2016-05-10 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elf32-arm.c (enum elf32_arm_stub_type): Delete
arm_stub_a8_veneer_lwm enumerator.
(arm_stub_a8_veneer_lwm): New unsigned constant to replace
aforementioned enumerator.
(struct elf32_arm_stub_hash_entry): Delete target_addend
field and add source_value.
(struct a8_erratum_fix): Delete addend field and add target_offset.
(stub_hash_newfunc): Initialize source_value field amd remove
initialization for target_addend.
(arm_build_one_stub): Stop special casing Thumb relocations: promote
the else to being always executed, moving the
arm_stub_a8_veneer_b_cond specific code in it. Remove
stub_entry->target_addend from points_to computation.
(cortex_a8_erratum_scan): Store in a8_erratum_fix structure the offset
to target symbol from start of section rather than the offset from the
stub address.
(elf32_arm_size_stubs): Set stub_entry's source_value and target_value
fields from struct a8_erratum_fix's offset and target_offset
respectively.
(make_branch_to_a8_stub): Rename target variable to loc. Compute
veneered_insn_loc and loc using stub_entry's source_value.
PR ld/20059
* elfxx-target.h (bfd_elfNN_bfd_copy_link_hash_symbol_type):
Define as _bfd_generic_copy_link_hash_symbol_type when using
generic hash table.
PR binutils/20063
* elf.c (bfd_elf_get_elf_syms): Check for out of range sh_link
field before accessing sections array.
* readelf.c (get_32bit_section_headers): Warn if an out of range
sh_link or sh_info field is encountered.
(get_64bit_section_headers): Likewise.
When a global symbol is defined in COMDAT group, we shouldn't leave an
undefined symbol in symbol table when the symbol section is discarded
unless there is a reference to the symbol outside of COMDAT group.
bfd/
PR ld/17550
* elf-bfd.h (elf_link_hash_entry): Update comments for indx,
documenting that indx == -3 if symbol is defined in a discarded
section.
* elflink.c (elf_link_add_object_symbols): Set indx to -3 if
symbol is defined in a discarded section.
(elf_link_output_extsym): Strip a global symbol defined in a
discarded section.
ld/
PR ld/17550
* testsuite/ld-elf/pr17550-1.s: New file.
* testsuite/ld-elf/pr17550-2.s: Likewise.
* testsuite/ld-elf/pr17550-3.s: Likewise.
* testsuite/ld-elf/pr17550-4.s: Likewise.
* testsuite/ld-elf/pr17550a.d: Likewise.
* testsuite/ld-elf/pr17550b.d: Likewise.
* testsuite/ld-elf/pr17550c.d: Likewise.
* testsuite/ld-elf/pr17550d.d: Likewise.
elf_backend_add_symbol_hook is undefined for FreeBSD. Define it for
Intel MCU to support STB_GNU_UNIQUE for Intel MCU and NaCl.
* elf32-i386.c (elf_backend_add_symbol_hook): Defined for Intel
MCU.
* elf32-i386.c (elf_i386_convert_load): Extract the GOT load
conversion to ...
(elf_i386_convert_load_reloc): This. New function.
* elf64-x86-64.c (elf_x86_64_convert_load): Extract the GOT load
conversion to ...
(elf_x86_64_convert_load_reloc): This. New function.
Cache the section contents in x86 check_relocs for sections without
TLS relocations.
* elf32-i386.c (elf_i386_check_tls_transition): Remove abfd.
Don't check if contents == NULL.
(elf_i386_tls_transition): Add from_relocate_section. Check
from_relocate_section instead of contents != NULL. Update
elf_i386_check_tls_transition call.
(elf_i386_check_relocs): Cache the section contents if
keep_memory is FALSE. Pass FALSE as from_relocate_section to
elf_i386_tls_transition.
(elf_i386_relocate_section): Pass TRUE as from_relocate_section
to elf_i386_tls_transition.
(elf_backend_caches_rawsize): New.
* elf64-x86-64.c (elf_x86_64_check_tls_transition): Don't check
if contents == NULL.
(elf_x86_64_tls_transition): Add from_relocate_section. Check
from_relocate_section instead of contents != NULL.
(elf_x86_64_check_relocs): Cache the section contents if
keep_memory is FALSE. Pass FALSE as from_relocate_section to
elf_x86_64_tls_transition.
(elf_x86_64_relocate_section): Pass TRUE as from_relocate_section
to elf_x86_64_tls_transition.
(elf_backend_caches_rawsize): New.
When handling absolute relocations for global symbols bind within the
shared object, AArch64 will generate one dynamic RELATIVE relocation,
but won't apply the value for this absolution relocations at static
linking stage. This is different from AArch64 gold linker and x86-64.
This is not a bug as AArch64 is RELA, there is only guarantee that
relocation addend is placed in the relocation entry. But some
system softwares originally writen for x86-64 might assume AArch64
bfd linker gets the same behavior as x86-64, then they could take
advantage of this buy skipping those RELATIVE dynamic relocations
if the load address is the same as the static linking address.
This patch makes AArch64 BFD linker applies absolution relocations at
static linking stage for scenario described above. Meanwhile old AArch64
android loader has a bug (PR19163) which relies on current linker behavior
as a workaround, so the same option --no-apply-dynamic-relocs added.
Set interpreter in x86 create_dynamic_sections to make this information
available to x86 check_relocs.
* elf32-i386.c (elf_i386_size_dynamic_sections): Move interp
setting to ...
(elf_i386_create_dynamic_sections): Here.
* elf64-x86-64.c (elf_x86_64_size_dynamic_sections): Move
interp setting to ...
(elf_x86_64_create_dynamic_sections): Here.
When UNDEFINED_WEAK_RESOLVED_TO_ZERO is checked to convert load via
GOT, has_got_reloc is always TRUE. This patch adds GOT_RELOC, which
is TRUE in x86 convert_load, to UNDEFINED_WEAK_RESOLVED_TO_ZERO.
* elf32-i386.c (UNDEFINED_WEAK_RESOLVED_TO_ZERO): Take GOT_RELOC
and replace (EH)->has_got_reloc with GOT_RELOC.
(elf_i386_fixup_symbol): Pass has_got_reloc to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
(elf_i386_allocate_dynrelocs): Likewise.
(elf_i386_relocate_section): Likewise.
(elf_i386_finish_dynamic_symbol): Likewise.
(elf_i386_convert_load): Pass TRUE to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
* elf64-x86-64.c (UNDEFINED_WEAK_RESOLVED_TO_ZERO): Take
GOT_RELOC and replace (EH)->has_got_reloc with GOT_RELOC.
(elf_x86_64_fixup_symbol): Pass has_got_reloc to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
(elf_x86_64_allocate_dynrelocs): Likewise.
(elf_x86_64_relocate_section): Likewise.
(elf_x86_64_finish_dynamic_symbol): Likewise.
(elf_x86_64_convert_load): Pass TRUE to
UNDEFINED_WEAK_RESOLVED_TO_ZERO.
No need to relocate section when check_relocs failed.
* elf32-i386.c (check_relocs_failed): New.
(elf_i386_check_relocs): Set check_relocs_failed on error.
(elf_i386_relocate_section): Skip if check_relocs failed.
PR 19938
bfd * elf-bfd.h (struct elf_backend_data): Rename
elf_backend_set_special_section_info_and_link to
elf_backend_copy_special_section_fields.
* elfxx-target.h: Likewise.
* elf.c (section_match): Ignore the SHF_INFO_LINK flag when
comparing section flags.
(copy_special_section_fields): New function.
(_bfd_elf_copy_private_bfd_data): Copy the EI_ABIVERSION field.
Perform two scans over special sections. The first one looks for
a direct mapping between the output section and an input section.
The second scan looks for a possible match based upon section
characteristics.
* elf32-arm.c (elf32_arm_copy_special_section_fields): New
function. Handle setting the sh_link field of SHT_ARM_EXIDX
sections.
* elf32-i386.c (elf32_i386_set_special_info_link): Rename to
elf32_i386_copy_solaris_special_section_fields.
* elf32-sparc.c (elf32_sparc_set_special_section_info_link):
Rename to elf32_sparc_copy_solaris_special_section_fields.
* elf64-x86-64.c (elf64_x86_64_set_special_info_link): Rename to
elf64_x86_64_copy_solaris_special_section_fields.
binutils* readelf.c (get_solaris_segment_type): New function.
(get_segment_type): Call it.
Skip debug sections when estimating distances between output sections
since compressed_size is used to compress debug sections and debug
sections aren't excluded from distances between output sections.
bfd/
PR ld/20006
* elf64-x86-64.c (elf_x86_64_convert_load): Skip debug sections
when estimating distances between output sections.
ld/
PR ld/20006
* testsuite/ld-elfvsb/elfvsb.exp (COMPRESS_LDFLAG): New.
(visibility_run): Pass COMPRESS_LDFLAG to visibility_test on
ELF targets.
include/
* bfdlink.h (struct bfd_link_hash_entry): Add "section" field to
undef. Formatting.
bfd/
* elflink.c (_bfd_elf_is_start_stop): New function.
(_bfd_elf_gc_mark_rsec): Use it.
* elf-bfd.h (_bfd_elf_is_start_stop): Declare.
arithmetic on void * is undefined in ISO C, so we should avoid it. In
GNU C sizeof void * is defined as 1, and that is pretty clearly what
this code wants, so change it to do arithmetic on bfd_byte *.
Unfortunately most of the argument types come from virtual function
interfaces so changing the types to bfd_byte * isn't trivial though it
might make the code clearer. So for the moment its easiest to leave the
variable types as void * and cast before doing arithmetic.
bfd/ChangeLog:
2016-04-26 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* elf32-rx.c (rx_set_section_contents): Avoid arithmetic on void *.
* mmo.c (mmo_get_section_contents): Likewise.
(mmo_set_section_contents): Likewise.
There is an unused NULL entry at the head of dynamic symbol table which
we must account for in our count even if the table is empty or unused
since it is intended for the mandatory DT_SYMTAB tag (.dynsym section)
in .dynamic section.
* elf-bfd.h (elf_link_hash_table): Update comments for
dynsymcount.
* elflink.c (_bfd_elf_link_renumber_dynsyms): Always count for
the unused NULL entry at the head of dynamic symbol table.
(bfd_elf_size_dynsym_hash_dynstr): Remove dynsymcount != 0
checks.
Some ELF targets create a "linker stubs" fake bfd. Don't use it to
set dynobj.
* elflink.c (_bfd_elf_link_create_dynstrtab): Exclude linker
created file from dynobj.
When check_relocs is called after gc-sections has run,
_bfd_elf_link_create_dynstrtab may be called with an dynamic object
and hash_table->dynobj may be NULL. We may not set dynobj, an input
file holding linker created dynamic sections to the dynamic object,
which has its own dynamic sections. We need to find a normal input
file to hold linker created sections if possible. Otherwise ld will
crash during LTO input rescan when linker created dynamic section
overrides input dynamic section.
* elflink.c (_bfd_elf_link_create_dynstrtab): Set dynobj to a
normal input file if possible.
Since x86 backends never see the removed sections, there is no need
for gc_sweep_hook.
* elf32-i386.c (elf_i386_gc_sweep_hook): Removed.
(elf_backend_gc_sweep_hook): Likewise.
* elf64-x86-64.c (elf_x86_64_gc_sweep_hook): Likewise.
(elf_backend_gc_sweep_hook): Likewise.
When checking relocations after gc-sections has run, the unused sections
have been removed. Don't check relocations in excluded sections.
* elflink.c (_bfd_elf_link_check_relocs): Don't check relocations
in excluded sections
Since elf_x86_64_check_relocs is called after opening all input files,
we can detect dynamic R_X86_64_32 relocation overflow there.
bfd/
PR ld/19969
* elf64-x86-64.c (check_relocs_failed): New.
(elf_x86_64_need_pic): Moved before elf_x86_64_check_relocs.
Support relocation agaist local symbol. Set check_relocs_failed.
(elf_x86_64_check_relocs): Use elf_x86_64_need_pic. Check
R_X86_64_32 relocation overflow.
(elf_x86_64_relocate_section): Skip if check_relocs failed.
Update one elf_x86_64_need_pic and remove one elf_x86_64_need_pic.
ld/
PR ld/19969
* testsuite/ld-x86-64/pr19969.d: New file.
* testsuite/ld-x86-64/pr19969a.S: Likewise.
* testsuite/ld-x86-64/pr19969b.S: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr19969 tests.