There are
two_file_shared_2_pic_1_test_LDADD = two_file_test_2_pic.o two_file_shared_1.so
There should be two_file_shared_1.so, not two_file_shared_2.so in
two_file_shared_2_pic_1_test_DEPENDENCIES.
* testsuite/Makefile.am (two_file_shared_2_pic_1_test_DEPENDENCIES):
Replace two_file_shared_2.so with two_file_shared_1.so.
* testsuite/Makefile.in: Regenerated.
Indicate gaps in the trace due to decode errors. Internally, a gap is
represented as a btrace function segment without instructions and with a
non-zero format-specific error code.
Show the gap when traversing the instruction or function call history.
Also indicate gaps in "info record".
It looks like this:
(gdb) info record
Active record target: record-btrace
Recording format: Branch Trace Store.
Buffer size: 64KB.
Recorded 32 instructions in 5 functions (1 gaps) for thread 1 (process 7182).
(gdb) record function-call-history /cli
1 fib inst 1,9 at src/fib.c:9,14
2 fib inst 10,20 at src/fib.c:6,14
3 [decode error (1): instruction overflow]
4 fib inst 21,28 at src/fib.c:11,14
5 fib inst 29,33 at src/fib.c:6,9
(gdb) record instruction-history 20,22
20 0x000000000040062f <fib+47>: sub $0x1,%rax
[decode error (1): instruction overflow]
21 0x0000000000400613 <fib+19>: add $0x1,%rax
22 0x0000000000400617 <fib+23>: mov %rax,0x200a3a(%rip)
(gdb)
Gaps are ignored during reverse execution and replay.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.c (ftrace_find_call): Skip gaps.
(ftrace_new_function): Initialize level.
(ftrace_new_call, ftrace_new_tailcall, ftrace_new_return)
(ftrace_new_switch): Update
level computation.
(ftrace_new_gap): New.
(ftrace_update_function): Create new function after gap.
(btrace_compute_ftrace_bts): Create gap on error.
(btrace_stitch_bts): Update parameters. Clear trace if it
becomes empty.
(btrace_stitch_trace): Update parameters. Update callers.
(btrace_clear): Reset the number of gaps.
(btrace_insn_get): Return NULL if the iterator points to a gap.
(btrace_insn_number): Return zero if the iterator points to a gap.
(btrace_insn_end): Allow gaps at the end.
(btrace_insn_next, btrace_insn_prev, btrace_insn_cmp): Handle gaps.
(btrace_find_insn_by_number): Assert that the found iterator does
not point to a gap.
(btrace_call_next, btrace_call_prev): Assert that the last function
is not a gap.
* btrace.h (btrace_bts_error): New.
(btrace_function): Update comment.
(btrace_function) <insn, insn_offset, number>: Update comment.
(btrace_function) <errcode>: New.
(btrace_thread_info) <ngaps>: New.
(btrace_thread_info) <replay>: Update comment.
(btrace_insn_get): Update comment.
* record-btrace.c (btrace_ui_out_decode_error): New.
(record_btrace_info): Print number of gaps.
(btrace_insn_history, btrace_call_history): Call
btrace_ui_out_decode_error for gaps.
(record_btrace_step_thread, record_btrace_start_replaying): Skip gaps.
testsuite/
* gdb.btrace/buffer-size.exp: Update "info record" output.
* gdb.btrace/delta.exp: Update "info record" output.
* gdb.btrace/enable.exp: Update "info record" output.
* gdb.btrace/finish.exp: Update "info record" output.
* gdb.btrace/instruction_history.exp: Update "info record" output.
* gdb.btrace/next.exp: Update "info record" output.
* gdb.btrace/nexti.exp: Update "info record" output.
* gdb.btrace/step.exp: Update "info record" output.
* gdb.btrace/stepi.exp: Update "info record" output.
* gdb.btrace/nohist.exp: Update "info record" output.
Add a struct for identifying a processor and use it in linux-btrace.c when
identifying the processor we're running on.
We will need this feature for the new btrace format.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* common/btrace-common.h (btrace_cpu_vendor, btrace_cpu): New.
* nat/linux-btrace.c: (btrace_this_cpu): New.
(cpu_supports_bts): Call btrace_this_cpu.
(intel_supports_bts): Add cpu parameter.
Add the instruction's size as well as a coarse classification to struct
btrace_insn. Use the information in ftrace_update_function and
ftrace_find_call.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.h (btrace_insn_class): New.
(btrace_insn) <size, iclass>: New.
* btrace.c (ftrace_find_call): Update parameters. Update users.
Use instruction classification.
(ftrace_new_return): Update parameters. Update users.
(ftrace_update_function): Update parameters. Update users. Use
instruction classification.
(ftrace_update_insns): Update parameters. Update users.
(ftrace_classify_insn): New.
(btrace_compute_ftrace_bts): Fill in new btrace_insn fields. Add
TRY_CATCH around call to gdb_insn_length.
Pass thread_info instead of btrace_thread_info to btrace_compute_ftrace.
We will need the thread_info in subsequent patches.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.c (btrace_compute_ftrace_bts, btrace_compute_ftrace):
Update parameters. Update users.
Allow the size of the branch trace ring buffer to be defined by the
user. The specified buffer size will be used when BTS tracing is
enabled for new threads.
The obtained buffer size may differ from the requested size. The
actual buffer size for the current thread is shown in the "info record"
command.
Bigger buffers mean longer traces, but also longer processing time.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.c (parse_xml_btrace_conf_bts): Add size.
(btrace_conf_bts_attributes): New.
(btrace_conf_children): Add attributes.
* common/btrace-common.h (btrace_config_bts): New.
(btrace_config)<bts>: New.
(btrace_config): Update comment.
* nat/linux-btrace.c (linux_enable_btrace, linux_enable_bts):
Use config.
* features/btrace-conf.dtd: Increment version. Add size
attribute to bts element.
* record-btrace.c (set_record_btrace_bts_cmdlist,
show_record_btrace_bts_cmdlist): New.
(record_btrace_adjust_size, record_btrace_print_bts_conf,
record_btrace_print_conf, cmd_set_record_btrace_bts,
cmd_show_record_btrace_bts): New.
(record_btrace_info): Call record_btrace_print_conf.
(_initialize_record_btrace): Add commands.
* remote.c: Add PACKET_Qbtrace_conf_bts_size enum.
(remote_protocol_features): Add Qbtrace-conf:bts:size packet.
(btrace_sync_conf): Synchronize bts size.
(_initialize_remote): Add Qbtrace-conf:bts:size packet.
* NEWS: Announce new commands and new packets.
doc/
* gdb.texinfo (Branch Trace Configuration Format): Add size.
(Process Record and Replay): Describe new set|show commands.
(General Query Packets): Describe Qbtrace-conf:bts:size packet.
testsuite/
* gdb.btrace/buffer-size: New.
gdbserver/
* linux-low.c (linux_low_btrace_conf): Print size.
* server.c (handle_btrace_conf_general_set): New.
(hanle_general_set): Call handle_btrace_conf_general_set.
(handle_query): Report Qbtrace-conf:bts:size as supported.
Add a struct to describe the branch trace configuration and use it for
enabling branch tracing.
The user will be able to set configuration fields for each tracing format
to be used for new threads.
The actual configuration that is active for a given thread will be shown
in the "info record" command.
At the moment, the configuration struct only contains a format field
that is set to the only available format.
The format is the only configuration option that can not be set via set
commands. It is given as argument to the "record btrace" command when
starting recording.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* Makefile.in (XMLFILES): Add btrace-conf.dtd.
* x86-linux-nat.c (x86_linux_enable_btrace): Update parameters.
(x86_linux_btrace_conf): New.
(x86_linux_create_target): Initialize to_btrace_conf.
* nat/linux-btrace.c (linux_enable_btrace): Update parameters.
Check format. Split into this and ...
(linux_enable_bts): ... this.
(linux_btrace_conf): New.
(perf_event_skip_record): Renamed into ...
(perf_event_skip_bts_record): ... this. Updated users.
(linux_disable_btrace): Split into this and ...
(linux_disable_bts): ... this.
(linux_read_btrace): Check format.
* nat/linux-btrace.h (linux_enable_btrace): Update parameters.
(linux_btrace_conf): New.
(btrace_target_info)<ptid>: Moved.
(btrace_target_info)<conf>: New.
(btrace_target_info): Split into this and ...
(btrace_tinfo_bts): ... this. Updated users.
* btrace.c (btrace_enable): Update parameters.
(btrace_conf, parse_xml_btrace_conf_bts, parse_xml_btrace_conf)
(btrace_conf_children, btrace_conf_attributes)
(btrace_conf_elements): New.
* btrace.h (btrace_enable): Update parameters.
(btrace_conf, parse_xml_btrace_conf): New.
* common/btrace-common.h (btrace_config): New.
* feature/btrace-conf.dtd: New.
* record-btrace.c (record_btrace_conf): New.
(record_btrace_cmdlist): New.
(record_btrace_enable_warn, record_btrace_open): Pass
&record_btrace_conf.
(record_btrace_info): Print recording format.
(cmd_record_btrace_bts_start): New.
(cmd_record_btrace_start): Call cmd_record_btrace_bts_start.
(_initialize_record_btrace): Add "record btrace bts" subcommand.
Add "record bts" alias command.
* remote.c (remote_state)<btrace_config>: New.
(remote_btrace_reset, PACKET_qXfer_btrace_conf): New.
(remote_protocol_features): Add qXfer:btrace-conf:read.
(remote_open_1): Call remote_btrace_reset.
(remote_xfer_partial): Handle TARGET_OBJECT_BTRACE_CONF.
(btrace_target_info)<conf>: New.
(btrace_sync_conf, btrace_read_config): New.
(remote_enable_btrace): Update parameters. Call btrace_sync_conf and
btrace_read_conf.
(remote_btrace_conf): New.
(init_remote_ops): Initialize to_btrace_conf.
(_initialize_remote): Add qXfer:btrace-conf packet.
* target.c (target_enable_btrace): Update parameters.
(target_btrace_conf): New.
* target.h (target_enable_btrace): Update parameters.
(target_btrace_conf): New.
(target_object)<TARGET_OBJECT_BTRACE_CONF>: New.
(target_ops)<to_enable_btrace>: Update parameters and comment.
(target_ops)<to_btrace_conf>: New.
* target-delegates: Regenerate.
* target-debug.h (target_debug_print_const_struct_btrace_config_p)
(target_debug_print_const_struct_btrace_target_info_p): New.
NEWS: Announce new command and new packet.
doc/
* gdb.texinfo (Process Record and Replay): Describe the "record
btrace bts" command.
(General Query Packets): Describe qXfer:btrace-conf:read packet.
(Branch Trace Configuration Format): New.
gdbserver/
* linux-low.c (linux_low_enable_btrace): Update parameters.
(linux_low_btrace_conf): New.
(linux_target_ops)<to_btrace_conf>: Initialize.
* server.c (current_btrace_conf): New.
(handle_btrace_enable): Rename to ...
(handle_btrace_enable_bts): ... this. Pass ¤t_btrace_conf
to target_enable_btrace. Update comment. Update users.
(handle_qxfer_btrace_conf): New.
(qxfer_packets): Add btrace-conf entry.
(handle_query): Report qXfer:btrace-conf:read as supported packet.
* target.h (target_ops)<enable_btrace>: Update parameters and comment.
(target_ops)<read_btrace_conf>: New.
(target_enable_btrace): Update parameters.
(target_read_btrace_conf): New.
testsuite/
* gdb.btrace/delta.exp: Update "info record" output.
* gdb.btrace/enable.exp: Update "info record" output.
* gdb.btrace/finish.exp: Update "info record" output.
* gdb.btrace/instruction_history.exp: Update "info record" output.
* gdb.btrace/next.exp: Update "info record" output.
* gdb.btrace/nexti.exp: Update "info record" output.
* gdb.btrace/step.exp: Update "info record" output.
* gdb.btrace/stepi.exp: Update "info record" output.
* gdb.btrace/nohist.exp: Update "info record" output.
Collect perf event buffer related fields from btrace_target_info into
a new struct perf_event_buffer. Update functions that operated on the
buffer to take a struct perf_event_buffer pointer rather than a
btrace_target_info pointer.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* nat/linux-btrace.h (perf_event_buffer): New.
(btrace_target_info) <buffer, size, data_head>: Replace with ...
<bts>: ... this.
* nat/linux-btrace.c (perf_event_header, perf_event_mmap_size)
(perf_event_buffer_size, perf_event_buffer_begin)
(perf_event_buffer_end, linux_btrace_has_changed): Removed.
Updated users.
(perf_event_new_data): New.
Add a format argument to the various supports_btrace functions to check
for support of a specific btrace format. This is to prepare for a new
format.
Removed two redundant calls. The check will be made in the subsequent
btrace_enable call.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.c (btrace_enable): Pass BTRACE_FORMAT_BTS.
* record-btrace.c (record_btrace_open): Remove call to
target_supports_btrace.
* remote.c (remote_supports_btrace): Update parameters.
* target.c (target_supports_btrace): Update parameters.
* target.h (to_supports_btrace, target_supports_btrace): Update
parameters.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_btrace_format): New.
* nat/linux-btrace.c
(kernel_supports_btrace): Rename into ...
(kernel_supports_bts): ... this. Update users. Update warning text.
(intel_supports_btrace): Rename into ...
(intel_supports_bts): ... this. Update users.
(cpu_supports_btrace): Rename into ...
(cpu_supports_bts): ... this. Update users.
(linux_supports_btrace): Update parameters. Split into this and ...
(linux_supports_bts): ... this.
* nat/linux-btrace.h (linux_supports_btrace): Update parameters.
gdbserver/
* server.c (handle_btrace_general_set): Remove call to
target_supports_btrace.
(supported_btrace_packets): New.
(handle_query): Call supported_btrace_packets.
* target.h: include btrace-common.h.
(btrace_target_info): Removed.
(supports_btrace, target_supports_btrace): Update parameters.
Add a structure to hold the branch trace data and an enum to describe
the format of that data. So far, only BTS is supported. Also added
a NONE format to indicate that no branch trace data is available.
This will make it easier to support different branch trace formats in
the future.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* Makefile.in (SFILES): Add common/btrace-common.c.
(COMMON_OBS): Add common/btrace-common.o.
(btrace-common.o): Add build rules.
* btrace.c (parse_xml_btrace): Update parameters.
(parse_xml_btrace_block): Set format field.
(btrace_add_pc, btrace_fetch): Use struct btrace_data.
(do_btrace_data_cleanup, make_cleanup_btrace_data): New.
(btrace_compute_ftrace): Split into this and...
(btrace_compute_ftrace_bts): ...this.
(btrace_stitch_trace): Split into this and...
(btrace_stitch_bts): ...this.
* btrace.h (parse_xml_btrace): Update parameters.
(make_cleanup_btrace_data): New.
* common/btrace-common.c: New.
* common/btrace-common.h: Include common-defs.h.
(btrace_block_s): Update comment.
(btrace_format): New.
(btrace_format_string): New.
(btrace_data_bts): New.
(btrace_data): New.
(btrace_data_init, btrace_data_fini, btrace_data_empty): New.
* remote.c (remote_read_btrace): Update parameters.
* target.c (target_read_btrace): Update parameters.
* target.h (target_read_btrace): Update parameters.
(target_ops)<to_read_btrace>: Update parameters.
* x86-linux-nat.c (x86_linux_read_btrace): Update parameters.
* target-delegates.c: Regenerate.
* target-debug (target_debug_print_struct_btrace_data_p): New.
* nat/linux-btrace.c (linux_read_btrace): Split into this and...
(linux_read_bts): ...this.
* nat/linux-btrace.h (linux_read_btrace): Update parameters.
gdbserver/
* Makefile.in (SFILES): Add common/btrace-common.c.
(OBS): Add common/btrace-common.o.
(btrace-common.o): Add build rules.
* linux-low: Include btrace-common.h.
(linux_low_read_btrace): Use struct btrace_data. Call
btrace_data_init and btrace_data_fini.
Real code won't hit these, but it's possible to contrive a testcase..
* elf32-ppc.c (ppc_elf_relocate_section): Don't segfault on NULL
tls_sec.
* elf64-ppc.c (ppc64_elf_relocate_section): Likewise.
* elflink.c (elf_link_output_extsym): Don't assert on NULL tls_sec.
* elflink.c: Whitespace, formatting fixes.
(elf_link_input_bfd): Clarify comment.
(elf_link_output_extsym): Exclude symbols in linker created
sections when testing for plugin symbols.
When plugin isn't active or there is no thing more to claim, we don't
need to call bfd_check_format.
* ldfile.c (ldfile_try_open_bfd): Don't call bfd_check_format
if plugin isn't active or there is no thing more to claim.
There is no need to call bfd_check_format. We should just check format
against bfd_object directly.
* plugin.c (plugin_maybe_claim): Check format against bfd_object
directly.
This patch removes the argument of pointer to struct ld_plugin_input_file.
This is the first step to extract a plugin_object_p out of
plugin_maybe_claim for BFD.
* plugin.c: Include "libbfd.h".
(plugin_strdup): New.
(plugin_maybe_claim): Remove the argument of pointer to struct
ld_plugin_input_file. Open and handle input entry.
* plugin.h (plugin_maybe_claim): Updated.
* ldfile.c (ldfile_try_open_bfd): Call plugin_maybe_claim directly
without passing a pointer to struct ld_plugin_input_file.
* ldmain.c: Don't include "libbfd.h".
(add_archive_element): Call plugin_maybe_claim directly without
passing a pointer to struct ld_plugin_input_file.
This patch uses mmap if it is available and works. It also caches the
view buffer for get_view.
* configure.ac: Add AC_FUNC_MMAP.
* config.in: Regenerated.
* configure: Likewise.
* plugin.c: Include <sys/mman.h>.
(MAP_FAILED): New. Defined if not defined.
(PROT_READ): Likewise.
(MAP_PRIVATE): Likewise.
(view_buffer_t): New.
(plugin_input_file_t): Add view_buffer.
(get_view): Try mmap and cache the view buffer.
(plugin_maybe_claim): Initialize view_buffer.
Add a bit of debug output that made things a bit easier for me before.
gdb/
2015-02-06 Pedro Alves <palves@redhat.com>
* linux-thread-db.c (find_new_threads_callback): Add debug output.
gdb/gdbserver/
2015-02-06 Pedro Alves <palves@redhat.com>
* thread-db.c (find_new_threads_callback): Add debug output.
Typing "enable count" by itself crashes GDB. Also, if you omit the
breakpoint number/range, the error message is not very clear:
(gdb) enable count 2
warning: bad breakpoint number at or near ''
(gdb) enable count
Segmentation fault (core dumped)
With this patch, the error messages are slightly more helpful:
(gdb) enable count 2
Argument required (one or more breakpoint numbers).
(gdb) enable count
Argument required (hit count).
gdb/ChangeLog:
PR gdb/15678
* breakpoint.c (map_breakpoint_numbers): Check for empty args
string.
(enable_count_command): Check args for NULL value.
gdb/testsuite/ChangeLog:
PR gdb/15678
* gdb.base/ena-dis-br.exp: Test "enable count" for bad user input.
Mark the unused plugin defined symbol in elf_link_input_bfd instead of
_bfd_elf_fix_symbol_flags. Limit the PR ld/12365 test to x86 targets.
bfd/
PR ld/12365
PR ld/14272
* elflink.c (_bfd_elf_fix_symbol_flags): Revert the last change.
(elf_link_input_bfd): Mark the plugin symbol undefined if it is
referenced from a non-IR file.
ld/testsuite/
PR ld/12365
PR ld/14272
* ld-plugin/lto.exp: Run the PR ld/12365 test only for x86 targets.
* ld-plugin/plugin-7.d: Updated.
* ld-plugin/plugin-8.d: Likewise.
The buildbot shows that this test is still racy, and occasionally
fails with time outs on some machines. I'd like to get major issues
with load out of the way.
The test currently exits after 180s, which is just a random number,
that has no relation to what the .exp file considers a time out. This
commit makes the program wait a bit longer than what the .exp file
considers a time out, and, resets the timer for each iteration.
Tested on x86_64 Fedora 20, native and extended-remote gdbserver.
gdb/testsuite/
2015-02-06 Pedro Alves <palves@redhat.com>
* gdb.threads/attach-many-short-lived-threads.c (SECONDS): New
macro.
(seconds_left, again): New globals.
(main): Wait seconds_left in a 1-second sleep loop instead of
sleeping 180 seconds. If 'again' is set, reset the seconds
counter.
* gdb.threads/attach-many-short-lived-threads.exp (test): Set
'again' in the inferior before detaching. Print the seconds left.
(options): New global.
(top level): Build program with -DTIMEOUT=$timeout.
PR binutils/17512
* dwarf.c (display_debug_frames): Fix range checks to work on
32-bit binaries complied on a 64-bit host.
* peXXigen.c (rsrc_print_resource_entries): Add range check for
addresses that wrap around the address space.
(rsrc_parse_entry): Likewise.
The buildbot shows that some machines FAIL this test frequently.
E.g.: https://sourceware.org/ml/gdb-testers/2015-q1/msg00997.html
If I stress my machine, I can sometimes see it fail too.
Bumping the 200 limit and tweaking the test to show the step count, I
get:
...
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 12 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 8 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 13 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 7 times
--> FAIL: gdb.base/gdb-sigterm.exp: SIGTERM stepped 228 times <--
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 11 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 13 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 12 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 8 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 9 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 7 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 11 times
PASS: gdb.base/gdb-sigterm.exp: SIGTERM stepped 8 times
...
Thinking that this might be a problem of SIGTERM reaching GDB, but
then the event loop taking too long to handle it, I hacked GDB to
print a debug log whenever the SIGTERM handler was called, and,
whenever the event loop finally calls the async SIGTERM handler.
Here's what I see:
infrun: 30011 [Thread 30011],
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x4005de
--> infrun: got SIGTERM <--
infrun: stepping inside range [0x4005de-0x4005e0]
infrun: resume (step=1, signal=GDB_SIGNAL_0), ...
infrun: prepare_to_wait
--> infrun: handling async SIGTERM <--
Cannot execute this command while the target is running.
Use the "interrupt" command to stop the target
and then try again.
gdb.base/gdb-sigterm.exp: expect eof #27
FAIL: gdb.base/gdb-sigterm.exp: SIGTERM stepped 228 times
So, no delay on the GDB side. It just happens that occasionally it
takes more than 200 single-steps before SIGTERM even reaches GDB.
This just looks like a kernel/scheduling issue --- some extra usage
spike in the system (e.g., an I/O spike) might cause it for me. For
the build slaves, I'm guessing they're frequently busy enough to trip
on this often. Particularly more so now that we're having them run
tests in parallel mode.
The fix is to detect failure by timeout instead of counting single
steps. This should be more reliable. Indeed for me, after this
commit, I couldn't trigger a FAIL anymore, even after letting the test
run for an hour.
By timeout is also nicer in that a board file for a slow host/target
can increase it (like, e.g., an embedded GNU/Linux board).
Tested on x86_64 Fedora 20, native, gdbserver, and extended-remote
gdbserver.
gdb/testsuite/
2015-02-06 Pedro Alves <palves@redhat.com>
* gdb.base/gdb-sigterm.c (main): Use the TIMEOUT define to
determine how many seconds to pass to 'alarm'.
* gdb.base/gdb-sigterm.exp (top level): Build program with
-DTIMEOUT=$timeout.
(do_test): Return success/failure indication. Add more verbose
logging. Don't fail if 200 single steps are seen. Instead, fail
when the test times out.
(passes): New global.
(top level): Break the testing loop if testing fails on any
iteration. Use gdb_assert.
While actually starting to use that new directive, I noticed a few
oversights of the original commit.
gas/
2015-02-06 Jan Beulich <jbeulich@suse.com>
* dw2gencfi.c (select_cie_for_fde): Also bail on CFI_label.
(cfi_change_reg_numbers): Also do nothing for CFI_label.
(cfi_pseudo_table): Also handle .cfi_label when not supporting
CFI directives.
This patch closes fd only if fd != -1.
* plugin.c (release_input_file): Set fd to -1 after closing it.
(plugin_maybe_claim): Close fd only if fd != -1.
This patchs adds plugin_input_file_t to implement get_input_file, get_view
and release_input_file. The maximum memeory overhead per IR input file
are about 40 bytes for plugin_input_file_t plus the memory to store input
IR filename. According to
http://gcc.gnu.org/wiki/whopr/driver
RELEASE_INPUT_FILE: Function pointer to the linker interface that
releases a file descriptor for a claimed input file. The plug-in library
must call this interface for each file descriptor obtained by the "get
input file" interface. It must release all such file descriptors before
returning from the WPA phase.
However, GCC plug-in library doesn't use the "get input file" interface.
It processed the IR input in the claim file handler. Since the the file
descriptor opened for the IR input was unused after the claim file
handler returns and GCC plug-in library before GCC 5 doesn't call the
RELEASE_INPUT_FILE function pointer, ld closed the file descriptor to
avoid leaking file descriptor. But this approach doesn't work with
other plug-in libraries which uses the "get input file", "get view" and
"release input file" interfaces. To avoid file descriptor leak with
GCC prior to GCC 5 and support other plug-in libraries at the same time,
we close the file descriptor only if the input IR file is a bfd_object
file. This scheme doesn't work when a plug-in library needs the file
descriptor and its IR is stored in bfd_object file.
PR ld/17878
* plugin.c: Include <errno.h>.
(errno): New. Declare if needed.
(plugin_input_file_t): New.
(get_input_file): Implemented.
(get_view): Likewise.
(release_input_file): Likewise.
(add_symbols): Updated.
(get_symbols): Likewise.
(plugin_maybe_claim): Allocate a plugin_input_file_t. Close fd
only for a bfd_object input.
gcc-5 correctly complains "loop exit may only be reached after
undefined behavior". I was going to correct this by checking the
index before dereferencing the array rather than the other way around,
but then I noticed it is possible for extract_cmd to write the
terminating zero one past the end of "cmd". Fixing that means no
index check is needed in md_assemble.
* config/tc-msp430.c (md_assemble): Correct size passed to
extract_cmd. Remove index check.
This commit modifies the test program gdb.base/info-os.c so that
it cleans up all allocated System V IPC objects when a fatal
error occurs. Without this, it was possible for the program
to leave IPC objects on the system, and such objects persist
until they are manually deleted or the system reboots.
I looked at changing the SysV IPC key for allocating the IPC objects to
IPC_PRIVATE. That would prevent errors due to namespace conflicts with the
key. However, the test needs to read the actual key number from the 'info
os' command output, and IPC_PRIVATE won't work for that.
gdb/testsuite/ChangeLog:
2015-02-04 Don Breazeal <donb@codesourcery.com>
* gdb.base/info-os.c (shmid, semid, msqid): Make variables static
and initialize them.
(ipc_cleanup): New function.
(main): Don't declare shmid, semid, and msqid. Add a call to
atexit so that we call ipc_cleanup on exit.
on Fedora Rawhide (==22) i686 using --with-python=/usr/bin/python3 one gets:
./python/py-value.c:1696:3: error: initialization from incompatible pointer type [-Werror]
valpy_hash, /*tp_hash*/
^
./python/py-value.c:1696:3: error: (near initialization for ‘value_object_type.tp_hash’) [-Werror]
cc1: all warnings being treated as errors
Makefile:2628: recipe for target 'py-value.o' failed
This is because in Python 2 tp_hash was:
typedef long (*hashfunc)(PyObject *);
while in Python 3 tp_hash is:
typedef Py_hash_t (*hashfunc)(PyObject *);
Py_hash_t is int for 32-bit hosts and long for 64-bit hosts. While on 32-bit
hosts sizeof(long)==sizeof(int) still the hashfunc type is formally
incompatible. As this patch should have no compiled code change it is not
really necessary for gdb-7.9, it would fix there just this non-fatal
compilation warning:
./python/py-value.c:1696:3: warning: initialization from incompatible pointer type
valpy_hash, /*tp_hash*/
^
./python/py-value.c:1696:3: warning: (near initialization for ‘value_object_type.tp_hash’)
gdb/ChangeLog
2015-02-04 Jan Kratochvil <jan.kratochvil@redhat.com>
* python/python-internal.h (Py_hash_t): Define it for Python <3.2.
* python/py-value.c (valpy_fetch_lazy): Use it. Remove cast to the
return type.
Since the starvation avoidance series
(https://sourceware.org/ml/gdb-patches/2014-12/msg00631.html), both
GDB and GDBserver pull all events out of ptrace before deciding which
event to process.
There's one problem with that though. Because we resume new threads
immediately when we see a PTRACE_EVENT_CLONE event, if the program
constantly spawns threads fast enough, new threads can spawn threads
faster we can pull events out of the kernel, and thus we'd get stuck
in an infinite loop, never returning any event to the core to process.
I occasionally see this happen with the
attach-many-short-lived-threads.exp test against gdbserver.
The fix is to delay resuming new threads until we've pulled out all
events out of the kernel.
On native, we already have the resume_stopped_resumed_lwps function
that knows to resume LWPs that are stopped with no event to report to
the core. So the patch just adds another use. GDBserver didn't have
the equivalent yet, so the patch adds one.
Tested on x86_64 Fedora 20, native and gdbserver (remote and
extended-remote).
gdb/gdbserver/ChangeLog:
2015-02-04 Pedro Alves <palves@redhat.com>
* linux-low.c (handle_extended_wait): Don't resume LWPs here.
(resume_stopped_resumed_lwps): New function.
(linux_wait_for_event_filtered): Use it.
gdb/ChangeLog:
2015-02-04 Pedro Alves <palves@redhat.com>
* linux-nat.c (handle_extended_wait): Don't resume LWPs here.
(wait_lwp): Don't call wait_lwp if linux_handle_extended_wait
returns true.
(resume_stopped_resumed_lwps): Don't check whether the thread is
marked as executing.
(linux_nat_wait_1): Use resume_stopped_resumed_lwps.
2015-02-04 Peter Collingbourne <pcc@google.com>
* plugin.cc (Pluginobj::get_symbol_resolution_info): Resolve
forwarding symbols when computing symbol resolution info for plugins.