-08-16 23:54:50 +00:00
Stan Shebs
d3ce09f5bf Add target-side support for dynamic printf.
* NEWS: Mention the additional style.
	* breakpoint.h (struct bp_target_info): New fields tcommands, persist.
	(struct bp_location): New field cmd_bytecode.
	* breakpoint.c: Include format.h.
	(disconnected_dprintf): New global.
	(parse_cmd_to_aexpr): New function.
	(build_target_command_list): New function.
	(insert_bp_location): Call it.
	(remove_breakpoints_pid): Skip dprintf breakpoints.
	(print_one_breakpoint_location): Ditto.
	(dprintf_style_agent): New global.
	(dprintf_style_enums): Add dprintf_style_agent.
	(update_dprintf_command_list): Add agent case.
	(agent_printf_command): New function.
	(_initialize_breakpoint): Add new commands.
	* common/ax.def (printf): New bytecode.
	* ax.h (ax_string): Declare.
	* ax-gdb.h (gen_printf): Declare.
	* ax-gdb.c: Include cli-utils.h, format.h.
	(gen_printf): New function.
	(maint_agent_print_command): New function.
	(_initialize_ax_gdb): Add maint agent-printf command.
	* ax-general.c (ax_string): New function.
	(ax_print): Add printf disassembly.
	* Makefile.in (SFILES): Add format.c
	(COMMON_OBS): Add format.o.
	* common/format.h: New file.
	* common/format.c: New file.
	* printcmd.c: Include format.h.
	(ui_printf): Call parse_format_string.
	* remote.c (remote_state): New field breakpoint_commands.
	(PACKET_BreakpointCommands): New enum.
	(remote_breakpoint_commands_feature): New function.
	(remote_protocol_features): Add new BreakpointCommands entry.
	(remote_can_run_breakpoint_commands): New function.
	(remote_add_target_side_commands): New function.
	(remote_insert_breakpoint): Call it.
	(remote_insert_hw_breakpoint): Ditto.
	(_initialize_remote): Add new packet configuration for
	target-side breakpoint commands.
	* target.h (struct target_ops): New field
	to_can_run_breakpoint_commands.
	(target_can_run_breakpoint_commands): New macro.
	* target.c (update_current_target): Handle
	to_can_run_breakpoint_commands.

	[gdbserver]
	* Makefile.in (WARN_CFLAGS_NO_FORMAT): Define.
	(ax.o): Add it to build rule.
	(ax-ipa.o): Ditto.
	(OBS): Add format.o.
	(IPA_OBS): Add format.o.
	* server.c (handle_query): Claim support for breakpoint commands.
	(process_point_options): Add command case.
	(process_serial_event): Leave running if there are printfs in
	effect.
	* mem-break.h (any_persistent_commands): Declare.
	(add_breakpoint_commands): Declare.
	(gdb_no_commands_at_breakpoint): Declare.
	(run_breakpoint_commands): Declare.
	* mem-break.c (struct point_command_list): New struct.
	(struct breakpoint): New field command_list.
	(any_persistent_commands): New function.
	(add_commands_to_breakpoint): New function.
	(add_breakpoint_commands): New function.
	(gdb_no_commands_at_breakpoint): New function.
	(run_breakpoint_commands): New function.
	* linux-low.c (linux_wait_1): Test for and run breakpoint commands
	locally.
	* ax.c: Include format.h.
	(ax_printf): New function.
	(gdb_eval_agent_expr): Add printf opcode.

	[doc]
	* gdb.texinfo (Dynamic Printf): Mention agent style and
	disconnected dprintf.
	(Maintenance Commands): Describe maint agent-printf.
	(General Query Packets): Mention BreakpointCommands feature.
	(Packets): Document commands extension to Z0 packet.
	* agentexpr.texi (Bytecode Descriptions): Document printf
	bytecode.

	[testsuite]
	* gdb.base/dprintf.exp: Add agent style tests.
2012-07-02 15:29:39 +00:00
Jan Kratochvil
e2e4d78b22 gdb/
Remove stale dummy frames.
	* breakpoint.c: Include dummy-frame.h.
	(longjmp_breakpoint_ops): New variable.
	(update_breakpoints_after_exec, breakpoint_init_inferior): Delete also
	bp_longjmp_call_dummy.
	(bpstat_what, bptype_string, print_one_breakpoint_location)
	(init_bp_location): Support bp_longjmp_call_dummy.
	(set_longjmp_breakpoint): Use longjmp_breakpoint_ops.  Comment why.
	(set_longjmp_breakpoint_for_call_dummy)
	(check_longjmp_breakpoint_for_call_dummy, longjmp_bkpt_dtor): New
	functions.
	(initialize_breakpoint_ops): Initialize longjmp_breakpoint_ops.
	* breakpoint.h (enum bptype): New item bp_longjmp_call_dummy.  Delete
	FIXME comment and extend the other comment for bp_call_dummy.
	(set_longjmp_breakpoint_for_call_dummy)
	(check_longjmp_breakpoint_for_call_dummy): New declarations.
	* dummy-frame.c: Include gdbthread.h.
	(pop_dummy_frame_bpt): New function.
	(pop_dummy_frame): Call pop_dummy_frame_bpt.
	(dummy_frame_discard): New function.
	(cleanup_dummy_frames): Update the comment about longjmps.
	* dummy-frame.h (dummy_frame_discard): New declaration.
	* gdbthread.h (struct thread_info): Extend initiating_frame comment.
	* infcall.c (call_function_by_hand): New variable longjmp_b.  Call
	set_longjmp_breakpoint_for_call_dummy.  Chain its breakpoints with BPT.
	* infrun.c (handle_inferior_event) <BPSTAT_WHAT_CLEAR_LONGJMP_RESUME>:
	Add case 4 comment.  Call check_longjmp_breakpoint_for_call_dummy and
	keep_going if IS_LONGJMP and there is no other reason to stop.

gdb/testsuite/
	Remove stale dummy frames.
	* gdb.base/call-signal-resume.exp (maintenance print dummy-frames)
	(maintenance info breakpoints): New tests.
	* gdb.base/stale-infcall.c: New file.
	* gdb.base/stale-infcall.exp: New file.
2012-06-18 17:28:38 +00:00
Tom Tromey
625e8578d7 * breakpoint.c (add_catch_command): Use completer_ftype.
* breakpoint.h: Include command.h.
	(add_catch_command): Use completer_ftype.
	* cli/cli-decode.c (set_cmd_completer): Use completer_ftype.
	* cli/cli-decode.h (struct cmd_list_element) <completer>:
	Use completer_ftype.
	* command.h (completer_ftype): New typedef.
	(set_cmd_completer): Use it.
	* python/py-cmd.c (struct cmdpy_completer) <completer>: Use
	completer_ftype.
2012-06-13 15:41:24 +00:00
Maciej W. Rozycki
6a3a010ba6 gdb/
* breakpoint.h (bp_location): Add related_address member.
	* inferior.h (get_return_value): Take a pointer to struct value
	instead of struct type for the function requested.
	* value.h (using_struct_return): Likewise.
	* gdbarch.sh (return_value): Take a pointer to struct value
	instead of struct type for the function requested.
	* breakpoint.c (set_breakpoint_location_function): Initialize
	related_address for bp_gnu_ifunc_resolver breakpoints.
	* elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the
	requested function's address to gdbarch_return_value.
	* eval.c (evaluate_subexp_standard): Pass the requested
	function's address to using_struct_return.
	* infcall.c (call_function_by_hand): Pass the requested
	function's address to using_struct_return and
	gdbarch_return_value.
	* infcmd.c (get_return_value): Take a pointer to struct value
	instead of struct type for the function requested.
	(print_return_value): Update accordingly.
	(finish_command_continuation): Likewise.
	* stack.c (return_command): Pass the requested function's
	address to using_struct_return and gdbarch_return_value.
	* value.c (using_struct_return): Take a pointer to struct value
	instead of struct type for the function requested.  Pass the
	requested function's address to gdbarch_return_value.
	* python/py-finishbreakpoint.c (finish_breakpoint_object):
	New function_value member, replacing function_type.
	(bpfinishpy_dealloc): Update accordingly.
	(bpfinishpy_pre_stop_hook): Likewise.
	(bpfinishpy_init): Likewise.  Record the requested function's
	address.
	* mips-tdep.c (mips_fval_reg): New enum.
	(mips_o32_push_dummy_call): For MIPS16 FP doubles do not swap
	words put in GP registers.
	(mips_o64_push_dummy_call): Update a comment.
	(mips_o32_return_value): Take a pointer to struct value instead
	of struct type for the function requested and use it to check if
	using the MIPS16 calling convention.  Return the designated
	general purpose registers for floating-point values returned in
	MIPS16 mode.
	(mips_o64_return_value): Likewise.
	* ppc-tdep.h (ppc_sysv_abi_return_value): Update prototype.
	(ppc_sysv_abi_broken_return_value): Likewise.
	(ppc64_sysv_abi_return_value): Likewise.
	* alpha-tdep.c (alpha_return_value): Take a pointer to struct
	value instead of struct type for the function requested.
	* amd64-tdep.c (amd64_return_value): Likewise.
	* amd64-windows-tdep.c (amd64_windows_return_value): Likewise.
	* arm-tdep.c (arm_return_value): Likewise.
	* avr-tdep.c (avr_return_value): Likewise.
	* bfin-tdep.c (bfin_return_value): Likewise.
	* cris-tdep.c (cris_return_value): Likewise.
	* frv-tdep.c (frv_return_value): Likewise.
	* h8300-tdep.c (h8300_return_value): Likewise.
	(h8300h_return_value): Likewise.
	* hppa-tdep.c (hppa32_return_value): Likewise.
	(hppa64_return_value): Likewise.
	* i386-tdep.c (i386_return_value): Likewise.
	* ia64-tdep.c (ia64_return_value): Likewise.
	* iq2000-tdep.c (iq2000_return_value): Likewise.
	* lm32-tdep.c (lm32_return_value): Likewise.
	* m32c-tdep.c (m32c_return_value): Likewise.
	* m32r-tdep.c (m32r_return_value): Likewise.
	* m68hc11-tdep.c (m68hc11_return_value): Likewise.
	* m68k-tdep.c (m68k_return_value): Likewise.
	(m68k_svr4_return_value): Likewise.
	* m88k-tdep.c (m88k_return_value): Likewise.
	* mep-tdep.c (mep_return_value): Likewise.
	* microblaze-tdep.c (microblaze_return_value): Likewise.
	* mn10300-tdep.c (mn10300_return_value): Likewise.
	* moxie-tdep.c (moxie_return_value): Likewise.
	* mt-tdep.c (mt_return_value): Likewise.
	* ppc-linux-tdep.c (ppc_linux_return_value): Likewise.
	* ppc-sysv-tdep.c (ppc_sysv_abi_return_value): Likewise.
	(ppc_sysv_abi_broken_return_value): Likewise.
	(ppc64_sysv_abi_return_value): Likewise.
	* ppcnbsd-tdep.c (ppcnbsd_return_value): Likewise.
	* rl78-tdep.c (rl78_return_value): Likewise.
	* rs6000-aix-tdep.c (rs6000_return_value): Likewise.
	* rx-tdep.c (rx_return_value): Likewise.
	* s390-tdep.c (s390_return_value): Likewise.
	* score-tdep.c (score_return_value): Likewise.
	* sh-tdep.c (sh_return_value_nofpu): Likewise.
	(sh_return_value_fpu): Likewise.
	* sh64-tdep.c (sh64_return_value): Likewise.
	* sparc-tdep.c (sparc32_return_value): Likewise.
	* sparc64-tdep.c (sparc64_return_value): Likewise.
	* spu-tdep.c (spu_return_value): Likewise.
	* tic6x-tdep.c (tic6x_return_value): Likewise.
	* v850-tdep.c (v850_return_value): Likewise.
	* vax-tdep.c (vax_return_value): Likewise.
	* xstormy16-tdep.c (xstormy16_return_value): Likewise.
	* xtensa-tdep.c (xtensa_return_value): Likewise.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.

	gdb/testsuite/
	* gdb.base/return-nodebug.exp: Also test float and double types.
2012-05-16 14:35:09 +00:00
Stan Shebs
e7e0cddfb0 2012-05-14 Stan Shebs <stan@codesourcery.com>
Add dynamic printf.
	* breakpoint.h (enum bptype): New type bp_dprintf.
	(struct breakpoint): New field extra_string.
	(struct breakpoint_ops): Add arg to create_breakpoints_sal.
	(create_breakpoint): Add extra_string arg.
	* breakpoint.c (dprintf_breakpoint_ops): New.
	(is_breakpoint): Add bp_dprintf.
	(bpstat_what): Add dprintf case.
	(bptype_string): Ditto.
	(print_one_breakpoint_location): Ditto.
	(init_bp_location): Ditto.
	(bkpt_print_mention): Ditto.
	(dprintf_style_enums): New array.
	(dprintf_style): New global.
	(dprintf_function): New global.
	(dprintf_channel): New global.
	(update_dprintf_command_list): New function.
	(update_dprintf_commands): New function.
	(init_breakpoint_sal): Add extra_string argument, handle it.
	(create_breakpoint_sal): Add extra_string argument.
	(create_breakpoints_sal): Add extra_string argument, update callers.
	(find_condition_and_thread): Add extra argument.
	(create_breakpoint): Add extra_string argument, record it.
	(dprintf_command): New function.
	(break_command_1): Add arg to create_breakpoint call.
	(handle_gnu_v3_exceptions): Ditto.
	(trace_command): Ditto.
	(ftrace_command): Ditto.
	(strace_command): Ditto.
	(bkpt_print_mention): Add dprintf case.
	(create_breakpoint_sal_default): Add extra_string argument.
	(_initialize_breakpoint): Add new commands.
	* mi/mi-cmd-break.c (mi_cmd_break_insert): Add arg to call.
	* python/py-breakpoint.c (bppy_init): Ditto.
	* python/py-finishbreakpoint.c (bpfinishpy_init): Ditto.

	* gdb.texinfo (Dynamic Printf): New subsection.

	* gdb.base/dprintf.c: New file.
	* gdb.base/dprintf.exp: New file.
2012-05-14 15:38:41 +00:00
Sergio Durigan Junior
55aa24fb2e 2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
Tom Tromey  <tromey@redhat.com>
	    Jan Kratochvil  <jan.kratochvil@redhat.com>

	* Makefile.in (SFILES): Add `probe' and `stap-probe'.
	(COMMON_OBS): Likewise.
	(HFILES_NO_SRCDIR): Add `probe'.
	* NEWS: Mention support for static and SystemTap probes.
	* amd64-tdep.c (amd64_init_abi): Initializing proper fields used by
	SystemTap probes' arguments parser.
	* arm-linux-tdep.c: Including headers needed to perform the parsing
	of SystemTap probes' arguments.
	(arm_stap_is_single_operand): New function.
	(arm_stap_parse_special_token): Likewise.
	(arm_linux_init_abi): Initializing proper fields used by SystemTap
	probes' arguments parser.
	* ax-gdb.c (require_rvalue): Removing static declaration.
	(gen_expr): Likewise.
	* ax-gdb.h (gen_expr): Declaring function.
	(require_rvalue): Likewise.
	* breakpoint.c: Include `gdb_regex.h' and `probe.h'.
	(bkpt_probe_breakpoint_ops): New variable.
	(momentary_breakpoint_from_master): Set the `probe' value.
	(add_location_to_breakpoint): Likewise.
	(break_command_1): Using proper breakpoint_ops according to the
	argument passed by the user in the command line.
	(bkpt_probe_insert_location): New function.
	(bkpt_probe_remove_location): Likewise.
	(bkpt_probe_create_sals_from_address): Likewise.
	(bkpt_probe_decode_linespec): Likewise.
	(tracepoint_probe_create_sals_from_address): Likewise.
	(tracepoint_probe_decode_linespec): Likewise.
	(tracepoint_probe_breakpoint_ops): New variable.
	(trace_command): Using proper breakpoint_ops according to the
	argument passed by the user in the command line.
	(initialize_breakpoint_ops): Initializing breakpoint_ops for
	static probes on breakpoints and tracepoints.
	* breakpoint.h (struct bp_location) <probe>: New field.
	* cli-utils.c (skip_spaces_const): New function.
	(extract_arg): Likewise.
	* cli-utils.h (skip_spaces_const): Likewise.
	(extract_arg): Likewise.
	* coffread.c (coff_sym_fns): Add `sym_probe_fns' value.
	* configure.ac: Append `stap-probe.o' to be generated when ELF
	support is present.
	* configure: Regenerate.
	* dbxread.c (aout_sym_fns): Add `sym_probe_fns' value.
	* elfread.c: Include `probe.h' and `arch-utils.h'.
	(probe_key): New variable.
	(elf_get_probes): New function.
	(elf_get_probe_argument_count): Likewise.
	(elf_evaluate_probe_argument): Likewise.
	(elf_compile_to_ax): Likewise.
	(elf_symfile_relocate_probe): Likewise.
	(stap_probe_key_free): Likewise.
	(elf_probe_fns): New variable.
	(elf_sym_fns): Add `sym_probe_fns' value.
	(elf_sym_fns_lazy_psyms): Likewise.
	(elf_sym_fns_gdb_index): Likewise.
	(_initialize_elfread): Initialize objfile cache for static
	probes.
	* gdb_vecs.h (struct probe): New forward declaration.
	(probe_p): New VEC declaration.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.
	* gdbarch.sh (stap_integer_prefix): New variable.
	(stap_integer_suffix): Likewise.
	(stap_register_prefix): Likewise.
	(stap_register_suffix): Likewise.
	(stap_register_indirection_prefix): Likewise.
	(stap_register_indirection_suffix): Likewise.
	(stap_gdb_register_prefix): Likewise.
	(stap_gdb_register_suffix): Likewise.
	(stap_is_single_operand): New function.
	(stap_parse_special_token): Likewise.
	(struct stap_parse_info): Forward declaration.
	* i386-tdep.c: Including headers needed to perform the parsing
	of SystemTap probes' arguments.
	(i386_stap_is_single_operand): New function.
	(i386_stap_parse_special_token): Likewise.
	(i386_elf_init_abi): Initializing proper fields used by SystemTap
	probes' arguments parser.
	* i386-tdep.h (i386_stap_is_single_operand): New function.
	(i386_stap_parse_special_token): Likewise.
	* machoread.c (macho_sym_fns): Add `sym_probe_fns' value.
	* mipsread.c (ecoff_sym_fns): Likewise.
	* objfiles.c (objfile_relocate1): Support relocation for static
	probes.
	* parse.c (prefixify_expression): Remove static declaration.
	(initialize_expout): Likewise.
	(reallocate_expout): Likewise.
	* parser-defs.h (initialize_expout): Declare function.
	(reallocate_expout): Likewise.
	(prefixify_expression): Likewise.
	* ppc-linux-tdep.c: Including headers needed to perform the parsing
	of SystemTap probes' arguments.
	(ppc_stap_is_single_operand): New function.
	(ppc_stap_parse_special_token): Likewise.
	(ppc_linux_init_abi): Initializing proper fields used by SystemTap
	probes' arguments parser.
	* probe.c: New file, for generic statically defined probe support.
	* probe.h: Likewise.
	* s390-tdep.c: Including headers needed to perform the parsing of
	SystemTap probes' arguments.
	(s390_stap_is_single_operand): New function.
	(s390_gdbarch_init): Initializing proper fields used by SystemTap
	probes' arguments parser.
	* somread.c (som_sym_fns): Add `sym_probe_fns' value.
	* stap-probe.c: New file, for SystemTap probe support.
	* stap-probe.h: Likewise.
	* symfile.h: Include `gdb_vecs.h'.
	(struct sym_probe_fns): New struct.
	(struct sym_fns) <sym_probe_fns>: New field.
	* symtab.c (init_sal): Initialize `probe' field.
	* symtab.h (struct probe): Forward declaration.
	(struct symtab_and_line) <probe>: New field.
	* tracepoint.c (start_tracing): Adjust semaphore on breakpoints
	locations.
	(stop_tracing): Likewise.
	* xcoffread.c (xcoff_sym_fns): Add `sym_probe_fns' value.
2012-04-27 20:47:57 +00:00
Yao Qi
20388dd6b6 gdb:
Revert this patch to allow breakpoint always-inserted
	in record target.
	2011-12-05  Pedro Alves  <pedro@codesourcery.com>
        * breakpoint.c: Include record.h.
        (breakpoints_always_inserted_mode): Return false when the record
        target is in use.

	* breakpoint.c (iterate_over_bp_locations): New.
	* breakpoint.h: Declare.
	New typedef walk_bp_location_callback.
	* record.c (record_open): Call record_init_record_breakpoints.
	(record_sync_record_breakpoints): New.
	(record_init_record_breakpoints): New.
	* NEWS: Mention supporting breakpoint always-inserted mode in
	record target.
2012-04-24 14:33:12 +00:00