This fixes PR sim/19441. In the MIPS simulator the microMIPS
functions in micromips.igen were not predicated on the microMIPS
models. This was causing build issues for some target triples.
This patch sets all the microMIPS specific functions to only be built if
the micromips32, micromips64 or micromipsdsp models are used.
PR sim/19441
* micromips.igen (delayslot_micromips): Enable for `micromips32',
`micromips64' and `micromipsdsp' only.
(process_isa_mode): Enable for `micromips32' and `micromips64' only.
(do_micromips_jalr, do_micromips_jal): Likewise.
(compute_movep_src_reg): Likewise.
(compute_andi16_imm): Likewise.
(convert_fmt_micromips): Likewise.
(convert_fmt_micromips_cvt_d): Likewise.
(convert_fmt_micromips_cvt_s): Likewise.
(FMT_MICROMIPS): Likewise.
(FMT_MICROMIPS_CVT_D): Likewise.
(FMT_MICROMIPS_CVT_S): Likewise.
The mips bfd will sign extend 32-bit addresses into 64-bit values,
so if the entry happens to be 0x80000000 or higher, it is turned to
0xffffffff80000000 which points to memory that doesn't exist.
This wasn't an issue until commit 26f8bf63bf
as all addresses were automatically truncated there in the translate
function to 32-bits. When we cleaned up that code, the full 64-bits
were checked leading to many test failures for mips-sde-elf targets
and such.
Rather than stuffing the command line with a bunch of -D flags, start
moving things to config.h which is managed by autoheader. This makes
the makefile a bit simpler and the build output tighter, and it makes
the migration to automake easier as there are fewer vars to juggle.
We'll want to move the other options out too, but it'll take more work.
This was imported from the ppc sim, but that was only used to control
a single file, and that is already governed by the hw models. There's
no need to have a sep configure option here, especially since none of
the other sims are using it. Even when the code is enabled, there's
no runtime overhead.
Currently ports have to call SIM_AC_OPTION_ENVIRONMENT explicitly in
order to make the configure flag available. There's no real reason
to not allow this flag for all ports, so move it to the common sim
macro. This way we get standard behavior across all ports too.
Currently ports have to call SIM_AC_OPTION_ASSERT explicitly in order
to make the configure flag available, which none of them do. There's
no real reason to not allow this flag for all ports, so move it to the
common sim macro. This way we get standard behavior across all ports.
We don't have alternative nltvals.def files, so always symlinking
the targ-vals.def file to it doesn't gain us anything. It does
make the build more complicated though and a pain to convert to
something newer (like automake). Drop the symlinking entirely.
In the future, we'll want to explode this file anyways into the
respective arch dirs so things can be selected dynamically at
runtime, so it's not like we'll be bringing this back.
No other port calls this macro directly, and mips has it hardcoded
to the default -- disabling smp. In the future we'll enable this
for all targets in common code, so tidy up the mips code now.
Currently ports have to call SIM_AC_OPTION_INLINE explicitly in order
to make the configure flag available. There's no real reason to not
allow this flag for all ports, so move it to the common sim macro.
This way we get standard behavior across all ports too.
These options were never exposed for most sims (just the ppc one),
and they are really only useful on 32-bit x86 systems. Considering
modern systems tend to be 64-bit x86_64 and how well modern compilers
are at optimizing code, these have outlived their usefulness.
No other sub directory provides such a configuration option, so
drop it from the sim dir as well. This cleans up a good bit of
code in the process.
If people want to use custom flags for just the sim, they can
still run configure+make by hand in the sim subdir and use the
normal CFLAGS settings.
The common subdir sets up a cconfig.h file to hold checks for the common
code. In practice, most files still end up using config.h instead which
just leads to confusion.
Merge all the configure checks that went into cconfig.h into SIM_AC_COMMON
so we can drop the cconfig.h file altogether. Now there is only a single
config.h file like normal.
The compiler/C library should produce reasonable code for htonl/ntohl,
and at least glibc tries pretty hard to always produce good code for
them. This logic only had support for 32-bit x86 systems anymore, and
it's unlikely people were even opting into this, so drop it all.
Fix a long standing todo where we let getopt write directly to stderr
when an invalid option is passed. Use the sim io funcs instead as they
go through the filtered callbacks that gdb wants.
The --enable-sim-hostendian flag was purely so people had an escape route
for when cross-compiling. This is because historically, AC_C_BIGENDIAN
did not work in those cases. That was fixed a while ago though, so we can
require that macro everywhere now and simplify a good bit of code.
Rather than re-invent endian defines, as well as maintain our own list
of OS & arch-specific includes, punt all that logic in favor of the bfd
ones already set up and maintained elsewhere. We already rely on the
bfd library, so leveraging the endian aspect should be fine.
The global current_state handle to the current simulator state is a
design idea that was half implemented, but never really cleaned up.
The point was to have a global variable pointing to the state so that
funcs could more quickly & easily access the state anywhere. We've
instead moved in the direction of passing state around everywhere and
don't have any intention of moving back.
I also can't find any references to gdb using this variable, or to
cgen related "dump_regs" functions, both of which were used in the
comments related to this code.
Pretty much all targets are using this module already, so add it to the
common list of objects. The only oddball out here is cris and that's
because it supports loading via an offset for all the phdrs. We drop
support for that.
No arch is using this anymore, and we want all new ports using the
hardware framework instead. Punt WITH_DEVICES and the two callbacks
device_io_{read,write}_buffer.
We can also punt the tconfig.h file as no port is using it anymore.
This fixes in-tree builds that get confused by picking up the wrong
one (common/ vs <port>/) caused by commit ae7d0cac8c.
Any port that needs to set up a global define can use their own
sim-main.h file that they must provide regardless.
The only unique thing about mip's sim_{read,write} helpers is the call to
address_translation on the incoming address. When we look closer at that
function though, we see it's just a stub that maps physical to virtual,
and the cache/return values are hardcoded. If we delete this function,
we can then collapse all the callers and drop the custom sim_{read,write}
logic entirely.
Some day we might want to add MMU support, but when we do, we'll want to
have the common layers handle things so all targets benefit.
Most targets already default to loading code via their LMA, but for
a few, this means the default changes from loading VMA to LMA. It's
better to have the different targets be consistent, and allows some
code clean up.
We build & bundle the watchpoint module everywhere, but we don't make
the command line flags available by default. A few targets opted in,
but most did not. Just enable the flag for everyone. Not all targets
will respect the flags (making them nops), but shouldn't be a big deal.
This is how we handle other common modules already.
No target has used this, and it's a cheap hack in place in using the
common memory module. We want everyone using that though, so drop
support for flatmem entirely.
Fix occurrences of left-shifting negative constants in C code.
sim/arm/ChangeLog:
* thumbemu.c (handle_T2_insn): Fix left shift of negative value.
* armemu.c (handle_v6_insn): Likewise.
sim/avr/ChangeLog:
* interp.c (sign_ext): Fix left shift of negative value.
sim/mips/ChangeLog:
* micromips.igen (process_isa_mode): Fix left shift of negative
value.
sim/msp430/ChangeLog:
* msp430-sim.c (get_op, put_op): Fix left shift of negative value.
sim/v850/ChangeLog:
* simops.c (v850_bins): Fix left shift of negative value.
Having this be a config option doesn't make sense: the code size is
pretty much the same (as all the logic is still active), and if it's
disabled, the sim throws an error if you try to use it. That means
we can't break sims that weren't using it before by enabling it all
the time.
Now that all arches (for the most part) have moved over, move sim-stop.o,
sim-reason.o, and sim-reg.o to the common object list and out of all the
arch ports.
Other than the nice advantage of all sims having to declare one fewer
common function, this also fixes leakage in pretty much every sim.
Many were not freeing any resources, and a few were inconsistent as
to the ones they did. Now we have a single module that takes care of
all the logic for us.
Most of the non-cgen based ones could be deleted outright. The cgen
ones required adding a callback to the arch-specific cleanup func.
The few that still have close callbacks are to manage their internal
state.
We do not convert erc32, m32c, ppc, rl78, or rx as they do not use
the common sim core.
2015-09-25 Andrew Bennett <andrew.bennett@imgtec.com>
Ali Lown <ali.lown@imgtec.com>
sim/common/
* sim-bits.h (EXTEND6): New macro.
(EXTEND12): New macro.
(EXTEND25): New macro.
sim/mips/
* Makefile.in (tmp-micromips): New rule.
(tmp-mach-multi): Add support for micromips.
* configure.ac (mips*-sde-elf* | mips*-mti-elf*): Made a multi sim
that works for both mips64 and micromips64.
(mipsisa32r2*-*-*): Made a multi sim that works for mips32 and
micromips32.
Add build support for micromips.
* dsp.igen (do_ph_s_absq, do_w_s_absq, do_qb_s_absq, do_addsc,
do_addwc, do_bitrev, do_extpv, do_extrv, do_extrv_s_h, do_insv,
do_lxx do_modsub, do_mthlip, do_mulsaq_s_w_ph, do_ph_packrl, do_qb_pick
do_ph_pick, do_qb_ph_precequ, do_qb_ph_preceu, do_w_preceq
do_w_ph_precrq, do_ph_qb_precrq, do_w_ph_rs_precrq do_qb_w_raddu,
do_rddsp, do_repl, do_shilov, do_ph_shl, do_qb_shl do_w_s_shllv,
do_ph_shrlv, do_w_r_shrav, do_wrdsp, do_qb_shrav, do_append,
do_balign, do_ph_w_mulsa, do_ph_qb_precr, do_prepend): New functions.
Refactored instruction code to use these functions.
* dsp2.igen: Refactored instruction code to use the new functions.
* interp.c (decode_coproc): Refactored to work with any instruction
encoding.
(isa_mode): New variable
(RSVD_INSTRUCTION): Changed to 0x00000039.
* m16.igen (BREAK16): Refactored instruction to use do_break16.
(JALX32): Add mips32, mips64, mips32r2 and mips64r2 models.
* micromips.dc: New file.
* micromips.igen: New file.
* micromips16.dc: New file.
* micromipsdsp.igen: New file.
* micromipsrun.c: New file.
* mips.igen (do_swc1): Changed to work with any instruction encoding.
(do_add do_addi do_andi do_dadd do_daddi do_dsll32 do_dsra32
do_dsrl32, do_dsub, do_break, do_break16, do_clo, do_clz, do_dclo
do_dclz, do_lb, do_lh, do_lwr, do_lwl, do_lwc, do_lw, do_lwu, do_lhu
do_ldc, do_lbu, do_ll, do_lld, do_lui, do_madd, do_dsp_madd, do_maddu
do_dsp_maddu, do_dsp_mfhi, do_dsp_mflo, do_movn, do_movz, do_msub
do_dsp_msub, do_msubu, do_dsp_msubu, do_mthi, do_dsp_mthi, do_mtlo
do_dsp_mtlo, do_mul, do_dsp_mult, do_dsp_multu, do_pref, do_sc, do_scd
do_sub, do_sw, do_teq, do_teqi, do_tge, do_tgei, do_tgeiu, do_tgeu, do_tlt
do_tlti, do_tltiu, do_tltu, do_tne, do_tnei, do_abs_fmt, do_add_fmt
do_alnv_ps, do_c_cond_fmt, do_ceil_fmt, do_cfc1, do_ctc1, do_cvt_d_fmt
do_cvt_l_fmt, do_cvt_ps_s, do_cvt_s_fmt, do_cvt_s_pl, do_cvt_s_pu
do_cvt_w_fmt, do_div_fmt, do_dmfc1b, do_dmtc1b, do_floor_fmt, do_luxc1_32
do_luxc1_64, do_lwc1, do_lwxc1, do_madd_fmt, do_mfc1b, do_mov_fmt, do_movtf
do_movtf_fmt, do_movn_fmt, do_movz_fmt, do_msub_fmt, do_mtc1b, do_mul_fmt
do_neg_fmt, do_nmadd_fmt, do_nmsub_fmt, do_pll_ps, do_plu_ps, do_pul_ps
do_puu_ps, do_recip_fmt, do_round_fmt, do_rsqrt_fmt, do_prefx, do_sdc1
do_suxc1_32, do_suxc1_64, do_sqrt_fmt, do_sub_fmt, do_swc1, do_swxc1
do_trunc_fmt): New functions, refactored from existing instructions.
Refactored instruction code to use these functions.
(RSVD): Changed to use new reserved instruction.
(loadstore_ea, not_word_value, unpredictable, check_mt_hilo, check_mf_hilo,
check_mult_hilo, check_div_hilo, check_u64, do_luxc1_32, do_sdc1, do_suxc1_32,
check_fmt_p, check_fpu, do_load_double, do_store_double): Added micromips32
and micromips64 models.
Added include for micromips.igen and micromipsdsp.igen
Add micromips32 and micromips64 models.
(DecodeCoproc): Updated to use new macro definition.
* mips3264r2.igen (do_dsbh, do_dshd, do_dext, do_dextm, do_dextu, do_di,
do_dins, do_dinsm, do_ei, do_ext, do_mfhc1, do_mthc1, do_ins, do_dinsu,
do_seb, do_seh do_rdhwr, do_wsbh): New functions.
Refactored instruction code to use these functions.
* sim-main.h (CP0_operation): New enum.
(DecodeCoproc): Updated macro.
(IMEM32_MICROMIPS, IMEM16_MICROMIPS, MICROMIPS_MINOR_OPCODE,
MICROMIPS_DELAYSLOT_SIZE_ANY, MICROMIPS_DELAYSLOT_SIZE_16, MICROMIPS_DELAYSLOT_SIZE_32,
ISA_MODE_MIPS32 and ISA_MODE_MICROMIPS): New defines.
(sim_state): Add isa_mode field.
sim/testsuite/sim/mips/
* basic.exp (run_micromips_test, run_sim_tests): New functions
Add support for micromips tests.
* hilo-hazard-4.s: New file.
* testutils.inc (_dowrite): Changed reserved instruction encoding.
(writemsg): Moved the la and li instructions before the data they are
assigned to, which prevents a bug where MIPS32 relocations are used instead
of micromips relocations when building for micromips.
Now that we've unified sim-cpu, we can delete the duplicate sim-engine
hooks -- these targets defined these only because they didn't fully
implement the sim-cpu callbacks.
Since every target typedefs this the same way, move it to the common code.
We have to leave Blackfin behind here for now because of inter-dependencies
on types and headers: sim-base.h includes sim-model.h which needs types in
machs.h which needs types in bfim-sim.h which needs SIM_CPU.
Almost every target defines sim_cia the same way -- either using the
address_word type directly, or a type of equivalent size. The only
odd one out is sh64 (who has 32bit address_word and 64bit cia), and
even that case doesn't seem to make sense. We'll put off clean up
though of sh64 and at least set up a sensible default for everyone.
The CIA_{GET,SET} macros serve the same function as CPU_PC_{GET,SET}
except the latter adds a layer of indirection via the sim state. This
lets models set up different functions at runtime and doesn't reach so
directly into the arch-specific cpu state.
It also doesn't make sense to have two sets of macros that do exactly
the same thing, so lets standardize on the one that gets us more.
Now that all the targets are utilizing CPU_PC_{FETCH,STORE}, and the
cpu state is multicore, and the STATE_CPU defines match, we can move
it all to the common code.
With sim-hrw.o being built & linked in the common list, some people are
getting linking errors now for these targets. Move the main objects that
provide these functions before the common list to avoid that.