Commit graph

83878 commits

Author SHA1 Message Date
Joel Brobecker
87b8eff03f testsuite/gdb.ada/var_rec_arr: New testcase.
gdb/testsuite/ChangeLog:

        * gdb.ada/var_rec_arr: New testcase.
2015-05-05 10:48:21 -07:00
Joel Brobecker
fc958966e4 GDB crash trying to subscript array of variant record.
Consider the following declarations:

   subtype Small_Type is Integer range 0 .. 10;
   type Record_Type (I : Small_Type := 0) is record
      S : String (1 .. I);
   end record;
   A2 : Array_Type := (1 => (I => 2, S => "AB"),
                       2 => (I => 1, S => "A"),
                       3 => (I => 0, S => <>));

Compiled with -fgnat-encodings=minimal, and trying to print
one element of our array, valgrind reports an invalid memory
access. On certain GNU/Linux boxes, malloc even reports it as
well, and causes GDB to crash.

    (gdb) print a2(1)
     *** glibc detected *** /[...]/gdb:
         malloc(): memory corruption: 0x0a30ba48 ***
    [crash]

The invalid memory access occurs because of a simple buffer
overflow in ada_value_primitive_packed_val. When this function
is called, it is given a bit_size of 128 (or 16 bytes), which
corresponds to the stride of our array. But the actual size of
each element depends on its value. In particular, A2(1) is a record
whose size is only 6 bytes.

What happens in our example is that we start building a new value
(v) where the element is to be unpacked, with any of its dynamic
properties getting resolved as well. We then unpack the data into
this value's buffer:

  unpacked = (unsigned char *) value_contents (v);
  [...]
  nsrc = len;
  [...]
  while (nsrc > 0)
    {
      [...]
          unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
          [...]
          targ += delta;
      [...]
      nsrc -= 1;
      [...]
    }

In the loop above, targ starts at zero (for LE architectures),
and len is 16. With delta being +1, we end up iterating 16 times,
writing 16 bytes into a 6-bytes buffer.

This patch fixes the issue by adjusting BIT_SIZE and recomputing
LEN after having resolved our type if the resolved type turns out
to be smaller than bit_size.

gdb/ChangeLog:

        * ada-lang.c (ada_value_primitive_packed_val): Recompute
        BIT_SIZE and LEN if the size of the resolved type is smaller
        than BIT_SIZE * HOST_CHAR_BIT.
2015-05-05 10:47:44 -07:00
Joel Brobecker
ca34b84ff6 [Ada] array of variant record subscripting
Consider the following (Ada) array...

   A1 : Array_Type := (1 => (I => 0, S => <>),
                       2 => (I => 1, S => "A"),
                       3 => (I => 2, S => "AB"));

... where Array_Type is declared as follow:

   subtype Small_Type is Integer range 0 .. 10;
   type Record_Type (I : Small_Type := 0) is record
      S : String (1 .. I);
   end record;
   type Array_Type is array (Integer range <>) of Record_Type;

Trying to print the value of each element individually does not
always work. Printing the value of the first one does:

(gdb) p a1(1)
    $1 = (i => 0, s => "")

But printing the value of the subsequent ones often does not.
For instance:

    (gdb) p a1(2)
    $2 = (i => 1, s => "")  <<<--- s should be "A"
    (gdb) p a1(3)
    $3 = (i => 2, s => "")  <<<--- s should be "AB"

I traced the problem to ada_value_primitive_packed_val,
which is trying to perform the array subscripting by
extracting the value of the corresponding array element
into a buffer where the contents is now byte-aligned.

The element type that ada_value_primitive_packed_val gets passed
is a dynamic type. As it happens, that dynamic type can get resolved
thanks to:

      v = value_at (type, value_address (obj));
      type = value_type (v);

However, obj represents the array, so the address given in the call
to value_at represents the value of the first element. As a result,
the solution of component S's upper bound always gets resolved based
on the value of component I in the  first element of the array, whose
value is 0, thus leading to GDB mistakely resolving the element type
where S's upper bound is always 0.

The proper fix would be to systematically resolve the element type
first. But, this requires us to extract-and-realign the element's
value so as to be able to pass it as "valaddr" to resolve_dynamic_type.
In the meantime, it's easy to make the situation a little better by
passing "value_address (obj) + offset" as the object address. This
only works when BIT_OFFSET is nul, but that should be the case when
the element type is anything but a scalar, which seems to be the only
situation where it seems important to resolve the type now. And we're
not that worse off otherwise.

But we'll try to find a better solution in a separate patch.

gdb/ChangeLog:

        * ada-lang.c (ada_value_primitive_packed_val): Use a more
        correct address in call to value_at.  Adjust call to
        value_address accordingly.
2015-05-05 10:46:42 -07:00
Joel Brobecker
62c67f3c1a [Ada] Resolve dynamic type before trying to print it.
This is another required step towards trying to print the value of
an array of variant records. For instance:

   A1 : Array_Type := (1 => (I => 0, S => <>),
                       2 => (I => 1, S => "A"),
                       3 => (I => 2, S => "AB"));

... where Array_Type is an array of records whose size is variable:

   subtype Small_Type is Integer range 0 .. 10;
   type Record_Type (I : Small_Type := 0) is record
      S : String (1 .. I);
   end record;
   type Array_Type is array (Integer range <>) of Record_Type;

What happens is that the ada-valprint modules gets passed an array
whose element type is not resolved yet (since each element of the
array needs to be resolved separately). the module then recurses,
and eventually gets called with the first element of the array.
But because the element hasn't been resolved yet, we end up having
trouble printing its value soon after.

This patch fixes the issue by calling resolve_dynamic_type before
trying to print it.

With this patch, GDB is finally able to print the complete value
for variable "A1":

     (gdb) p a1
     $1 = ((i => 0, s => ""), (i => 1, s => "A"), (i => 2, s => "AB"))

gdb/ChangeLog:

        * ada-valprint.c (ada_val_print_1): Resolve TYPE before trying
        to print it.
2015-05-05 10:46:12 -07:00
Joel Brobecker
c334512419 Add valaddr support in dynamic property resolution.
This is the second part of enhancing the debugger to print the value
of arrays of records whose size is variable when only standard DWARF
info is available (no GNAT encoding). For instance:

   subtype Small_Type is Integer range 0 .. 10;
   type Record_Type (I : Small_Type := 0) is record
      S : String (1 .. I);
   end record;
   type Array_Type is array (Integer range <>) of Record_Type;

   A1 : Array_Type := (1 => (I => 0, S => <>),
                       2 => (I => 1, S => "A"),
                       3 => (I => 2, S => "AB"));

Currently, GDB prints the following output:

        (gdb) p a1
        $1 = (

The error happens while the ada-valprint module is trying to print
the value of an element of our array. Because of the fact that
the array's element (type Record_Type) has a variant size, the DWARF
info for our array provide the array's stride:

     <1><749>: Abbrev Number: 10 (DW_TAG_array_type)
        <74a>   DW_AT_name        : (indirect string, offset: 0xb6d): pck__T18s
        <74e>   DW_AT_byte_stride : 16
        <74f>   DW_AT_type        : <0x6ea>

And because our array has a stride, ada-valprint treats it the same
way as packed arrays (see ada-valprint.c::ada_val_print_array):

  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
    val_print_packed_array_elements (type, valaddr, offset_aligned,
                                     0, stream, recurse,
                                     original_value, options);

The first thing that we should notice in the call above is that
the "valaddr" buffer and the associated offset (OFFSET_ALIGNED)
is passed, but that the corresponding array's address is not.
This can be explained by looking inside val_print_packed_array_elements,
where we see that the function unpacks each element of our array from
the buffer alone (ada_value_primitive_packed_val), and then prints
the resulting artificial value instead:

      v0 = ada_value_primitive_packed_val (NULL, valaddr + offset,
                                           (i0 * bitsize) / HOST_CHAR_BIT,
                                           (i0 * bitsize) % HOST_CHAR_BIT,
                                           bitsize, elttype);

      [...]
              val_print (elttype, value_contents_for_printing (v0),
                         value_embedded_offset (v0), 0, stream,
                         recurse + 1, v0, &opts, current_language);

Of particular interest, here, is the fact that we call val_print
with a null address, which is OK, since we're providing a buffer
instead (value_contents_for_printing). Also, providing an address
might not always possible, since packing could place elements at
boundaries that are not byte-aligned.

Things go south when val_print tries to see if there is a pretty-printer
that could be applied. In particular, one of the first things that
the Python pretty-printer does is to create a value using our buffer,
and the given address, which in this case is null (see call to
value_from_contents_and_address in gdbpy_apply_val_pretty_printer).

value_from_contents_and_address, in turn immediately tries to resolve
the type, using the given address, which is null. But, because our
array element is a record containing an array whose bound is the value
of one of its elements (the "s" component), the debugging info for
the array's upper bound is a reference...

 <3><71a>: Abbrev Number: 7 (DW_TAG_subrange_type)
    <71b>   DW_AT_type        : <0x724>
    <71f>   DW_AT_upper_bound : <0x703>

... to component "i" of our record...

 <2><703>: Abbrev Number: 5 (DW_TAG_member)
    <704>   DW_AT_name        : i
    <706>   DW_AT_decl_file   : 2
    <707>   DW_AT_decl_line   : 6
    <708>   DW_AT_type        : <0x6d1>
    <70c>   DW_AT_data_member_location: 0

... where that component is located at offset 0 of the start
of the record. dwarf2_evaluate_property correctly determines
the offset where to load the value of the bound from, but then
tries to read that value from inferior memory using the address
that was given, which is null. See case PROP_ADDR_OFFSET in
dwarf2_evaluate_property:

        val = value_at (baton->offset_info.type,
                        pinfo->addr + baton->offset_info.offset);

This triggers a memory error, which then causes the printing to terminate.

Since there are going to be situations where providing an address
alone is not going to be sufficient (packed arrays where array elements
are not stored at byte boundaries), this patch fixes the issue by
enhancing the type resolution to take both address and data. This
follows the same principle as the val_print module, where both
address and buffer ("valaddr") can be passed as arguments. If the data
has already been fetched from inferior memory (or provided by the
debugging info in some form -- Eg a constant), then use that data
instead of reading it from inferior memory.

Note that this should also be a good step towards being able to handle
dynamic types whose value is stored outside of inferior memory
(Eg: in a register).

With this patch, GDB isn't able to print all of A1, but does perform
a little better:

    (gdb) p a1
    $1 = ((i => 0, s => , (i => 1, s => , (i => 2, s => )

There is another issue which is independent of this one, and will
therefore be patched separately.

gdb/ChangeLog:

        * dwarf2loc.h (struct property_addr_info): Add "valaddr" field.
        * dwarf2loc.c (dwarf2_evaluate_property): Add handling of
        pinfo->valaddr.
        * gdbtypes.h (resolve_dynamic_type): Add "valaddr" parameter.
        * gdbtypes.c (resolve_dynamic_struct): Set pinfo.valaddr.
        (resolve_dynamic_type_internal): Set pinfo.valaddr.
        Add handling of addr_stack->valaddr.
        (resolve_dynamic_type): Add "valaddr" parameter.
        Set pinfo.valaddr field.
        * ada-lang.c (ada_discrete_type_high_bound): Update call to
        resolve_dynamic_type.
        (ada_discrete_type_low_bound): Likewise.
        * findvar.c (default_read_var_value): Likewise.
        * value.c (value_from_contents_and_address): Likewise.
2015-05-05 10:43:35 -07:00
Joel Brobecker
75ea58593b preserve the bit stride when resolving an array type.
Consider the following (Ada) variable...

   A1 : Array_Type := (1 => (I => 0, S => <>),
                       2 => (I => 1, S => "A"),
                       3 => (I => 2, S => "AB"));

... where Array_Type is an array of records whose size is variable:

   subtype Small_Type is Integer range 0 .. 10;
   type Record_Type (I : Small_Type := 0) is record
      S : String (1 .. I);
   end record;
   type Array_Type is array (Integer range <>) of Record_Type;

Trying to print the value of this array currently results in the following
error:

    (gdb) p a1
    Cannot access memory at address 0x61c000

What happens in this case, is that the compiler describes our array
as an array with a specific stride (and bounds being static 1..3):

 <1><749>: Abbrev Number: 10 (DW_TAG_array_type)
    <74a>   DW_AT_name        : (indirect string, offset: 0xb6d): pck__T18s
    <74e>   DW_AT_byte_stride : 16
    <74f>   DW_AT_type        : <0x6ea>
 <2><757>: Abbrev Number: 11 (DW_TAG_subrange_type)
    <758>   DW_AT_type        : <0x75e>
    <75c>   DW_AT_upper_bound : 3

This is because we cannot use, in this case, the size of the record
to determine that stride, since the size of the record depends on
its contents. So the compiler helps us by providing that stride.

The problems start when trying to resolve that type. Because the elements
contained in that array type are dynamic, the array itself is considered
dynamic, and thus we end up creating a resolved version of that array.
And during that resolution, we were not handling the case where the array
had a stride. See gdbtypes.c::resolve_dynamic_array...

  return create_array_type (copy_type (type),
                            elt_type,
                            range_type);

As a result, we created an array whose stride was based on the size
of elt_type, which a record whose size isn't static and irrelevant
regardless.

This patch fixes is by calling create_array_type_with_stride instead.

As it happens, there is another issue for us to be able to print
the value of our array, but those are independent of this patch
and will be handled separately. For now, the patch allows us to
get rid of the first error, and the output is now:

     (gdb) p a1
     $1 = (

gdb/ChangeLog:

	* gdbtypes.c (resolve_dynamic_array): Use
	create_array_type_with_stride instead of create_array_type.
2015-05-05 10:42:07 -07:00
Renlin Li
c7ad08e6e5 [AARCH64] Positively emit symbols for alignment
2015-05-05  Renlin Li  <renlin.li@arm.com>

  gas/
    * config/tc-aarch64.c (aarch64_init_frag): Always generate mapping symbols.

  gas/testsuite/
    * gas/aarch64/mapping_5.d: New.
    * gas/aarch64/mapping_5.s: New.
    * gas/aarch64/mapping_6.d: New.
    * gas/aarch64/mapping_6.s: New.
2015-05-05 17:48:18 +01:00
Nick Clifton
837a17b36c Add support to the MSP430 linker for the automatic placement of code and data into either low or high memory regions.
gas	* config/tc-msp430.c (MAX_OP_LEN): Increase to 4096.
	(msp430_make_init_symbols): New function.
	(msp430_section): Call it.
	(msp430_frob_section): Likewise.

ld	* emulparams/msp430elf.sh (TEMPLATE_NAME): Change to msp430.
	* scripttempl/msp430.sc (.text): Add .lower.text and .either.text.
	(.data): Add .lower.data and .either.data.
	(.bss): Add .lower.bss and .either.bss.
	(.rodata): Add .lower.rodata and .either.rodata.
	* emultempl/msp430.em: New file.  Implements a new orphan
	placement algorithm that divides sections between lower and upper
	memory regions.
	* Makefile.am (emsp430elf.c): Depend upon msp430.em.
	*emsp430X.c): Likewise.
	* Makefine.in: Regenerate.
2015-05-05 13:38:00 +01:00
Max Filippov
b76f99d702 xtensa: optimize trampolines relaxation
Currently every fixup in the current segment is checked when relaxing
trampoline frag. This is very expensive. Make a searchable array of
fixups pointing at potentially oversized jumps at the beginning of every
relaxation pass and only check subset of this cache in the reach of
single jump from the trampoline frag currently being relaxed.

Original profile:

% time    self  children    called     name
-----------------------------------------
        370.16  593.38 12283048/12283048     relax_segment
  98.4  370.16  593.38 12283048         xtensa_relax_frag
         58.91  269.26 2691463834/2699602236     xtensa_insnbuf_from_chars
         68.35   68.17 811266668/813338977     S_GET_VALUE
         36.85   29.51 2684369246/2685538060     xtensa_opcode_decode
         28.34    8.84 2684369246/2685538060     xtensa_format_get_slot
         12.39    5.94 2691463834/2699775044     xtensa_format_decode
          0.03    4.60 4101109/4101109     relax_frag_for_align
          0.18    1.76  994617/994617      relax_frag_immed
          0.07    0.09 24556277/24851220     new_logical_line
          0.06    0.00 12283048/14067410     as_where
          0.04    0.00 7094588/15460506     xtensa_format_num_slots
          0.00    0.00       1/712477      xtensa_insnbuf_alloc
-----------------------------------------

Same data, after optimization:

% time    self  children    called     name
-----------------------------------------
          0.51    7.47 12283048/12283048     relax_segment
  58.0    0.51    7.47 12283048         xtensa_relax_frag
          0.02    4.08 4101109/4101109     relax_frag_for_align
          0.18    1.39  994617/994617      relax_frag_immed
          0.01    0.98     555/555         xtensa_cache_relaxable_fixups
          0.21    0.25 7094588/16693271     xtensa_insnbuf_from_chars
          0.06    0.12 24556277/24851220     new_logical_line
          0.06    0.00 7094588/15460506     xtensa_format_num_slots
          0.02    0.04 7094588/16866079     xtensa_format_decode
          0.05    0.00 12283048/14067410     as_where
          0.00    0.00       1/712477      xtensa_insnbuf_alloc
          0.00    0.00   93808/93808       xtensa_find_first_cached_fixup
-----------------------------------------

2015-05-02  Max Filippov  <jcmvbkbc@gmail.com>
gas/
	* config/tc-xtensa.c (cached_fixupS, fixup_cacheS): New typedefs.
	(struct cached_fixup, struct fixup_cache): New structures.
	(fixup_order, xtensa_make_cached_fixup),
	(xtensa_realloc_fixup_cache, xtensa_cache_relaxable_fixups),
	(xtensa_find_first_cached_fixup, xtensa_delete_cached_fixup),
	(xtensa_add_cached_fixup): New functions.
	(xtensa_relax_frag): Cache fixups pointing at potentially
	oversized jumps at the beginning of every relaxation pass. Only
	check subset of this cache in the reach of single jump from the
	trampoline frag currently being relaxed.
2015-05-05 07:57:33 +03:00
GDB Administrator
e1765cdae2 Automatic date update in version.in 2015-05-05 00:00:07 +00:00
GDB Administrator
44b3de870e Automatic date update in version.in 2015-05-04 00:00:08 +00:00
GDB Administrator
01a97082d0 Automatic date update in version.in 2015-05-03 00:00:07 +00:00
Cary Coutant
efc6fa128f Change Section_id type to use Relobj* instead of Object*.
2015-04-29  Cary Coutant  <cary@google.com>
	    Rafael Ávila de Espíndola <rafael.espindola@gmail.com>

gold/
	* gc.h (Garbage_collection::is_section_garbage): Change Object*
	to Relobj*.
	(Garbage_collection::add_reference): Likewise.
	(Garbage_collection::gc_process_relocs): Likewise. Don't push
	object/shndx pair onto *secvec for dynamic objects. Don't follow
	relocations pointing to dynamic objects for GC.
	* icf.cc (Icf::find_identical_sections): Change Object* to Relobj*.
	(Icf::unfold_section): Likewise.
	(Icf::is_section_folded): Likewise.
	(Icf::get_folded_section): Likewise.
	* icf.h: (Icf::get_folded_section): Likewise.
	(Icf::unfold_section): Likewise.
	(Icf::is_section_folded): Likewise.
	(Icf::section_has_function_pointers): Likewise.
	(Icf::set_section_has_function_pointers): Likewise.
	* object.h (Section_id): Likewise.
	(Const_section_id): Likewise.
	* output.cc (Output_section::update_section_layout): Likewise.
	* output.h: (Output_section_lookup_maps::find_relaxed_input_section):
	Likewise.
	* plugin.cc (update_section_order): Likewise.
	(unique_segment_for_sections): Likewise.
	* powerpc.cc (Powerpc_relobj::add_reference): Likewise.
	(Target_powerpc::do_gc_add_reference): Likewise.
	(Target_powerpc::gc_process_relocs): Likewise.
	(Target_powerpc::do_gc_add_reference): Likewise.
	* symtab.cc (Symbol_table::is_section_folded): Likewise.
	(Symbol_table::gc_mark_symbol): Likewise.
	* symtab.h: (Symbol_table::is_section_folded): Likewise.
	* target.h: (Sized_target::gc_add_reference): Likewise.
	(Sized_target::do_gc_add_reference): Likewise.
2015-05-02 08:43:27 -07:00
GDB Administrator
0138c3463d Automatic date update in version.in 2015-05-02 00:00:08 +00:00
DJ Delorie
d62de9aa69 Fix typos in previous patch.
* config/rl78-parse.y (MULU): Remove ISA_G14.
(MULH, DIVHU, DIVWU, MACHI, MACH): Update error strings.
2015-05-01 15:08:07 -04:00
H.J. Lu
f7d1355102 Sync filenames.h with gcc
Merge with gcc:
	2014-11-11  Anthony Brandon  <anthony.brandon@gmail.com>
		    Manuel López-Ibáñez  <manu@gcc.gnu.org>

	PR driver/36312
	* filenames.h: Add prototype for canonical_filename_eq.
2015-05-01 09:11:15 -07:00
H.J. Lu
e81d5d059b Configure zlib with --enable-host-shared for shared bfd
When bfd is configured as a shared library, we need to configure zlib
with --enable-host-shared since zlib is used by bfd.

	PR ld/18355
	* Makefile.def: Add extra_configure_flags to host zlib.
	* configure.ac (extra_host_zlib_configure_flags): New.  Set
	to --enable-host-shared When bfd is to be built as shared
	library.  AC_SUBST.
	* Makefile.in: Regenerated.
	* configure: Likewise.
2015-05-01 08:34:08 -07:00
H.J. Lu
00923338de Remove i386_elf_emit_arch_note
This x86 assembler patch:

https://sourceware.org/ml/binutils/2001-11/msg00344.html

generates a .note section for .arch directive so that GDB can tell which
architecture an i386 binary belongs:

https://sourceware.org/ml/binutils/2001-11/msg00271.html

However, x86 assembly code can have any instructions.  A .note section
doesn't help.  This patch removes it.

gas/

	* config/tc-i386.c (i386_elf_emit_arch_note): Removed.
	* config/tc-i386.h (md_end): Likewise.
	(i386_elf_emit_arch_note): Likewise.

gas/testsuite/

	* gas/i386/i386.exp: Run note.
	* gas/i386/note.d: New file.
	* gas/i386/note.s: Likewise.
2015-05-01 08:29:16 -07:00
H.J. Lu
b633b7258d Support ix86-*-elf*
bfd/

	* config.bfd: Support i[3-7]86-*-elf*.

gas/

	* configure.tgt: Support i386-*-elf*.
2015-05-01 05:02:30 -07:00
GDB Administrator
d6ad735147 Automatic date update in version.in 2015-05-01 00:00:08 +00:00
DJ Delorie
0952813b0b Make RL78 disassembler and simulator respect ISA for mul/div
[gas]
	* config/rl78-defs.h (rl78_isa_g10): New.
	(rl78_isa_g13): New.
	(rl78_isa_g14): New.
	* config/rl78-parse.y (ISA_G10): New.
	(ISA_G13): New.
	(ISA_G14): New.
	(MULHU, MULH, MULU, DIVHU, DIVWU, MACHU, MACH): Use them.
	* config/tc-rl78.c (rl78_isa_g10): New.
	(rl78_isa_g13): New.
	(rl78_isa_g14): New.

[gdb]
	* rl78-tdep.c (rl78_analyze_prologue): Pass RL78_ISA_DEFAULT to
	rl78_decode_opcode

[include]
	* dis-asm.h (print_insn_rl78_g10): New.
	(print_insn_rl78_g13): New.
	(print_insn_rl78_g14): New.
	(rl78_get_disassembler): New.
	* opcode/rl78.h (RL78_Dis_Isa): New.
	(rl78_decode_opcode): Add ISA parameter.

[opcodes]
	* disassemble.c (disassembler): Choose suitable disassembler based
	on E_ABI.
	* rl78-decode.opc (rl78_decode_opcode): Take ISA parameter.  Use
	it to decode mul/div insns.
	* rl78-decode.c: Regenerate.
	* rl78-dis.c (print_insn_rl78): Rename to...
	(print_insn_rl78_common): ...this, take ISA parameter.
	(print_insn_rl78): New.
	(print_insn_rl78_g10): New.
	(print_insn_rl78_g13): New.
	(print_insn_rl78_g14): New.
	(rl78_get_disassembler): New.

[sim]
	* rl78/cpu.c (g14_multiply): New.
	* rl78/cpu.h (g14_multiply): New.
	* rl78/load.c (rl78_load): Decode ISA completely.
	* rl78/main.c (main): Expand -M to include other ISAs.
	* rl78/rl78.c (decode_opcode): Decode based on ISA.
	* rl78/trace.c (rl78_disasm_fn): New.
	(sim_disasm_init): Reset it.
	(sim_disasm_one): Get correct disassembler for ISA.
2015-04-30 15:25:49 -04:00
H.J. Lu
b49f93f699 Use "else if" on cpu_arch_isa
* config/tc-i386.c (i386_target_format): Use "else if" on
	cpu_arch_isa.
2015-04-30 08:36:17 -07:00
Nick Clifton
153a27763c Fix handling of relocs for the MeP target.
bfd	PR 18317
	* elf32-mep.c (MEPREL): Use bfd_elf_generic_reloc instead of
	mep_reloc.
	(mep_reloc): Delete unused function.

bin	* readelf.c (get_machine_flags): Add description of MeP flags.

tests	* binutils-all/objdump.exp (cpus_expected): Add MeP CPU names.
2015-04-30 15:57:41 +01:00
H.J. Lu
914082d11b Undef elf_backend_post_process_headers for Solaris
* elf32-i386.c (elf_backend_post_process_headers): Undef for
	Solaris 2.
2015-04-30 06:52:34 -07:00
Nick Clifton
8b2d793ce5 GAS ARM: Warn if the user creates a symbol with the same name as an instruction.
PR gas/18347
gas	* config/tc-arm.c (md_undefined_symbol): Issue a warning message
	(if enabled) when the user creates a symbol with the same name as
	an ARM instruction.
	(flag_warn_syms): New static variable.
	(arm_opts): Add mwarn-syms and mno-warn-syms.
	* doc/c-arm.texi (ARM Options): Document the -m[no-]warn-syms
	options.

tests	* gas/arm/pr18347.s: New file: Test case.
	* gas/arm/pr18347.l: New file: Expected assembler output.
	* gas/arm/pr18347.d: New file: Test driver.
2015-04-30 11:17:55 +01:00
Nick Clifton
7ce98c164e Adds documentation of GAS's .zero directive.
PR gas/18353
	* doc/as.texinfo (Zero): Add documentation of the .zero pseudo-op.
2015-04-30 10:13:53 +01:00
Yao Qi
5fccc63539 Skip setting HW watchpoint if skip_hw_watchpoint_multi_tests in gdb.base/break-idempotent.exp
Hi,
I see this fails below on arm linux native testing and remote testing
with "set remote hardware-watchpoint-limit 1",

 rwatch global^M
 There are not enough available hardware resources for this watchpoint.^M
 (gdb) FAIL: gdb.base/break-idempotent.exp: always-inserted off: rwatch: twice: rwatch global

gdb.base/break-idempotent.exp sets two breakpoints/watchpoints on the
same address.  GDB isn't smart enough calculate these two HW
watchpoints can fit in one HW debug register, so the error message
above isn't necessary (there is one HW watchpoint register on arm).
Because target_ops interface can_use_hardware_watchpoint doesn't
pass enough information to the target backend.

Note that if I don't "set remote hardware-watchpoint-limit 1" in
remote testing, this test passes without fails.  However without
"set remote hardware-watchpoint-limit 1", many other watchpoint
tests fail.

This patch is to add a check to skip_hw_watchpoint_multi_tests
for rwatch and awatch.  We can add such check for watch as well,
but GDB is able to switch to software watchpoint if HW resource
isn't available, it doesn't cause any fail, I decide not to skip.

gdb/testsuite:

2015-04-30  Yao Qi  <yao.qi@linaro.org>

	* gdb.base/break-idempotent.exp: If
	skip_hw_watchpoint_multi_tests returns true, skip the tests
	on "rwatch" and "awatch".
2015-04-30 10:08:10 +01:00
Yao Qi
42d38f42dc Skip gdb.base/relativedebug.exp if libc doesn't have debug info
Hi,
I see the fail in gdb.base/relativedebug.exp on aarch64 box on which
glibc doesn't have debug info,

 bt^M
 #0 0x0000002000061a88 in raise () from /lib/aarch64-linux-gnu/libc.so.6^M
 #1 0x0000002000064efc in abort () from /lib/aarch64-linux-gnu/libc.so.6^M
 #2 0x0000000000400640 in handler (signo=14) at ../../../binutils-gdb/gdb/testsuite/gdb.base/relativedebug.c:25^M
 #3 <signal handler called>^M
 #4 0x00000020000cc478 in ?? () from /lib/aarch64-linux-gnu/libc.so.6^M
 #5 0x0000000000400664 in main () at ../../../binutils-gdb/gdb/testsuite/gdb.base/relativedebug.c:32^M
 (gdb) FAIL: gdb.base/relativedebug.exp: pause found in backtrace

if glibc has debug info, this test doesn't fail.

In sysdeps/unix/sysv/linux/generic/pause.c, __libc_pause calls
__syscall_pause,

  static int
  __syscall_pause (void)
  {
    sigset_t set;

    int rc =
      INLINE_SYSCALL (rt_sigprocmask, 4, SIG_BLOCK, NULL, &set, _NSIG / 8);
    if (rc == 0)
      rc = INLINE_SYSCALL (rt_sigsuspend, 2, &set, _NSIG / 8);

    return rc;
  }

  int
  __libc_pause (void)
  {
    if (SINGLE_THREAD_P)
      return __syscall_pause ();     <--- tail call

    int oldtype = LIBC_CANCEL_ASYNC ();

    int result = __syscall_pause ();

    LIBC_CANCEL_RESET (oldtype);

    return result;
  }

and GDB unwinder is confused by the GCC optimized code,

(gdb) disassemble pause
Dump of assembler code for function pause:
   0x0000007fb7f274c4 <+0>:     stp     x29, x30, [sp,#-32]!
   0x0000007fb7f274c8 <+4>:     mov     x29, sp
   0x0000007fb7f274cc <+8>:     adrp    x0, 0x7fb7fd2000
   0x0000007fb7f274d0 <+12>:    ldr     w0, [x0,#364]
   0x0000007fb7f274d4 <+16>:    stp     x19, x20, [sp,#16]
   0x0000007fb7f274d8 <+20>:    cbnz    w0, 0x7fb7f274e8 <pause+36>

   0x0000007fb7f274dc <+24>:    ldp     x19, x20, [sp,#16]
   0x0000007fb7f274e0 <+28>:    ldp     x29, x30, [sp],#32
   0x0000007fb7f274e4 <+32>:    b       0x7fb7f27434    <---- __syscall_pause

   0x0000007fb7f274e8 <+36>:    bl      0x7fb7f5e080

Note that the program stops in __syscall_pause, but its symbol is
stripped in glibc, so GDB doesn't know where the program stops.
__syscall_pause is a tail call in __libc_pause, so it returns to main
instead of __libc_pause.  As a result, the backtrace is like,

 #0  0x0000007fb7ebca88 in raise () from /lib/aarch64-linux-gnu/libc.so.6
 #1  0x0000007fb7ebfefc in abort () from /lib/aarch64-linux-gnu/libc.so.6
 #2  0x0000000000400640 in handler (signo=14) at ../../../binutils-gdb/gdb/testsuite/gdb.base/relativedebug.c:25
 #3  <signal handler called>
 #4  0x0000007fb7f27478 in ?? () from /lib/aarch64-linux-gnu/libc.so.6   <-- [in __syscall_pause]
 #5  0x0000000000400664 in main () at ../../../binutils-gdb/gdb/testsuite/gdb.base/relativedebug.c:32

looks GDB does nothing wrong here.  I looked back at the test case
gdb.base/relativedebug.exp, which was added
https://sourceware.org/ml/gdb-patches/2006-10/msg00305.html
This test was indented to test the problem that "backtraces no longer
display some libc functions" after separate debug info is installed.
IOW, it makes few sense to test against libc which doesn't have debug
info at all, such as my case.

This patch is to tweak the test case to catch the output of
"info shared", if "(*)" is found for libc.so, which means libc doesn't
have debug info, then skip the test.

gdb/testsuite:

2015-04-30  Yao Qi  <yao.qi@linaro.org>

	* gdb.base/relativedebug.exp: Invoke gdb command
	"info sharedlibrary", and if libc.so doesn't have debug info,
	skip the test.
2015-04-30 09:55:06 +01:00
GDB Administrator
97bf273d5d Automatic date update in version.in 2015-04-30 00:00:08 +00:00
Doug Evans
2ce1cdbf84 PR python/18285
gdb/ChangeLog:

	PR python/18285
	* NEWS: Document new gdb.XMethodWorker.get_result_type method.
	* eval.c (evaluate_subexp_standard) <OP_FUNCALL>: Handle
	EVAL_AVOID_SIDE_EFFECTS for xmethods.
	* extension-priv.h (struct extension_language_ops)
	<get_xmethod_result_type>: New member.
	* extension.c (get_xmethod_result_type): New function.
	* extension.h (get_xmethod_result_type): Declare.
	* python/py-xmethods.c (get_result_type_method_name): New static
	global.
	(py_get_result_type_method_name): Ditto.
	(gdbpy_get_xmethod_result_type): New function.
	(gdbpy_initialize_xmethods): Initialize py_get_result_type_method_name.
	* python/python-internal.h (gdbpy_get_xmethod_result_type): Declare.
	* python/python.c (python_extension_ops): Add
	gdbpy_get_xmethod_result_type.
	* python/lib/gdb/xmethod.py (XMethodWorker): Add get_result_type.
	* valarith.c (value_x_binop): Handle EVAL_AVOID_SIDE_EFFECTS for
	xmethods.
	(value_x_unop): Ditto.
	* value.c (result_type_of_xmethod): New function.
	* value.h (result_type_of_xmethod): Declare.

gdb/testsuite/ChangeLog:

	* gdb.python/py-xmethods.exp: Add ptype tests.
	* gdb.python/py-xmethods.py (E_method_char_worker): Add
	get_result_type method.

gdb/doc/ChangeLog:

	* python.texi (Xmethod API) <gdb.XMethodWorker.get_result_type>:
	Document.
	(Writing an Xmethod): Add get_result_type to example.
2015-04-29 13:24:21 -07:00
Nick Clifton
99b2a2dd3c Fix an internal error in GAS when assembling a bogus piece of source code.
gas	PR 18256
	* config/tc-arm.c (encode_arm_cp_address): Issue an error message
	if the operand is neither a register nor a vector.

tests	* gas/arm/pr18256.s: New file: Test case.
	* gas/arm/pr18256.l: New file: Expected assembler output.
	* gas/arm/pr18256.d: New file: Test driver.
2015-04-29 17:09:05 +01:00
H.J. Lu
43c1d34c31 Link the last *normal against libfoozlib.so
Link the last zlibnormal gnunormal and gabinormal against libfoozlib.so
so that their only differences are DWARF debug sections.

	PR ld/18354
	* ld-elf/compress.exp (run_tests): Link the last zlibnormal,
	gnunormal and gabinormal against libfoozlib.so.
2015-04-29 08:43:22 -07:00
H.J. Lu
716f14132a Fix 18354 2015-04-29 08:40:31 -07:00
Nick Clifton
f9d3ecaa78 Updated translations for various binutils components.
gold	* po/fi.po: Updated Finnish translation.

opcodes	* po/fr.po: Updated French translation.

gprof	* po/da.po: Update Danish translation.
2015-04-29 16:26:14 +01:00
Luis Machado
f24a38c514 Use software watchpoints if hardware watchpoints are not available when testing gdb.base/watch-bitfields.exp
There are targets GDB thinks support hardware watchpoints, but in reality they
don't.  Though it may seem that hardware watchpoint creation was successful,
the actual insertion of such watchpoint will fail when GDB moves the inferior.

(gdb) watch -location q.a^M
Hardware watchpoint 2: -location q.a^M
(gdb) PASS: gdb.base/watch-bitfields.exp: -location watch against bitfields: watch -location q.a
watch -location q.e^M
Hardware watchpoint 3: -location q.e^M
(gdb) PASS: gdb.base/watch-bitfields.exp: -location watch against bitfields: watch -location q.e
print q.a^M
$1 = 0^M
(gdb) PASS: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.a: 0->1: print expression before
continue^M
Continuing.^M
Warning:^M
Could not insert hardware watchpoint 2.^M
Could not insert hardware watchpoint 3.^M
Could not insert hardware breakpoints:^M
You may have requested too many hardware breakpoints/watchpoints.^M
^M
(gdb) FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.a: 0->1: continue

This leads to a number of FAILs:

FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.a: 0->1: continue
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.a: 0->1: print expression after
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.e: 0->5: continue
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.e: 0->5: print expression after
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.a: 1->0: print expression before
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.a: 1->0: continue
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.e: 5->4: print expression before
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.e: 5->4: continue
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: q.e: 5->4: print expression after
FAIL: gdb.base/watch-bitfields.exp: -location watch against bitfields: continue until exit
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 0->4: continue
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 0->4: print expression after
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 4->10: print expression before
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 4->10: continue
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 4->10: print expression after
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 10->3: print expression before
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 10->3: continue
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 10->3: print expression after
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 3->2: print expression before
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 3->2: continue
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 3->2: print expression after
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 2->1: print expression before
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 2->1: continue
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 2->1: print expression after
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 1->0: print expression before
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: q.d + q.f + q.g: 1->0: continue
FAIL: gdb.base/watch-bitfields.exp: regular watch against bitfields: continue until exit

We can avoid these errors/FAILs by checking the board data and switching to
software watchpoints if the board does not support hardware watchpoints.

gdb/testsuite/ChangeLog:

2015-04-29  Luis Machado  <lgustavo@codesourcery.com>

	* gdb.base/watch-bitfields.exp: Switch to software watchpoints if
	the target does not support hardware watchpoints.
2015-04-29 12:22:24 -03:00
Luis Machado
ecbf2b3c4f Handle memory write errors on gdb.base/break-always.exp
This is another case of the testcase not handling memory write errors that
happen on some targets (QEMU) when GDB attempts to modify an address that
should contain a breakpoint, for example.

The following patch handles this and prevents spurious failures from
happening. It also adds a foreach loop to avoid duplication of code
and hardcoded patterns.

gdb/testsuite/ChangeLog:

2015-04-29  Luis Machado  <lgustavo@codesourcery.com>

	* gdb.base/break-always.exp: Abort testing if writing to memory
	causes an error.
2015-04-29 12:09:40 -03:00
Nick Clifton
0a13382c8e Fix problems in the sim sources discovered by running the cppcheck static analysis tool.
erc32	PR 18273
	* sis.c (main): Remove unreachable code.

m68hc11	* gencode.c (gen_fetch_operands): Remove unreachable code.

ppc	* hw_htab.c (htab_map_binary): Fix overlap check.

common	* sim-fpu.c (INLINE_SIM_FPU): Fix static analysis warning by
	increasing parenthesis around casts to signed values.
2015-04-29 16:02:02 +01:00
Gary Benson
998d2a3ef3 Allow passing fd == NULL to exec_file_find and solib_find
This commit allows NULL to be passed as the int *fd argument
to exec_file_find and solib_find to simplify use cases where
the caller does not require the file to be opened.

gdb/ChangeLog:

	* solib.c (solib_find_1): Allow fd argument to be NULL.
	(exec_file_find): Update comment.
	(solib_find): Likewise.
	* exec.c (exec_file_locate_attach): Use NULL as fd
	argument to exec_file_find to avoid having to close
	the opened file.
	* infrun.c (follow_exec): Likewise.
2015-04-29 15:20:22 +01:00
Nick Clifton
a93d5cb197 Add support for absolute PE/x86 relocations.
PR 17099
	* coff-i386.c (coff_i386_rtype_to_howto): Allow absolute PCRLONG
	relocs.
2015-04-29 12:26:46 +01:00
Nick Clifton
5d239759c0 Updates the description of GAS's .set directive, to note that for some targets a symbolic value can only be set once.
* doc/as.texinfo (Set): Note that a symbol cannot be set multiple
	times if the expression is not constant and the target uses linker
	relaxation.
2015-04-29 11:10:45 +01:00
Jiong Wang
9081b64dc1 [ARM] Update ld testcases
2015-04-29  Renlin Li  <renlin.li@arm.com>
ld/testsuite/
  * ld-arm/ifunc-10.dd: Adjust expected output.
  * ld-arm/ifunc-2.dd: Likewise.
2015-04-29 11:04:17 +01:00
Doug Evans
34f5f757b3 PR python/18299
gdb/ChangeLog:

	PR python/18299
	* python/lib/gdb/printing.py (register_pretty_printer): Handle
	name or __name__ attributes.  Handle gdb module as first argument.

gdb/testsuite/ChangeLog:

	* gdb.python/py-pp-maint.py: Move "replace" testing to ...
	* gdb.python/py-pp-registration.exp: ... here.  New file.
	* gdb.python/py-pp-registration.c: New file.
	* gdb.python/py-pp-registration.py: New file.
2015-04-28 22:14:23 -07:00
Doug Evans
69b4374a87 PR python/18089
gdb/ChangeLog:

	PR python/18089
	* python/py-prettyprint.c (print_children): Verify result of children
	iterator.  Provide better error message.
	* python/python-internal..h (gdbpy_print_python_errors_p): Declare.
	* python/python.c (gdbpy_print_python_errors_p): New function.

gdb/testsuite/ChangeLog:

	* gdb.python/py-bad-printers.c: New file.
	* gdb.python/py-bad-printers.py: New file.
	* gdb.python/py-bad-printers.exp: New file.
2015-04-28 21:53:54 -07:00
Doug Evans
5e7cf0784c * gdbtypes.h (struct cplus_struct_type) <n_baseclasses>: Fix comment.
gdb/ChangeLog:

	* gdbtypes.h (struct cplus_struct_type) <n_baseclasses>: Fix comment.
2015-04-28 21:23:24 -07:00
Sasha Smundak
59fb7612dd Add gdb.Type.optimized_out method.
gdb/ChangeLog:

	* NEWS: Mention gdb.Type.optimized_out method.
	* python/py-type.c (typy_optimized_out):  New function.

gdb/doc/ChangeLog:

	* python.texi: New method documented.

gdb/testsuite/ChangeLog:

	* gdb.python/py-type.exp: New test.
2015-04-28 17:41:09 -07:00
GDB Administrator
521f2feb98 Automatic date update in version.in 2015-04-29 00:00:08 +00:00
Andreas Schwab
a13eab064f Eat newlines inside INPUT statements in linker scripts
ld/
	PR ld/18344
	* ldlex.l (INPUTLIST): Increment lineno on newline.
2015-04-28 21:55:28 +02:00
John Baldwin
cea6e4f13a Use "gdb_wait.h" instead of <sys/wait.h>.
gdb/ChangeLog:
	* fbsd-nat.c: Include "gdb_wait.h" instead of <sys/wait.h>.
2015-04-28 14:44:07 -04:00
Renlin Li
f9c1b181a7 [ARM]Positively emit symbols for alignment
2015-04-28  Renlin Li  <renlin.li@arm.com>
  gas/
    * config/tc-arm.c (arm_init_frag): Always emit mapping symbols.

  gas/testsuite/
    * gas/arm/thumb2_vpool_be.d: Adjust the desired output.
    * gas/arm/vldconst_be.d: Ditto.
2015-04-28 17:10:26 +01:00
Patrick Palka
24b73f8e74 Disable readline's SIGWINCH handler
We no longer need it as we handle SIGWINCH ourselves.  Also move the
call to init_page_info() from initialize_utils() to the latter
function's only caller, gdb_init().

gdb/ChangeLog:

	* utils.c (init_page_info): Set rl_catch_sigwinch to zero.
	(initialize_utils): Move call of init_page_info() to ...
	* top.c (gdb_init): ... here.
2015-04-28 08:51:03 -04:00