This fixes the "checkpoint" test to use the standard output directory.
This makes the test be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/checkpoint.c (main): Use PI_TXT and COPY1_TXT
defines.
* gdb.base/checkpoint.exp: Define PI_TXT and COPY1_TXT during
compilation. Use prepare_for_testing, standard_output_file.
This makes more changes in gdb.base to make it parallel-safe. I think
the changes in this particular patch are relatively straightforward,
so I've grouped them all together.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/advance.exp: Use standard_testfile and
prepare_for_testing.
* gdb.base/bigcore.exp: Use standard_output_file. "cd" to
appropriate directory when local.
* gdb.base/dump.exp: Use standard_output_file. Update all
"dump" and "restore" filenames.
* gdb.base/interact.exp: Use standard_output_file.
* gdb.base/jit-so.exp: Don't download file when local.
* gdb.base/jit.exp (compile_jit_test): Don't download file
when local.
* gdb.base/list.exp: Use gdb_remote_download.
* gdb.base/maint.exp: Use standard_output_file.
* gdb.base/prelink.exp: Use standard_output_file.
* gdb.base/save-bp.exp: Use standard_output_file.
* gdb.base/sepdebug.exp: Use standard_testfile,
standard_output_file.
(test_different_dir): Don't declare objdir.
* gdb.base/solib-search.exp: Use standard_output_file.
* gdb.base/step-line.exp: Use gdb_remote_download.
* gdb.base/trace-commands.exp: Use standard_output_file.
This fixes gdb.trace to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.trace/mi-traceframe-changed.exp: Pass -DTFILE_DIR
to compilation. Use standard_output_file.
(test_tfind_tfile): Update.
* gdb.trace/tfile.c (write_basic_trace_file)
(write_error_trace_file): Use TFILE_DIR.
* gdb.trace/tfile.exp: Pass -DTFILE_DIR to compilation. Use
standard_output_file.
This fixes gdb.mi to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.mi/mi-cmd-param-changed.exp (test_command_param_changed):
Use "dwarf2 always-disassemble" for the "maint set" test.
* gdb.mi/mi-file-transfer.exp (test_file_transfer): Use
standard_output_file.
* gdb.mi/mi-logging.exp: Use standard_output_file.
This fixes the gdb.xml tests to be parallel-safe.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.xml/tdesc-arch.exp: Use standard_output_file. Make
downloads conditional on remote host.
(set_arch): Likewise.
* gdb.xml/tdesc-regs.exp: Use gdb_remote_download.
(load_description): Use standard_output_file.
This fixes the gdb.gdb tests to be parallel-safe, by ensuring that the
new "xgdb" file ends up in the standard output directory during the
tests.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.gdb/selftest.exp: Use standard_output_file.
* lib/selftest-support.exp (do_self_tests): Use
standard_output_file.
This fixes up gdb.stabs/weird.exp for parallel testing. This just
means using gdb_remote_download and standard_output_file, so that the
tests end up in the right place.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.stabs/weird.exp: Use gdb_remote_download and
standard_output_file.
This fixes some parallelization thinkos from a while ago. I'm not
sure how the problems ever slipped through. In addition to a thinko
fix in twice.exp, this also finishes fixing it up for parallelization.
2013-11-04 Tom Tromey <tromey@redhat.com>
* gdb.base/gcore-buffer-overflow.exp: Use
standard_output_file, not standard_testfile.
* gdb.base/twice.exp: Use standard_testfile, not
standard_output_file. Use gdb_remote_download.
Currently a proc in gdb.exp toggles the expect (and thus dejagnu)
logging. This is not a super idea, but it is there to avoid putting
some preprocessor output into the log.
In the right circumstances, this can result in the log file being
mysteriously truncated. I think this happens because it doesn't
necessarily write to the correct log file again.
The fix is to use "log_file -info" to save the previous log file.
2013-11-04 Tom Tromey <tromey@redhat.com>
* lib/gdb.exp (get_compiler_info): Use log_file -info and
restore from that.
I noticed a large (100MB) restore took hours to complete. The problem
is memory_xfer_partial repeatedly mallocs and memcpys the entire
100MB buffer for breakpoint shadow handling only to find a small
portion of it is actually written.
The testcase that originally took hours now takes 50 seconds.
gdb/
2013-07-29 Anton Blanchard <anton@samba.org>
* target.c (memory_xfer_partial): Cap write to 4KB.
As discussed on the GDB ML[1], libc probes for longjmp were not being
loaded if a custom <arch>_get_longjmp_target function was not
implemented.
This is trivially fixed by moving the 'if (!gdbarch_get_longjmp_target_p
(gdbarch))' down, just bellow libc probe code and above the per-objfile
cache lookup.
While the condition could also be removed altogether with no
side-effects, it is in fact an optimization to avoid searching for
symbols if the arch doesn't provide support for get_longjmp_target().
This has been tested on PPC and PPC64.
[1] https://sourceware.org/ml/gdb/2013-10/msg00191.html
gdb/
2013-11-01 Tiago Stürmer Daitx <tdaitx@linux.vnet.ibm.com>
* breakpoint.c (create_longjmp_master_breakpoint): Allow libc
probe scan even when the arch provides no get_longjmp_target.
IMO, it doesn't make sense to map random syscall, fork, etc. events to
GDB_SIGNAL_TRAP, and possible have the debuggee see that trap. This
just seems conceptually wrong to me - these aren't real signals a
debuggee would ever see. In fact, when stopped for those events, on
Linux, the debuggee isn't in a signal-stop -- there's no way to
resume-and-deliver-signal at that point, for example. E.g., when
stopped at a fork event:
(gdb) catch fork
Catchpoint 2 (fork)
(gdb) c
Continuing.
Catchpoint 2 (forked process 4570), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb) set debug infrun 1
(gdb) signal SIGTRAP
Continuing with signal SIGTRAP.
infrun: clear_proceed_status_thread (process 4566)
infrun: proceed (addr=0xffffffffffffffff, signal=5, step=0)
infrun: resume (step=0, signal=5), trap_expected=0, current thread [process 4566] at 0x323d4ba7c4
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 4566 [process 4566],
infrun: status->kind = exited, status = 0
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_EXITED
[Inferior 1 (process 4566) exited normally]
infrun: stop_stepping
(gdb)
Note the signal went nowhere. It was swallowed.
Resuming with a SIGTRAP from a syscall event does queue the signal,
but doesn't deliver it immediately, like "signal SIGTRAP" from a real
signal would. It's still an artificial SIGTRAP:
(gdb) catch syscall
Catchpoint 2 (any syscall)
(gdb) c
Continuing.
Catchpoint 2 (call to syscall clone), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb) set debug infrun 1
(gdb) signal SIGTRAP
Continuing with signal SIGTRAP.
infrun: clear_proceed_status_thread (process 4622)
infrun: proceed (addr=0xffffffffffffffff, signal=5, step=0)
infrun: resume (step=0, signal=5), trap_expected=0, current thread [process 4622] at 0x323d4ba7c4
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 4622 [process 4622],
infrun: status->kind = exited syscall
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_SYSCALL_RETURN
infrun: syscall number = '56'
infrun: BPSTAT_WHAT_STOP_NOISY
infrun: stop_stepping
Catchpoint 2 (returned from syscall clone), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb) c
Continuing.
infrun: clear_proceed_status_thread (process 4622)
infrun: proceed (addr=0xffffffffffffffff, signal=144, step=0)
infrun: resume (step=0, signal=0), trap_expected=0, current thread [process 4622] at 0x323d4ba7c4
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 4622 [process 4622],
infrun: status->kind = stopped, signal = SIGTRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x323d4ba7c4
infrun: random signal 5
Program received signal SIGTRAP, Trace/breakpoint trap.
infrun: stop_stepping
0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131
131 pid = ARCH_FORK ();
(gdb)
In all the above, I used 'signal SIGTRAP' to emulate 'handle SIGTRAP
pass'. As described in "keep_going", 'handle SIGTRAP pass' does have
its place:
/* Do not deliver GDB_SIGNAL_TRAP (except when the user
explicitly specifies that such a signal should be delivered
to the target program). Typically, that would occur when a
user is debugging a target monitor on a simulator: the target
monitor sets a breakpoint; the simulator encounters this
breakpoint and halts the simulation handing control to GDB;
GDB, noting that the stop address doesn't map to any known
breakpoint, returns control back to the simulator; the
simulator then delivers the hardware equivalent of a
GDB_SIGNAL_TRAP to the program being debugged. */
... and I've made use of that myself when implementing/debugging
stubs/monitors. But in these cases, treating these events as SIGTRAP
possibly injects signals in the debuggee they'd never see otherwise,
because you need to use ptrace to enable these special events, which
aren't real signals.
There's more. Take this bit of handle_inferior_event, where we
determine whether a real signal (TARGET_WAITKIND_STOPPED) was random
or not:
if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
ecs->random_signal
= !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
GDB_SIGNAL_TRAP)
!= BPSTAT_SIGNAL_NO)
|| stopped_by_watchpoint
|| ecs->event_thread->control.trap_expected
|| (ecs->event_thread->control.step_range_end
&& (ecs->event_thread->control.step_resume_breakpoint
== NULL)));
else
{
enum bpstat_signal_value sval;
sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
ecs->event_thread->suspend.stop_signal);
ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
if (sval == BPSTAT_SIGNAL_HIDE)
ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
}
Note that the
if (sval == BPSTAT_SIGNAL_HIDE)
ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
bit is only reacheable for signals != GDB_SIGNAL_TRAP. AFAICS, sval
can only be BPSTAT_SIGNAL_HIDE if nothing in the bpstat returns
BPSTAT_SIGNAL_PASS. So that excludes a "catch signal" for the signal
in question in the bpstat. All other catchpoints that aren't based on
breakpoints behind the scenes call process_event_stop_test directly
(don't pass through here) (well, almost all: TARGET_WAITKIND_LOADED
does have a fall through, but only for STOP_QUIETLY or
STOP_QUIETLY_NO_SIGSTOP, which still return before this code is
reached). Catchpoints that are implemented as breakpoints behind the
scenes can only appear in the bpstat if the signal was GDB_SIGNAL_TRAP
(bkpt_breakpoint_hit returns false otherwise). So that leaves a
target reporting a hardware watchpoint hit with a signal other than
GDB_SIGNAL_TRAP. And even then it looks quite wrong to me to
magically convert the signal into a GDB_SIGNAL_TRAP here too -- if the
user has set SIGTRAP to "handle pass", the program will see a trap
that gdb invented, not one the program would ever see without gdb in
the picture.
Tested on x86_64 Fedora 17.
gdb/
2013-10-31 Pedro Alves <palves@redhat.com>
* infrun.c (handle_syscall_event): Don't set or clear stop_signal.
(handle_inferior_event) <TARGET_WAITKIND_FORKED,
TARGET_WAITKIND_VFORKED>: Don't set stop_signal to
GDB_SIGNAL_TRAP, or clear it. Pass GDB_SIGNAL_0 to
bpstat_explains signal, instead of GDB_SIGNAL_TRAP.
<bpstat handling>: If the bpstat chain wants the signal to be
hidden, then set stop_signal to GDB_SIGNAL_0 instead of
GDB_SIGNAL_TRAP.
Correct the patterns in the gdb_test_multiple invocation.
testsuite/
2013-10-30 Andreas Arnez <arnez@linux.vnet.ibm.com>
* gdb.arch/s390-multiarch.exp (test_linux_v2): Add $gdb_prompt to
the patterns in gdb_test_multiple.
As suggested before, rename the S/390-related source files (tdep and nat)
such that "-linux-" occurs in the file name, like with other GNU/Linux
targets. Since no other operating system is currently supported by GDB
on this architecture, this isn't strictly necessary. But the old names
sometimes caused GDB contributors to miss these files when performing a
change that affects all GNU/Linux targets. The latest such incident was
observed here:
https://sourceware.org/ml/gdb-patches/2013-09/msg00619.html
gdb/
2013-10-30 Andreas Arnez <arnez@linux.vnet.ibm.com>
* s390-tdep.h: Rename to...
* s390-linux-tdep.h: ...here.
* s390-tdep.c: Rename to...
* s390-linux-tdep.c: ...here. Adjust #include.
* s390-nat.c: Rename to...
* s390-linux-nat.c: ...here. Adjust #include.
* config/s390/s390.mh: Rename to...
* config/s390/linux.mh: ...here. Reflect rename s390-nat.o ->
s390-linux-nat.o.
* configure.host: Reflect host rename "s390" -> "linux".
* configure.tgt: Reflect rename s390-tdep.o -> s390-linux-tdep.o.
* Makefile.in (ALL_TARGET_OBS): Likewise.
(HFILES_NO_SRCDIR): Reflect rename s390-tdep.h ->
s390-linux-tdep.h.
(ALLDEPFILES): Reflect rename of .c files.
gdb/
2013-10-30 Andreas Arnez <arnez@linux.vnet.ibm.com>
* s390-nat.c: Whitespace cleanup.
* s390-tdep.c: Likewise.
* s390-tdep.h: Remove empty line at end of file.
I tried to build gdb on the AIX machine in the GCC compile farm
(gcc111), but it failed in a couple of spots because gdb uses "reg" as
a variable name and the AIX <curses.h> defines "reg" to "register".
I saw that we already had a workaround for this lurking in utils.c, so
I just moved that to gdb_curses.h.
This fixed the problem on AIX and still builds on x86-64 Fedora 18.
2013-10-29 Tom Tromey <tromey@redhat.com>
* utils.c (reg): Move undefinition...
* gdb_curses.h: ... here. Update comment to mention AIX.
These references to ChangeLog-mi are stale.
testsuite/gdb.mi/ChangeLog-mi doesn't exist anymore, since:
...
commit 2dd627049d
Author: Andrew Cagney <cagney@redhat.com>
Date: Sat Jun 23 21:47:09 2001 +0000
Rename gdb.mi/ChangeLog-mi to gdb.mi/ChangeLog. Update everything.
...
commit 48efe7049b
Author: Andrew Cagney <cagney@redhat.com>
Date: Mon Jan 12 15:16:44 2004 +0000
Eliminate the old mi/tui specific ChangeLog files as in ...
Added Files:
mi/ChangeLog-1999-2003 testsuite/gdb.mi/ChangeLog-1999-2003
tui/ChangeLog-1998-2003
Removed Files:
mi/ChangeLog testsuite/gdb.mi/ChangeLog tui/ChangeLog
Tested with 'make check RUNTESTFLAGS="--directory=gdb.mi"' on x86_64 Fedora 17.
gdb/testsuite/
2013-10-29 Pedro Alves <palves@redhat.com>
* gdb.mi/mi-console.c, gdb.mi/mi-stack.c: Remove local emacs
variable setting change-log-default-name to ChangeLog-mi.
https://sourceware.org/ml/gdb-patches/2013-08/msg00171.html
gdb/ChangeLog
* infcmd.c (default_print_one_register_info): Use val_print to
print all values even optimized out or unavailable ones. Don't
try to print a raw form of optimized out or unavailable values.
gdb/testsuite/ChangeLog
* gdb.trace/unavailable.exp (gdb_unavailable_registers_test):
Expect <unavailable> pattern.
This test exercises the commands 'add-symbol-file'
and 'remove-symbol-file'.
2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com>
gdb/testsuite
* gdb.base/sym-file-lib.c: New file.
* gdb.base/sym-file-loader.c: New file.
* gdb.base/sym-file-loader.h: New file.
* gdb.base/sym-file-main.c: New file.
* gdb.base/sym-file.exp: New file.
Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com>
gdb/testsuite
* lib/gdb.exp (is_elf_target): New function.
Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
Add the sections of the symbol files that are provided via
'add-symbol-file' to the set of current target sections.
User-added sections are removed upon notification of free_objfile
when their corresponding object file is deleted.
2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com>
* exec.h (add_target_sections_of_objfile): New declaration.
* exec.c (add_target_sections_of_objfile): New function.
* symfile.c (add_symbol_file_command): Update current target sections.
(symfile_free_objfile): New function.
(_initialize_symfile): Register observer for free_objfile events.
Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com>
* NEWS: Add description of the remove-symbol-file command.
gdb/doc
* gdb.texinfo (Commands to Specify Files): Add description
of the remove-symbol-file command.
Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
New command for removing symbol files added via
the add-symbol-file command.
2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com>
* breakpoint.c (disable_breakpoints_in_freed_objfile): New function.
* objfiles.c (free_objfile): Notify free_objfile.
(is_addr_in_objfile): New function.
* objfiles.h (is_addr_in_objfile): New declaration.
* printcmd.c (clear_dangling_display_expressions): Act upon free_objfile
events instead of solib_unloaded events.
(_initialize_printcmd): Register observer for free_objfile instead
of solib_unloaded notifications.
* solib.c (remove_user_added_objfile): New function.
* symfile.c (remove_symbol_file_command): New command.
(_initialize_symfile): Add remove-symbol-file.
gdb/doc
* observer.texi: New free_objfile event.
Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
In registry.c:registry_clear_data, the registered data is iterated and
invoke each 'free' function with the data passed:
for (registration = data_registry->registrations, i = 0;
i < fields->num_data;
registration = registration->next, i++)
if (fields->data[i] != NULL && registration->data->free != NULL)
adaptor (registration->data->free, container, fields->data[i]);
we can see that data is passed to function 'free' and data is not NULL.
In each usage, we don't have to get the data again through key and
do NULL pointer checking. This patch is to simplify them.
gdb:
2013-10-29 Yao Qi <yao@codesourcery.com>
* auto-load.c (auto_load_pspace_data_cleanup): Get data from
parameter 'arg' instead of from program_space_data.
* objfiles.c (objfiles_pspace_data_cleanup): Likewise.
* solib-darwin.c (darwin_pspace_data_cleanup): Likewise.
* solib-dsbt.c (dsbt_pspace_data_cleanup): Likewise.
* solib-svr4.c (svr4_pspace_data_cleanup): Likewise.
* inflow.c (inflow_inferior_data_cleanup): Get data from
parameter 'arg' instead of inferior_data.
* registry.h: Add comments.
I was reading this, checking the the possible returns, and this
particular path confused a tiny little. Above we do:
if (!stopped_by_watchpoint)
{
...
return 0;
}
so any return after that always return true.
Tested on x86_64 Fedora 17.
gdb/
2013-10-28 Pedro Alves <palves@redhat.com>
* breakpoint.c (watchpoints_triggered)
<!target_stopped_data_address>: Hardcode return 1.
Now that all ecs->random_signal handing is always done before the
'process_event_stop_test' label, we can easily make that a real
function and actually give it a describing comment that somewhat makes
sense.
Reindenting the new function will be handled in a follow up patch.
2013-10-28 Pedro Alves <palves@redhat.com>
* infrun.c (process_event_stop_test): New function, factored out
from handle_inferior_event.
(handle_inferior_event): 'process_event_stop_test' is now a
function instead of a goto label -- adjust.
We only ever call "goto process_event_stop_test;" right after checking
that ecs->random_signal is clear. The code at the
process_event_stop_test label looks like:
/* For the program's own signals, act according to
the signal handling tables. */
if (ecs->random_signal)
{
... random signal handling ...
return;
}
else
{
... the stop tests that actually matter for the goto callers.
}
So this moves the label into the else branch. It'll make converting
process_event_stop_test into a function a bit clearer.
gdb/
2013-10-28 Pedro Alves <palves@redhat.com>
* infrun.c (handle_inferior_event): Move process_event_stop_test
goto label to the else branch of the ecs->random_signal check,
along with FRAME and GDBARCH re-fetching.
I recently added a new ecs->random_signal test after the "switch back to
stepped thread" code, and before the stepping tests. Looking at
making process_event_stop_test a proper function, I realized it'd be
better to keep ecs->random_signal related code together. To do that,
I needed to factor out the "switch back to stepped thread" code to a new
function, and call it in both the "random signal" and "not random
signal" paths.
gdb/
2013-10-28 Pedro Alves <palves@redhat.com>
* infrun.c (switch_back_to_stepped_thread): New function, factored
out from handle_inferior_event.
(handle_inferior_event): Adjust to call
switch_back_to_stepped_thread. Call it also at the tail of the
random signal handling, and return, instead of also handling
random signals just before the stepping tests.
'ecs' is always memset before being passed to handle_inferior_event.
The stop func is only filled in later in the flow. And since "Remove
dead sets/clears of ecs->random signal", nothing ever sets
ecs->random_signal before this part is reached either.
(Also tested with some added assertions in place.)
gdb/
2013-10-28 Pedro Alves <palves@redhat.com>
* infrun.c (clear_stop_func): Delete.
(handle_inferior_event): Don't call clear_stop_func and don't
clear 'ecs->random_signal'.
On 10/25/2013 11:34 AM, Joel Brobecker wrote:
> Also, as a followup, I think it would be beneficial if we renamed
> field "lang" in the varobj_root into "lang_ops". I think it's more
> descriptive, especially since "lang" is used elsewhere with different
> meanings (and types).
Here is the patch to rename 'lang' to 'lang_ops'. Committed as obvious.
gdb:
2013-10-27 Yao Qi <yao@codesourcery.com>
* varobj.c (struct varobj_root) <lang>: Rename to 'lang_ops'.
(varobj_create, varobj_get_path_expr): Update.
(varobj_value_has_mutated, varobj_update): Likewise.
(create_child_with_value, new_root_variable): Likewise.
(number_of_children, name_of_variable): Likewise.
(value_of_child, my_value_of_variable): Likewise.
(varobj_value_is_changeable_p): Likewise.
This is a follow-up series to move language stuff out of varobj.c.
This patch adds a new field la_varobj_ops in struct language_defn so
that each language has varobj-related options. Not every language
supports varobj, and the operations are identical to operations of c
languages.
'struct language_defn' is the ideal place to save all language-related
operations. After this patch, some cleanups can be done in patch 2/2,
which removes language-related stuff completely from varobj.c.
Regression tested on x86_64-linux.
gdb:
2013-10-25 Yao Qi <yao@codesourcery.com>
* language.h (struct lang_varobj_ops): Declare.
(struct language_defn) <la_varobj_ops>: New field.
* ada-lang.c: Include "varobj.h"
(defn ada_language_defn): Initialize field 'la_varobj_ops' by
ada_varobj_ops.
* c-lang.c: Include "varobj.h"
(c_language_defn): Initialize field 'la_varobj_ops' by
c_varobj_ops.
(cplus_language_defn): Initialize field 'la_varobj_ops' by
cplus_varobj_ops.
(asm_language_defn): Initialize field 'la_varobj_ops' by
default_varobj_ops.
(minimal_language_defn): Likewise.
* d-lang.c (d_language_defn): Likewise.
* f-lang.c (f_language_defn): Likewise.
* go-lang.c (go_language_defn): Likewise.
* m2-lang.c (m2_language_defn): Likewise.
* objc-lang.c (objc_language_defn): Likewise.
* opencl-lang.c (opencl_language_defn): Likewise.
* p-lang.c (pascal_language_defn): Likewise.
* language.c (unknown_language_defn): Likewise.
(auto_language_defn): Likewise.
(local_language_defn): Likewise.
* jv-lang.c (java_language_defn): Initialize field
'la_varobj_ops' by java_varobj_ops.
* varobj.c (varobj_create): Update.
* varobj.h (default_varobj_ops): Define macro.
Some remote stubs do not have a proper exit() function implementation.
gdb.base/bang.exp was failing on those targets due to timeout. With
this patch bang.exp uses already defined library procedures to handle
this situation gracefully without breaking native targets.
Tested with x86_64 (unix, native-gdbserver) and with arc-*-elf32.
gdb/testsuite/ChangeLog:
2013-10-25 Anton Kolesov <Anton.Kolesov@synopsys.com> (tiny change)
* gdb.base/bang.exp: Use gdb_continue_to_end to properly support
remote stubs where exit() behaviour is unreliable.
With:
struct static_struct { static int aaa; };
struct static_struct sss;
int main () { return 0; }
We get:
(gdb) p sss
$1 = {static aaa = <optimized out>}
(gdb) p sss.aaa
field aaa is nonexistent or has been optimized out
Note that the "field aaa ..." message is an error being thrown.
GDB is graceful everywhere else when printing optimized out values.
IOW it usually prints an <optimized out> value and puts that in the
value history. I see no reason for here to be different, more so that
when the print the whole "containing" object (well, it's a static
field, so it's not really a container), we already print <optimized
out>.
After the patch:
(gdb) p sss
$1 = {static aaa = <optimized out>}
(gdb) p sss.aaa
$2 = <optimized out>
The value_entirely_optimized_out checks are there to preserve
behavior. Without those, if the static field is a struct/union, GDB
would go and print its fields one by one (and print <optimized out>
for each).
Tested on x86_64 Fedora 17.
gdb/
2013-10-25 Pedro Alves <palves@redhat.com>
* cp-valprint.c (cp_print_value_fields): No longer handle a NULL
static field value.
(cp_print_static_field): If the value is entirely optimized out,
print <optimized out> here.
* jv-valprint.c (java_print_value_fields): No longer handle a NULL
static field value.
* p-valprint.c (pascal_object_print_static_field): If the value is
entirely optimized out, print <optimized out> here.
* valops.c (do_search_struct_field)
(value_struct_elt_for_reference): No longer handle a NULL static
field value.
* value.c (value_static_field): Return an optimized out value
instead of NULL.
gdb/testsuite/
2013-10-25 Pedro Alves <palves@redhat.com>
* gdb.cp/m-static.exp: Adjust expected output of printing a
nonexistent or optimized out static field. Also test printing the
the "container" object.
When I do 'si', I find many 'qXfer:traceframe-info:read' packets are sent,
which is not necessary. It slows down the single step.
(gdb) si
Sending packet: $qTStatus#49...Packet received: T0;tnotrun:0;tframes:0;tcreated:0;tfree:500000;tsize:500000;circular:0;disconn:0;starttime:0;stoptime:0;username:;notes::
Sending packet: $Z0,80483c7,1#b4...Packet received: OK
Sending packet: $Z0,4ce5b6b0,1#6e...Packet received: OK
Sending packet: $QPassSignals:e;10;14;17;1a;1b;1c;21;24;25;2c;4c;#5f...Packet received: OK
Sending packet: $vCont;s:p1b15.1b15;c#20...Packet received: T0505:44efffbf;04:44efffbf;08:d1830408;thread:p1b15.1b15;core:3;
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $mbfffef40,40#c0...Packet received: d183040878efffbf2e840408030000000000a040030000000500000070efffbf07000000010000004984040807000000030000000500000000000000b396e84c
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $z0,80483c7,1#d4...Packet received: OK
Sending packet: $z0,4ce5b6b0,1#8e...Packet received: OK
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
Sending packet: $qXfer:traceframe-info:read::0,fff#0b...Packet received: E01
This problem was introduced by this patch
(https://sourceware.org/ml/gdb-patches/2013-04/msg00000.html), in
which get_traceframe_number is not checked before calling
traceframe_available_memory. This patch moves the check to
remote_traceframe_info, say, if GDB doesn't have traceframe selected, GDB
doesn't need to send qXfer:traceframe-info:read packets.
With this patch applied, there is no qXfer:traceframe-info:read sent
out and single step is speed up a little bit.
Here is the experiment I did:
Num of single step Original Patched
single-step cpu_time 10000 8.08 7.57
single-step cpu_time 20000 16.23 14.23
single-step cpu_time 30000 24.19 21.59
single-step cpu_time 40000 32.49 28.0
single-step wall_time 10000 14.1974210739 13.2641420364
single-step wall_time 20000 28.5278921127 25.0541369915
single-step wall_time 30000 42.5864038467 38.0038759708
single-step wall_time 40000 57.2107698917 49.2350611687
single-step vmsize 10000 16128 16388
single-step vmsize 20000 16128 16388
single-step vmsize 30000 16260 16520
single-step vmsize 40000 16444 16704
The patch is tested on x86_64-linux.
gdb:
2013-10-24 Yao Qi <yao@codesourcery.com>
* remote.c (remote_traceframe_info): Return early if
traceframe is not selected.
I happen to see traceframe_fun and traceframe_sal are static variables,
which are not necessary to me. They are only used in set_traceframe_context,
and they are not stateful. This patch is to remove them.
gdb:
2013-10-24 Yao Qi <yao@codesourcery.com>
* tracepoint.c (traceframe_fun): Remove.
(traceframe_sal): Remove.
(set_traceframe_context): Add local variables.
* lib/gdb.exp (gdb_finish): Send a kill request to `gdbserver'
if in the persistent mode.
* gdb.trace/disconnected-tracing.exp: Reconnect before completion.
gdb/
* linux-tdep.c (linux_corefile_thread_callback): Propagate any
failure from register information collection.
gdb/testsuite/
* lib/gdb.exp (gdb_gcore_cmd): Also handle a "Target does not
support core file generation" reply.
Occasionaly we hear about people having problems with GDB not being
able to start programs (with "run"/"start"). GDB spawns a shell to
start the program, and most often, it'll be the case that the problem
is actually with the user's shell setup.
GDB has code to disable the use of the shell to start programs.
That's the STARTUP_WITH_SHELL macro that native targets could set to 0
in their nm.h file (though no target actually uses it nowadays).
This patch makes that setting a run-time knob instead. This will be
useful to quickly diagnose such shell issues, and might also come in
handy at other times (such as when debugging the shell itself, if you
don't have a different shell handy).
gdb/
2013-10-24 Pedro Alves <palves@redhat.com>
* NEWS (New options): Mention set/show startup-with-shell.
* config/alpha/nm-osf3.h (START_INFERIOR_TRAPS_EXPECTED): Set to 2
instead of 3.
* fork-child.c (fork_inferior, startup_inferior): Handle 'set
startup-with-shell'.
(show_startup_with_shell): New function.
(_initialize_fork_child): Register the set/show startup-with-shell
commands.
* inf-ptrace.c (inf_ptrace_create_inferior): Remove comment.
* inf-ttrace.c (inf_ttrace_him): Remove comment.
* procfs.c (procfs_init_inferior): Remove comment.
* infcmd.c (startup_with_shell): New global.
* inferior.h (startup_with_shell): Declare global.
(STARTUP_WITH_SHELL): Delete.
(START_INFERIOR_TRAPS_EXPECTED): Set to 1 by default instead of 2.
gdb/doc/
2013-10-24 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Starting): Document set/show startup-with-shell.
The other day while debugging something related to random signals, I
got confused with "set debug infrun 1" output, for it said:
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x323d4e8b94
infrun: random signal 20
On GNU/Linux, 20 is SIGTSTP. For some reason, it took me a few
minutes to realize that 20 is actually a GDB signal number, not a
target signal number (duh!). In any case, I propose making GDB's
output clearer here:
One way would be to use gdb_signal_to_name, like already used
elsewhere:
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x323d4e8b94
infrun: random signal SIGCHLD (20)
but I think that might confuse someone too ("20? Why does GDB believe
SIGCHLD is 20?"). So I thought of printing the enum string instead:
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x323d4e8b94
infrun: random signal GDB_SIGNAL_CHLD (20)
Looking at a more complete infrun debug log, we had actually printed
the (POSIX) signal name name a bit before:
infrun: target_wait (-1, status) =
infrun: 9300 [Thread 0x7ffff7fcb740 (LWP 9300)],
infrun: status->kind = stopped, signal = SIGCHLD
...
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x323d4e8b94
infrun: random signal 20
So I'm now thinking that it'd be even better to make infrun output
consistently use the enum symbol string, like so:
infrun: clear_proceed_status_thread (Thread 0x7ffff7fca700 (LWP 25663))
infrun: clear_proceed_status_thread (Thread 0x7ffff7fcb740 (LWP 25659))
- infrun: proceed (addr=0xffffffffffffffff, signal=144, step=1)
+ infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT, step=1)
- infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
+ infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 25659 [Thread 0x7ffff7fcb740 (LWP 25659)],
- infrun: status->kind = stopped, signal = SIGCHLD
+ infrun: status->kind = stopped, signal = GDB_SIGNAL_CHLD
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x400700
- infrun: random signal 20
+ infrun: random signal (GDB_SIGNAL_CHLD)
infrun: random signal, keep going
- infrun: resume (step=1, signal=20), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
+ infrun: resume (step=1, signal=GDB_SIGNAL_CHLD), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 25659 [Thread 0x7ffff7fcb740 (LWP 25659)],
- infrun: status->kind = stopped, signal = SIGTRAP
+ infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x400704
infrun: stepi/nexti
infrun: stop_stepping
GDB's signal numbers are public and hardcoded (see
include/gdb/signals.h), so there's really no need to clutter the
output with numeric values in some places while others not. Replacing
the magic "144" with GDB_SIGNAL_DEFAULT in "proceed"'s debug output
(see above) I think is quite nice.
I posit that all this makes it clearer to newcomers that GDB has its
own signal numbering (and that there must be some mapping going on).
Tested on x86_64 Fedora 17.
gdb/
2013-10-23 Pedro Alves <palves@redhat.com>
* common/gdb_signals.h (gdb_signal_to_symbol_string): Declare.
* common/signals.c: Include "gdb_assert.h".
(signals): New field 'symbol'.
(SET): Use the 'symbol' parameter.
(gdb_signal_to_symbol_string): New function.
* infrun.c (handle_inferior_event) <random signal>: In debug
output, print the random signal enum as string in addition to its
number.
* target/waitstatus.c (target_waitstatus_to_string): Print the
signal's enum value as string instead of the (POSIX) signal name.