When ada-lang.c:ada_lookup_symbol_list_worker finds a match in
the symbol cache, it caches the result again, which is unecessary.
This patch fixes the code to avoid that.
gdb/ChangeLog:
PR gdb/17856:
* ada-lang.c (ada_lookup_symbol_list_worker): Do not re-cache
results found in the cache.
Tested on x86_64-linux, no regression.
The Ada symbol cache has been designed to have one instance of that
of that cache per program space, and for each instance to be created
on-demand. ada_get_symbol_cache is the function responsible for both
lookup and creation on demand.
Unfortunately, ada_get_symbol_cache forgot to store the reference
to newly created caches, thus causing it to:
- Leak old caches;
- Allocate a new cache each time the cache is being searched or
a new entry is to be inserted.
This patch fixes the issue by avoiding the use of the local variable,
which indirectly allowed the bug to happen. We manipulate the reference
in the program-space data instead.
gdb/ChangeLog:
PR gdb/17854:
* ada-lang.c (ada_get_symbol_cache): Set pspace_data->sym_cache
when allocating a new one.
Every type has to pay the price in memory usage for their presence.
The proper place for them is in the type_specific field which exists
for this purpose.
gdb/ChangeLog:
* dwarf2read.c (process_structure_scope): Update setting of
TYPE_VPTR_BASETYPE, TYPE_VPTR_FIELDNO.
* gdbtypes.c (internal_type_vptr_fieldno): New function.
(set_type_vptr_fieldno): New function.
(internal_type_vptr_basetype): New function.
(set_type_vptr_basetype): New function.
(get_vptr_fieldno): Update setting of TYPE_VPTR_FIELDNO,
TYPE_VPTR_BASETYPE.
(allocate_cplus_struct_type): Initialize vptr_fieldno.
(recursive_dump_type): Printing of vptr_fieldno, vptr_basetype ...
(print_cplus_stuff): ... moved here.
(copy_type_recursive): Don't copy TYPE_VPTR_BASETYPE.
* gdbtypes.h (struct main_type): Members vptr_fieldno, vptr_basetype
moved to ...
(struct cplus_struct_type): ... here. All uses updated.
(TYPE_VPTR_FIELDNO, TYPE_VPTR_BASETYPE): Rewrite.
(internal_type_vptr_fieldno, set_type_vptr_fieldno): Declare.
(internal_type_vptr_basetype, set_type_vptr_basetype): Declare.
* stabsread.c (read_tilde_fields): Update setting of
TYPE_VPTR_FIELDNO, TYPE_VPTR_BASETYPE.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp <maint print type argc>: Update expected output.
This patch moves TYPE_SELF_TYPE into new field type_specific.self_type
for MEMBERPTR,METHODPTR types, and into type_specific.func_stuff
for METHODs, and then updates everything to use that.
TYPE_CODE_METHOD could share some things with TYPE_CODE_FUNC
(e.g. TYPE_NO_RETURN) and it seemed simplest to keep them together.
Moving TYPE_SELF_TYPE into type_specific.func_stuff for TYPE_CODE_METHOD
is also nice because when we allocate space for function types we assume
they're TYPE_CODE_FUNCs. If TYPE_CODE_METHODs don't need or use that
space then that space would be wasted, and cleaning that up would involve
more invasive changes.
In order to catch errant uses I've added accessor functions
that do some checking.
One can no longer assign to TYPE_SELF_TYPE like this:
TYPE_SELF_TYPE (foo) = bar;
One instead has to do:
set_type_self_type (foo, bar);
But I've left reading of the type to the macro:
bar = TYPE_SELF_TYPE (foo);
In order to discourage bypassing the TYPE_SELF_TYPE macro
I've named the underlying function that implements it
internal_type_self_type.
While testing this I found the stabs reader leaving methods
as TYPE_CODE_FUNCs, hitting my newly added asserts.
Since the dwarf reader smashes functions to methods (via
smash_to_method) I've done a similar thing for stabs.
gdb/ChangeLog:
* cp-valprint.c (cp_find_class_member): Rename parameter domain_p
to self_p.
(cp_print_class_member): Rename local domain to self_type.
* dwarf2read.c (quirk_gcc_member_function_pointer): Rename local
domain_type to self_type.
(set_die_type) <need_gnat_info>: Handle
TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, TYPE_CODE_METHOD.
* gdb-gdb.py (StructMainTypePrettyPrinter): Handle
TYPE_SPECIFIC_SELF_TYPE.
* gdbtypes.c (internal_type_self_type): New function.
(set_type_self_type): New function.
(smash_to_memberptr_type): Rename parameter domain to self_type.
Update setting of TYPE_SELF_TYPE.
(smash_to_methodptr_type): Update setting of TYPE_SELF_TYPE.
(smash_to_method_type): Rename parameter domain to self_type.
Update setting of TYPE_SELF_TYPE.
(check_stub_method): Call smash_to_method_type.
(recursive_dump_type): Handle TYPE_SPECIFIC_SELF_TYPE.
(copy_type_recursive): Ditto.
* gdbtypes.h (enum type_specific_kind): New value
TYPE_SPECIFIC_SELF_TYPE.
(struct main_type) <type_specific>: New member self_type.
(struct cplus_struct_type) <fn_field.type>: Update comment.
(TYPE_SELF_TYPE): Rewrite.
(internal_type_self_type, set_type_self_type): Declare.
* gnu-v3-abi.c (gnuv3_print_method_ptr): Rename local domain to
self_type.
(gnuv3_method_ptr_to_value): Rename local domain_type to self_type.
* m2-typeprint.c (m2_range): Replace TYPE_SELF_TYPE with
TYPE_TARGET_TYPE.
* stabsread.c (read_member_functions): Mark methods with
TYPE_CODE_METHOD, not TYPE_CODE_FUNC. Update setting of
TYPE_SELF_TYPE.
gdb/ChangeLog:
* gnu-v3-abi.c (gnuv3_dynamic_class): Assert only passed structs
or unions. Return zero if union.
(gnuv3_get_vtable): Call check_typedef. Assert only passed structs.
(gnuv3_rtti_type): Pass already-check_typedef'd value to
gnuv3_get_vtable.
(compute_vtable_size): Assert only passed structs.
(gnuv3_print_vtable): Don't call gnuv3_get_vtable for non-structs.
This commit makes default_make_symbol_completion_list_break_on build
the list of completions as it expands the necessary symbol tables,
rather than expanding all necessary symbol tables first and then
building the completion lists second. This allows for the early
termination of symbol table expansion if required.
gdb/ChangeLog:
* symtab.c (struct add_name_data) <code>: New field.
Updated comments.
(add_symtab_completions): New function.
(symtab_expansion_callback): Likewise.
(default_make_symbol_completion_list_break_on): Set datum.code.
Move minimal symbol scan before calling expand_symtabs_matching.
Scan known primary symtabs for externs and statics before calling
expand_symtabs_matching. Pass symtab_expansion_callback as
expansion_notify argument to expand_symtabs_matching. Do not scan
primary symtabs for externs and statics after calling
expand_symtabs_matching.
This commit adds a new callback parameter, "expansion_notify", to the
top-level expand_symtabs_matching function and to all the vectorized
functions it defers to. If expansion_notify is non-NULL, it will be
called every time a symbol table is expanded.
gdb/ChangeLog:
* symfile.h (expand_symtabs_exp_notify_ftype): New typedef.
(struct quick_symbol_functions) <expand_symtabs_matching>:
New argument expansion_notify. All uses updated.
(expand_symtabs_matching): New argument expansion_notify.
All uses updated.
* symfile-debug.c (debug_qf_expand_symtabs_matching):
Also print expansion notify.
* symtab.c (expand_symtabs_matching_via_partial): Call
expansion_notify whenever a partial symbol table is expanded.
* dwarf2read.c (dw2_expand_symtabs_matching): Call
expansion_notify whenever a symbol table is instantiated.
This copies a lot of code from readline, but this is temporary.
Readline currently doesn't export what we need.
The plan is to have something that has been working for awhile,
and then we'll have a complete story to present to the readline
maintainers.
gdb/ChangeLog:
* cli-out.c: #include completer.h, readline/readline.h.
(cli_mld_crlf, cli_mld_putch, cli_mld_puts): New functions.
(cli_mld_flush, cld_mld_erase_entire_line): Ditto.
(cli_mld_beep, cli_mld_read_key, cli_display_match_list): Ditto.
* cli-out.h (cli_display_match_list): Declare.
* completer.c (MB_INVALIDCH, MB_NULLWCH): New macros.
(ELLIPSIS_LEN): Ditto.
(gdb_get_y_or_n, gdb_display_match_list_pager): New functions.
(gdb_path_isdir, gdb_printable_part, gdb_fnwidth): Ditto.
(gdb_fnprint, gdb_print_filename): Ditto.
(gdb_complete_get_screenwidth, gdb_display_match_list_1): Ditto.
(gdb_display_match_list): Ditto.
* completer.h (mld_crlf_ftype, mld_putch_ftype): New typedefs.
(mld_puts_ftype, mld_flush_ftype, mld_erase_entire_line_ftype): Ditto.
(mld_beep_ftype, mld_read_key_ftype): Ditto.
(match_list_displayer): New struct.
(gdb_display_match_list): Declare.
* top.c (init_main): Set rl_completion_display_matches_hook.
* tui/tui-io.c: #include completer.h.
(printable_part, PUTX, print_filename, get_y_or_n): Delete.
(tui_mld_crlf, tui_mld_putch, tui_mld_puts): New functions.
(tui_mld_flush, tui_mld_erase_entire_line, tui_mld_beep): Ditto.
(tui_mld_getc, tui_mld_read_key): Ditto.
(tui_rl_display_match_list): Rewrite.
(tui_handle_resize_during_io): New arg for_completion. All callers
updated.
gdb/ChangeLog:
Add symbol lookup cache.
* NEWS: Document new options and commands.
* symtab.c (symbol_cache_key): New static global.
(DEFAULT_SYMBOL_CACHE_SIZE, MAX_SYMBOL_CACHE_SIZE): New macros.
(SYMBOL_LOOKUP_FAILED): New macro.
(symbol_cache_slot_state): New enum.
(block_symbol_cache): New struct.
(symbol_cache): New struct.
(new_symbol_cache_size, symbol_cache_size): New static globals.
(hash_symbol_entry, eq_symbol_entry): New functions.
(symbol_cache_byte_size, resize_symbol_cache): New functions.
(make_symbol_cache, free_symbol_cache): New functions.
(get_symbol_cache, symbol_cache_cleanup): New function.
(set_symbol_cache_size, set_symbol_cache_size_handler): New functions.
(symbol_cache_lookup, symbol_cache_clear_slot): New function.
(symbol_cache_mark_found, symbol_cache_mark_not_found): New functions.
(symbol_cache_flush, symbol_cache_dump): New functions.
(maintenance_print_symbol_cache): New function.
(maintenance_flush_symbol_cache): New function.
(symbol_cache_stats): New function.
(maintenance_print_symbol_cache_statistics): New function.
(symtab_new_objfile_observer): New function.
(symtab_free_objfile_observer): New function.
(lookup_static_symbol, lookup_global_symbol): Use symbol cache.
(_initialize_symtab): Init symbol_cache_key. New parameter
maint symbol-cache-size. New maint commands print symbol-cache,
print symbol-cache-statistics, flush-symbol-cache.
Install new_objfile, free_objfile observers.
gdb/doc/ChangeLog:
* gdb.texinfo (Symbols): Document new commands
"maint print symbol-cache", "maint print symbol-cache-statistics",
"maint flush-symbol-cache". Document new option
"maint set symbol-cache-size".
gdb/
2015-01-31 Eli Zaretskii <eliz@gnu.org>
* tui/tui-io.c (tui_expand_tabs): New function.
(tui_puts, tui_redisplay_readline): Expand TABs into the
appropriate number of spaces.
* tui/tui-regs.c: Include tui-io.h.
(tui_register_format): Call tui_expand_tabs to expand TABs into
the appropriate number of spaces.
* tui/tui-io.h: Add prototype for tui_expand_tabs.
To make it clear that some functions should not modify the variable
object, this patch adds the const qualifier where it makes sense to some
struct varobj * parameters. Most getters should take a const pointer to
guarantee they don't modify the object.
Unfortunately, I couldn't add it to some callbacks (such as name_of_child).
In the C implementation, they call c_describe_child, which calls
varobj_get_path_expr. varobj_get_path_expr needs to modify the object in
order to cache the computed value. It therefore can't take a const
pointer, and it affects the whole call chain. I suppose that's where you
would use a "mutable" in C++.
I did that to make sure there was no other cases like the one fixed in
the previous patch. I don't think it can hurt.
gdb/ChangeLog:
* ada-varobj.c (ada_number_of_children): Constify struct varobj *
parameter.
(ada_name_of_variable): Same.
(ada_path_expr_of_child): Same.
(ada_value_of_variable): Same.
(ada_value_is_changeable_p): Same.
(ada_value_has_mutated): Same.
* c-varobj.c (varobj_is_anonymous_child): Same.
(c_is_path_expr_parent): Same.
(c_number_of_children): Same.
(c_name_of_variable): Same.
(c_path_expr_of_child): Same.
(get_type): Same.
(c_value_of_variable): Same.
(cplus_number_of_children): Same.
(cplus_name_of_variable): Same.
(cplus_path_expr_of_child): Same.
(cplus_value_of_variable): Same.
* jv-varobj.c (java_number_of_children): Same.
(java_name_of_variable): Same.
(java_path_expr_of_child): Same.
(java_value_of_variable): Same.
* varobj.c (number_of_children): Same.
(name_of_variable): Same.
(is_root_p): Same.
(varobj_ensure_python_env): Same.
(varobj_get_objname): Same.
(varobj_get_expression): Same.
(varobj_get_display_format): Same.
(varobj_get_display_hint): Same.
(varobj_has_more): Same.
(varobj_get_thread_id): Same.
(varobj_get_frozen): Same.
(dynamic_varobj_has_child_method): Same.
(varobj_get_gdb_type): Same.
(is_path_expr_parent): Same.
(varobj_default_is_path_expr_parent): Same.
(varobj_get_language): Same.
(varobj_get_attributes): Same.
(varobj_is_dynamic_p): Same.
(varobj_get_child_range): Same.
(varobj_value_has_mutated): Same.
(varobj_get_value_type): Same.
(number_of_children): Same.
(name_of_variable): Same.
(check_scope): Same.
(varobj_editable_p): Same.
(varobj_value_is_changeable_p): Same.
(varobj_floating_p): Same.
(varobj_default_value_is_changeable_p): Same.
* varobj.h (struct lang_varobj_ops): Consitfy some struct varobj *
parameters.
(varobj_get_objname): Constify struct varobj * parameter.
(varobj_get_expression): Same.
(varobj_get_thread_id): Same.
(varobj_get_frozen): Same.
(varobj_get_child_range): Same.
(varobj_get_display_hint): Same.
(varobj_get_gdb_type): Same.
(varobj_get_language): Same.
(varobj_get_attributes): Same.
(varobj_editable_p): Same.
(varobj_floating_p): Same.
(varobj_has_more): Same.
(varobj_is_dynamic_p): Same.
(varobj_ensure_python_env): Same.
(varobj_default_value_is_changeable_p): Same.
(varobj_value_is_changeable_p): Same.
(varobj_get_value_type): Same.
(varobj_is_anonymous_child): Same.
(varobj_value_get_print_value): Same.
(varobj_default_is_path_expr_parent): Same.
It seems like different languages are doing this differently (e.g.
C and Ada). For C, var->path_expr is set inside c_path_expr_of_child.
The next time the value is requested, is it therefore not recomputed.
Ada does not set this field, but just returns the value. Since the field
is never set, the value is recomputed every time it is requested.
This patch makes it so that path_expr_of_child's only job is to compute
the path expression, not save/cache the value. The field is set by the
varobj common code.
gdb/ChangeLog:
* varobj.c (varobj_get_path_expr): Set var->path_expr.
* c-varobj.c (c_path_expr_of_child): Set local var instead of
child->path_expr.
(cplus_path_expr_of_child): Same.
varobj_get_expression returns an allocated string, which must be freed
by the caller.
gdb/ChangeLog:
* mi-cmd-var.c (print_varobj): Free varobj_get_expression
result.
(mi_cmd_var_info_expression): Same.
* varobj.c (varobj_get_expression): Mention in the comment that
the result must by freed by the caller.
varobj_get_type and type_to_string return an allocated string, which is
not freed at a couple of places.
New in v2:
* Rename char * type to type_name.
* Free in all cases in update_type_if_necessary.
gdb/ChangeLog:
* mi/mi-cmd-var.c (mi_cmd_var_info_type): Free result of
varobj_get_type.
(varobj_update_one): Same.
* varobj.c (update_type_if_necessary): Free curr_type_str and
new_type_str.
(varobj_get_type): Specify in comment that the result needs to be
freed by the caller.
Both dwarf2read.c (checkproducer) and utils.c (producer_is_gcc_ge_4)
implemented a GCC producer parser that tried to extract the major and minor
version of GCC. Merge them into one GCC producer parser used by both. Also
allow digits in the identifier after "GNU " such as used by GCC5 like:
"GNU C11 5.0.0 20150123 (experimental) -mtune=generic -march=x86-64 -gdwarf-5"
gdb/ChangeLog:
* dwarf2read.c (checkproducer): Call producer_is_gcc.
* utils.c (producer_is_gcc_ge_4): Likewise.
(producer_is_gcc): New function.
* utils.h (producer_is_gcc): New declaration.
Consider the following declarations:
type Array_Type is array (Integer range <>) of Integer;
type Record_Type (N : Integer) is record
A : Array_Type (1 .. N);
end record;
R : Record_Type := Get (10);
It defines what Ada programers call a "discriminated record", where
"N" is a component of that record called a "discriminant", and where
"A" is a component defined as an array type whose upper bound is
equal to the value of the discriminant.
So far, we rely on a number of fairly complex GNAT-specific encodings
to handle this situation. This patch is to enhance GDB to be able to
print this record in the case where the compiler has been modified
to replace those encodings by pure DWARF constructs.
In particular, the debugging information generated for the record above
looks like the following. "R" is a record..
.uleb128 0x10 # (DIE (0x13e) DW_TAG_structure_type)
.long .LASF17 # DW_AT_name: "foo__record_type"
... whose is is of course dynamic (not our concern here)...
.uleb128 0xd # DW_AT_byte_size
.byte 0x97 # DW_OP_push_object_address
.byte 0x94 # DW_OP_deref_size
.byte 0x4
.byte 0x99 # DW_OP_call4
.long 0x19b
.byte 0x23 # DW_OP_plus_uconst
.uleb128 0x7
.byte 0x9 # DW_OP_const1s
.byte 0xfc
.byte 0x1a # DW_OP_and
.byte 0x1 # DW_AT_decl_file (foo.adb)
.byte 0x6 # DW_AT_decl_line
... and then has 2 members, fist "n" (our discriminant);
.uleb128 0x11 # (DIE (0x153) DW_TAG_member)
.ascii "n\0" # DW_AT_name
.byte 0x1 # DW_AT_decl_file (foo.adb)
.byte 0x6 # DW_AT_decl_line
.long 0x194 # DW_AT_type
.byte 0 # DW_AT_data_member_location
... and "A"...
.uleb128 0x11 # (DIE (0x181) DW_TAG_member)
.ascii "a\0" # DW_AT_name
.long 0x15d # DW_AT_type
.byte 0x4 # DW_AT_data_member_location
... which is an array ...
.uleb128 0x12 # (DIE (0x15d) DW_TAG_array_type)
.long .LASF18 # DW_AT_name: "foo__record_type__T4b"
.long 0x194 # DW_AT_type
... whose lower bound is implicitly 1, and the upper bound
a reference to DIE 0x153 = "N":
.uleb128 0x13 # (DIE (0x16a) DW_TAG_subrange_type)
.long 0x174 # DW_AT_type
.long 0x153 # DW_AT_upper_bound
This patch enhanced GDB to understand references to other DIEs
where the DIE's address is at an offset of its enclosing type.
The difficulty was that the address used to resolve the array's
type (R's address + 4 bytes) is different from the address used
as the base to compute N's address (an offset to R's address).
We're solving this issue by using a stack of addresses rather
than a single address when trying to resolve a type. Each address
in the stack corresponds to each containing level. For instance,
if resolving the field of a struct, the stack should contain
the address of the field at the top, and then the address of
the struct. That way, if the field makes a reference to an object
of the struct, we can retrieve the address of that struct, and
properly resolve the dynamic property references that struct.
gdb/ChangeLog:
* gdbtypes.h (struct dynamic_prop): New PROP_ADDR_OFFSET enum
kind.
* gdbtypes.c (resolve_dynamic_type_internal): Replace "addr"
parameter by "addr_stack" parameter.
(resolve_dynamic_range): Replace "addr" parameter by
"stack_addr" parameter. Update function documentation.
Update code accordingly.
(resolve_dynamic_array, resolve_dynamic_union)
(resolve_dynamic_struct, resolve_dynamic_type_internal): Likewise.
(resolve_dynamic_type): Update code, following the changes made
to resolve_dynamic_type_internal's interface.
* dwarf2loc.h (struct property_addr_info): New.
(dwarf2_evaluate_property): Replace "address" parameter
by "addr_stack" parameter. Adjust function documentation.
(struct dwarf2_offset_baton): New.
(struct dwarf2_property_baton): Update documentation of
field "referenced_type" to be more general. New field
"offset_info" in union data field.
* dwarf2loc.c (dwarf2_evaluate_property): Replace "address"
parameter by "addr_stack" parameter. Adjust code accordingly.
Add support for PROP_ADDR_OFFSET properties.
* dwarf2read.c (attr_to_dynamic_prop): Add support for
DW_AT_data_member_location attributes as well. Use case
statements instead of if/else condition.
gdb/testsuite/ChangeLog:
* gdb.ada/disc_arr_bound: New testcase.
Tested on x86_64-linux, no regression.
This is preparation work to avoid a regression in the Ada/varobj.
An upcoming patch is going to add support for types in DWARF
which have dynamic properties whose value is a reference to another
DIE.
Consider for instance the following declaration:
type Variant_Type (N : Int := 0) is record
F : String(1 .. N) := (others => 'x');
end record;
type Variant_Type_Access is access all Variant_Type;
VTA : Variant_Type_Access := null;
This declares a variable "VTA" which is an access (=pointer)
to a variant record Variant_Type. This record contains two
components, the first being "N" (the discriminant), and the
second being "F", an array whose lower bound is 1, and whose
upper bound depends on the value of "N" (the discriminant).
Of interest to us, here, is that second component ("F"), and
in particular its bounds. The debugging info, and in particular
the info for the array looks like the following...
.uleb128 0x9 # (DIE (0x91) DW_TAG_array_type)
.long .LASF16 # DW_AT_name: "bar__variant_type__T2b"
.long 0xac # DW_AT_GNAT_descriptive_type
.long 0x2cb # DW_AT_type
.long 0xac # DW_AT_sibling
.uleb128 0xa # (DIE (0xa2) DW_TAG_subrange_type)
.long 0xc4 # DW_AT_type
.long 0x87 # DW_AT_upper_bound
.byte 0 # end of children of DIE 0x91
... where the upper bound of the array's subrange type is a reference
to "n"'s DIE (0x87):
.uleb128 0x8 # (DIE (0x87) DW_TAG_member)
.ascii "n\0" # DW_AT_name
[...]
Once the patch to handle this dynamic property gets applied,
this is what happens when creating a varobj for variable "VTA"
(whose value is null), and then trying to list its children:
(gdb)
-var-create vta * vta
^done,name="vta",numchild="2",value="0x0",
type="bar.variant_type_access",has_more="0"
(gdb)
-var-list-children 1 vta
^done,numchild="2",
children=[child={name="vta.n",[...]},
child={name="vta.f",exp="f",
numchild="43877616", <<<<-----
value="[43877616]", <<<<-----
type="array (1 .. n) of character"}],
has_more="0"
It has an odd number of children.
In this case, we cannot really determine the number of children,
since that number depends on the value of a field in a record
for which we do not have a value. Up to now, the value we've been
displaying is zero - meaning we have an empty array.
What happens in this case, is that, because the VTA is a null pointer,
we're not able to resolve the pointer's target type, and therefore
end up asking ada_varobj_get_array_number_of_children to return
the number of elements in that array; for that, it relies blindly
on get_array_bounds, which assumes the type is no longer dynamic,
and therefore the reads the bound without seeing that it's value
is actually a reference rather than a resolved constant.
This patch prevents the issue by explicitly handling the case of
dynamic arrays, and returning zero child in that case.
gdb/ChangeLog:
* ada-varobj.c (ada_varobj_get_array_number_of_children):
Return zero if PARENT_VALUE is NULL and parent_type's
range type is dynamic.
gdb/testsuite/ChangeLog:
* gdb.ada/mi_var_array: New testcase.
Tested on x86_64-linux.
Consider the following code:
type Record_Type (N : Integer) is record
A : Array_Type (1 .. N);
end record;
[...]
R : Record_Type := Get (10);
Trying to print the bounds of the array R.A yielded:
(gdb) p r.a'last
$4 = cannot find reference address for offset property
A slightly different example, but from the same cause:
(gdb) ptype r
type = <ref> record
n: integer;
a: array (cannot find reference address for offset property
Looking at the debugging info, "A" is described as...
.uleb128 0x11 # (DIE (0x181) DW_TAG_member)
.ascii "a\0" # DW_AT_name
.long 0x15d # DW_AT_type
[...]
... which is an array...
.uleb128 0x12 # (DIE (0x15d) DW_TAG_array_type)
.long .LASF18 # DW_AT_name: "foo__record_type__T4b"
.long 0x194 # DW_AT_type
.long 0x174 # DW_AT_sibling
... whose bounds are described as:
.uleb128 0x13 # (DIE (0x16a) DW_TAG_subrange_type)
.long 0x174 # DW_AT_type
.long 0x153 # DW_AT_upper_bound
.byte 0 # end of children of DIE 0x15d
We can see above that the range has an implict lower value of
1, and an upper value which is a reference 0x153="n". All Good.
But looking at the array's subrange subtype, we see...
.uleb128 0x14 # (DIE (0x174) DW_TAG_subrange_type)
.long 0x153 # DW_AT_upper_bound
.long .LASF19 # DW_AT_name: "foo__record_type__T3b"
.long 0x18d # DW_AT_type
... another subrange type whose bounds are exactly described
the same way. So we have a subrange of a subrange, both with
one bound that's dynamic.
What happens in the case above is that GDB's resolution of "R.A"
yields a array whose index type has static bounds. However, the
subtype of the array's index type was left untouched, so, when
taking the subtype of the array's subrange type, we were left
with the unresolved subrange type, triggering the error above.
gdb/ChangeLog:
* gdbtypes.c (is_dynamic_type_internal) <TYPE_CODE_RANGE>: Return
nonzero if the type's subtype is dynamic.
(resolve_dynamic_range): Also resolve the range's subtype.
Tested on x86_64-linux, no regression.
Compilation of (GDB) 7.9.50.20150127-cvs with (GCC) 5.0.0 20150127
fails with
In file included from symfile.c:32:0:
symfile.c: In function 'unmap_overlay_command':
objfiles.h:628:3: error: 'sec' may be used uninitialized in this
function [-Werror=maybe-uninitialized]
for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
^
symfile.c:3442:23: note: 'sec' was declared here
struct obj_section *sec;
^
cc1: all warnings being treated as errors
make[2]: *** [symfile.o] Error 1
make[2]: Leaving directory `gdb/gdb'
While the bug was reported to GCC as
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64823>,
the attached patch simply initializes sec with NULL.
gdb/ChangeLog:
* symfile.c (unmap_overlay_command): Initialize sec to NULL.
Tested on x86_64-linux.
gdb/ChangeLog:
* NEWS: Mention gdb.Objfile.username.
* python/py-objfile.c (objfpy_get_username): New function.
(objfile_getset): Add "username".
gdb/doc/ChangeLog:
* python.texi (Objfiles In Python): Document Objfile.username.
gdb/testsuite/ChangeLog:
* gdb.python/py-objfile.exp: Add tests for objfile.username.
Add test for objfile.filename, objfile.username after objfile
has been unloaded.
Since Fedora started to use DWZ DWARF compressor:
http://fedoraproject.org/wiki/Features/DwarfCompressor
GDB has slowed down a lot. To make it clear - DWZ is DWARF structure
rearrangement, "compressor" does not mean any zlib style data compression.
This patch reduces LibreOffice backtrace from 5 minutes to 3 seconds (100x)
and it also reduces memory consumption 20x.
[ benchmark is at the bottom of this mail ]
Example of DWZ output:
------------------------------------------------------------------------------
Compilation Unit @ offset 0xc4:
<0><cf>: Abbrev Number: 17 (DW_TAG_partial_unit)
<d0> DW_AT_stmt_list : 0x0
<d4> DW_AT_comp_dir : (indirect string, offset: 0x6f): /usr/src/debug/gdb-7.7.1/build-x86_64-redhat-linux-gnu/gdb
<1><d8>: Abbrev Number: 9 (DW_TAG_typedef)
<d9> DW_AT_name : (indirect string, offset: 0x827dc): size_t
<dd> DW_AT_decl_file : 4
<de> DW_AT_decl_line : 212
<df> DW_AT_type : <0xae>
Compilation Unit @ offset 0xe4:
<0><ef>: Abbrev Number: 13 (DW_TAG_partial_unit)
<f0> DW_AT_stmt_list : 0x0
<f4> DW_AT_comp_dir : (indirect string, offset: 0x6f): /usr/src/debug/gdb-7.7.1/build-x86_64-redhat-linux-gnu/gdb
<1><f8>: Abbrev Number: 45 (DW_TAG_typedef)
<f9> DW_AT_name : (indirect string, offset: 0x251): __off_t
<fd> DW_AT_decl_file : 3
<fe> DW_AT_decl_line : 131
<ff> DW_AT_type : <0x68>
Compilation Unit @ offset 0x62d9f9:
<0><62da04>: Abbrev Number: 20 (DW_TAG_compile_unit)
[...]
<62da12> DW_AT_low_pc : 0x807e10
<62da1a> DW_AT_high_pc : 134
<62da1c> DW_AT_stmt_list : 0xf557e
<1><62da20>: Abbrev Number: 7 (DW_TAG_imported_unit)
<62da21> DW_AT_import : <0xcf> [Abbrev Number: 17]
------------------------------------------------------------------------------
One can see all DW_TAG_partial_unit have DW_AT_stmt_list 0x0 which causes
repeated decoding of that .debug_line unit on each DW_TAG_imported_unit.
This was OK before as each DW_TAG_compile_unit has its own .debug_line unit.
But since the introduction of DW_TAG_partial_unit by DWZ one should cache
read-in DW_AT_stmt_list .debug_line units.
Fortunately one does not need to cache whole
struct linetable *symtab->linetable
and other data from .debug_line mapping PC<->lines
------------------------------------------------------------------------------
Line Number Statements:
Extended opcode 2: set Address to 0x45c880
Advance Line by 25 to 26
Copy
------------------------------------------------------------------------------
as the only part of .debug_line which GDB needs for DW_TAG_partial_unit is:
------------------------------------------------------------------------------
The Directory Table:
../../gdb
/usr/include/bits
[...]
The File Name Table:
Entry Dir Time Size Name
1 1 0 0 gdb.c
2 2 0 0 string3.h
[...]
------------------------------------------------------------------------------
specifically referenced in GDB for DW_AT_decl_file at a single place:
------------------------------------------------------------------------------
fe = &cu->line_header->file_names[file_index - 1];
SYMBOL_SYMTAB (sym) = fe->symtab;
------------------------------------------------------------------------------
This is because for some reason DW_TAG_partial_unit never contains PC-related
DWARF information. I do not know exactly why, the compression ratio is a bit
lower due to it but thanksfully currently it is that way:
dwz.c:
------------------------------------------------------------------------------
/* These attributes reference code, prevent moving
DIEs with them. */
case DW_AT_low_pc:
case DW_AT_high_pc:
case DW_AT_entry_pc:
case DW_AT_ranges:
die->die_ck_state = CK_BAD;
+
/* State of checksum computation. Not computed yet, computed and
suitable for moving into partial units, currently being computed
and finally determined unsuitable for moving into partial units. */
enum { CK_UNKNOWN, CK_KNOWN, CK_BEING_COMPUTED, CK_BAD } die_ck_state : 2;
------------------------------------------------------------------------------
I have also verified also real-world Fedora debuginfo files really comply with
that assumption with dwgrep
https://github.com/pmachata/dwgrep
using:
------------------------------------------------------------------------------
dwgrep -e 'entry ?DW_TAG_partial_unit child* ( ?DW_AT_low_pc , ?DW_AT_high_pc , ?DW_AT_ranges )' /usr/lib/debug/**
------------------------------------------------------------------------------
BTW I think GDB already does not support the whole DW_TAG_imported_unit and
DW_TAG_partial_unit usage possibilities as specified by the DWARF standard.
I think GDB would not work if DW_TAG_imported_unit was used in some inner
level and not at the CU level (readelf -wi level <1>) - this is how DWZ is
using DW_TAG_imported_unit. Therefore I do not think further assumptions
about DW_TAG_imported_unit and DW_TAG_partial_unit usage by DWZ are a problem
for GDB.
One could save the whole .debug_line decoded PC<->lines mapping (and not just
the DW_AT_decl_file table) but:
* there are some problematic corner cases so one could do it incorrectly
* there are no real world data to really test such patch extension
* such extension could be done perfectly incrementally on top of this patch
------------------------------------------------------------------------------
benchmark - on Fedora 20 x86_64 and FSF GDB HEAD:
echo -e 'thread apply all bt\nset confirm no\nq'|./gdb -p `pidof soffice.bin` -ex 'set pagination off' -ex 'maintenance set per-command
space' -ex 'maintenance set per-command symtab' -ex 'maintenance set per-command time'
FSF GDB HEAD ("thread apply all bt"):
Command execution time: 333.693000 (cpu), 335.587539 (wall)
---sec
Space used: 1736404992 (+1477189632 for this command)
----MB
vs.
THIS PATCH ("thread apply all bt"):
Command execution time: 2.595000 (cpu), 2.607573 (wall)
-sec
Space used: 340058112 (+85917696 for this command)
--MB
FSF GDB HEAD ("thread apply all bt full"):
Command execution time: 466.751000 (cpu), 468.345837 (wall)
---sec
Space used: 2330132480 (+2070974464 for this command)
----MB
vs.
THIS PATCH ("thread apply all bt full"):
Command execution time: 18.907000 (cpu), 18.964125 (wall)
--sec
Space used: 364462080 (+110325760 for this command)
---MB
------------------------------------------------------------------------------
gdb/ChangeLog
2015-01-24 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix 100x slowdown regression on DWZ files.
* dwarf2read.c (struct dwarf2_per_objfile): Add line_header_hash.
(struct line_header): Add offset and offset_in_dwz.
(dwarf_decode_lines): Add parameter decode_mapping to the declaration.
(free_line_header_voidp): New declaration.
(line_header_hash, line_header_hash_voidp, line_header_eq_voidp): New
functions.
(dwarf2_build_include_psymtabs): Update dwarf_decode_lines caller.
(handle_DW_AT_stmt_list): Use line_header_hash.
(free_line_header_voidp): New function.
(dwarf_decode_line_header): Initialize offset and offset_in_dwz.
(dwarf_decode_lines): New parameter decode_mapping, use it.
(dwarf2_free_objfile): Free line_header_hash.
In the situation described in bug 17416 [1]:
* "set print object" is on;
* The variable object is a pointer to a struct, and it contains an
invalid value (e.g. NULL, or random uninitialized value);
* The variable object (struct) has a child which is also a pointer to a
struct;
* We try to use "-var-list-children".
... an exception thrown in value_ind can propagate too far and leave an
half-built variable object, leading to a wrong state. This patch adds a
TRY_CATCH to catch it and makes value_rtti_indirect_type return NULL in
that case, meaning that the type of the pointed object could not be
found.
A test for the fix is also added.
New in v2:
* Added test.
* Restructured "catch" code.
* Added details about the bug in commit log.
gdb/Changelog:
* valops.c (value_rtti_indirect_type): Catch exception thrown by
value_ind.
gdb/testsuite/ChangeLog
* gdb.mi/mi-var-list-children-invalid-grandchild.c: New file.
* gdb.mi/mi-var-list-children-invalid-grandchild.exp: New file.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=17416
Add a flag field is_noreturn to struct func_type. Make calling_convention
a small bit field to not increase the size of the struct. Set is_noreturn
if the new GCC5/DWARF5 DW_AT_noreturn is set on a DW_TAG_subprogram.
Use this information to warn the user before doing a finish or return from
a function that does not return normally to its caller.
(gdb) finish
warning: Function endless does not return normally.
Try to finish anyway? (y or n)
(gdb) return
warning: Function does not return normally to caller.
Make endless return now? (y or n)
gdb/ChangeLog
* dwarf2read.c (read_subroutine_type): Set TYPE_NO_RETURN from
DW_AT_noreturn.
* gdbtypes.h (struct func_type): Add is_noreturn field flag. Make
calling_convention an 8 bit bit field.
(TYPE_NO_RETURN): New macro.
* infcmd.c (finish_command): Query if function does not return
normally.
* stack.c (return_command): Likewise.
gdb/testsuite/ChangeLog
* gdb.base/noreturn-return.c: New file.
* gdb.base/noreturn-return.exp: New file.
* gdb.base/noreturn-finish.c: New file.
* gdb.base/noreturn-finish.exp: New file.
include/ChangeLog
* dwarf2.def (DW_AT_noreturn): New DWARF5 attribute.
The dwarf2.h addition and the code to emit the new attribute is already in
the gcc tree.
linux_nat_is_async_p currently always returns true, even when the
target is _not_ async. That confuses
gdb_readline_wrapper/gdb_readline_wrapper_cleanup, which
force-disables target-async while the secondary prompt is active. As
a result, when gdb_readline_wrapper returns, the target is left async,
even through it was sync to begin with.
That can result in weird bugs, like the one the test added by this
commit exposes.
Ref: https://sourceware.org/ml/gdb-patches/2015-01/msg00592.html
gdb/ChangeLog:
2015-01-23 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_is_async_p): New macro.
(linux_nat_is_async_p):
(linux_nat_terminal_inferior): Check whether the target can async
instead of whether it is already async.
(linux_nat_terminal_ours): Don't check whether the target is
async.
(linux_async_pipe): Use linux_is_async_p.
gdb/testsuite/ChangeLog:
2015-01-23 Pedro Alves <palves@redhat.com>
* gdb.threads/continue-pending-after-query.c: New file.
* gdb.threads/continue-pending-after-query.exp: New file.
downstream Fedora request:
Please make it easier to find the backtrace of the crashing thread
https://bugzilla.redhat.com/show_bug.cgi?id=1024504
Currently after loading a core file GDB prints:
Core was generated by `./threadcrash1'.
Program terminated with signal SIGSEGV, Segmentation fault.
8 *(volatile int *)0=0;
(gdb) _
there is nowhere seen which of the threads had crashed. In reality GDB always
numbers that thread as #1 and it is the current thread that time. But after
dumping all the info into a file for later analysis it is no longer obvious.
'thread apply all bt' even puts the thread #1 to the _end_ of the output!!!
I find maybe as good enough and with no risk of UI change flamewar to just
sort the threads by their number. Currently they are printed as they happen
in the internal GDB list which has no advantage. Printing thread #1 as the
first one with assumed 'thread apply all bt' (after the core file is loaded)
should make the complaint resolved I guess.
On Thu, 15 Jan 2015 20:29:07 +0100, Doug Evans wrote:
No objection to sorting the list, but if thread #1 is the important one,
then a concern could be it'll have scrolled off the screen (such a
concern has been voiced in another thread in another context),
and if not lost (say it's in an emacs buffer) one would still have
to scroll back to see it.
So one *could* still want #1 to be last.
Do we want an option to choose the sort direction?
gdb/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* NEWS (Changes since GDB 7.9): Add 'thread apply all' option
'-ascending'.
* thread.c (tp_array_compar_ascending, tp_array_compar): New.
(thread_apply_all_command): Parse CMD for tp_array_compar_ascending.
Sort tp_array using tp_array_compar.
(_initialize_thread): Extend thread_apply_all_command help.
gdb/doc/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.texinfo (Threads): Describe -ascending for thread apply all.
downstream Fedora request:
Please make it easier to find the backtrace of the crashing thread
https://bugzilla.redhat.com/show_bug.cgi?id=1024504
Currently after loading a core file GDB prints:
Core was generated by `./threadcrash1'.
Program terminated with signal SIGSEGV, Segmentation fault.
8 *(volatile int *)0=0;
(gdb) _
there is nowhere seen which of the threads had crashed. In reality GDB always
numbers that thread as #1 and it is the current thread that time. But after
dumping all the info into a file for later analysis it is no longer obvious.
'thread apply all bt' even puts the thread #1 to the _end_ of the output!!!
Should GDB always print after loading a core file what "thread" command would
print?
[Current thread is 1 (Thread 0x7fcbe28fe700 (LWP 15453))]
BTW I think it will print the thread even when loading single/non-threaded
core file when other inferior(s) exist. But that currently crashes
[Bug threads/12074] multi-inferior internal error
https://sourceware.org/bugzilla/show_bug.cgi?id=12074
plus I think that would be a correct behavior anyway.
gdb/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* corelow.c (core_open): Call also thread_command.
* gdbthread.h (thread_command): New prototype moved from ...
* thread.c (thread_command): ... here.
(thread_command): Make it global.
When GDB is configured with "--without-tui --with-curses" or "--with-tui",
$prefer_curses is set to yes. But, that still doesn't mean that curses
will be used. configure will still search for the curses library, and
continue building without it. That's done here:
curses_found=no
if test x"$prefer_curses" = xyes; then
...
AC_SEARCH_LIBS(waddstr, [ncurses cursesX curses])
if test "$ac_cv_search_waddstr" != no; then
curses_found=yes
fi
fi
So if waddstr is not found, meaning curses is not really
available, even though it'd be preferred, $prefer_curses is
'yes', but $curses_found is 'no'.
So the right fix to tell whether we're linking with curses is
$curses_found=yes.
gdb/ChangeLog:
2015-01-22 Pedro Alves <palves@redhat.com>
* configure.ac [*mingw32*]: Check $curses_found instead of
$prefer_curses.
* configure: Regenerate.
* windows-termcap.c: Remove HAVE_CURSES_H, HAVE_NCURSES_H and
HAVE_NCURSES_NCURSES_H checks.
gdb/
2015-01-22 Eli Zaretskii <eliz@gnu.org>
* gdb/tui/tui.c (tui_enable) [__MINGW32__]: If the call to 'newterm'
fails with the 1st arg NULL, try again with "unknown". Don't test
the "cup" capability: it isn't supported by the Windows port of
ncurses, but the Windows console driver is still capable of
supporting TUI.
TBH while I always comment reasons for each of the compilation options in
reality I tried them all and chose that combination that needs the most simple
compile/compile-object-load.c (ld.so emulation) implementation.
gdb/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* compile/compile.c (_initialize_compile): Use -fPIE for compile_args.
gdb/testsuite/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.compile/compile.exp (pointer to jit function): New test.
gdb/
2015-01-22 Eli Zaretskii <eliz@gnu.org>
* Makefile.in (HFILES_NO_SRCDIR): Remove ada-varobj.h.
(ALLDEPFILES): Remove irix5-nat.c. These two are part of the
reason that "make TAGS" is broken.
Original working flow has several issues:
- typo issue: "(inst >> 26) == 0x1f && ..." for checking 'stw(m)'.
- "(inst >> 6) == 0xa" needs to be "((inst >> 6) & 0xf) == 0xa".
And also need check additional store instructions:
- For absolute memory: 'stby', 'stdby'.
- For unaligned: 'stwa', 'stda'.
The original code also can be improved:
- Remove redundant double check "(inst >> 26) == 0x1b" for 'stwm'.
- Use 2 'switch' statements instead of all 'if' statements.
* hppa-tdep.c (inst_saves_gr): Fix logical working flow issues
and check additional store instructions.
gdb/
2015-01-17 Eli Zaretskii <eliz@gnu.org>
* configure.ac [*mingw32*]: Only add windows-termcap.o to
CONFIG_OBS if not building with a curses library.
* configure: Regenerate.
* windows-termcap.c: Include defs.h. Make the whole body empty if
either one of HAVE_CURSES_H or HAVE_NCURSES_H or
HAVE_NCURSES_NCURSES_H is defined.
This commit fixes the regression on RHEL-5 systems introduced by
nat/linux-personality.c's check of HAVE_DECL_ADDR_NO_RANDOMIZE.
RHEL-5 systems define HAVE_DECL_ADDR_NO_RANDOMIZE as zero, so we
cannot use #ifndef; instead this patch uses the "#if !" construction.
The regression was reported by Ulrich Weigand here:
<https://sourceware.org/ml/gdb-patches/2015-01/msg00458.html>
gdb/ChangeLog
2015-01-16 Sergio Durigan Junior <sergiodj@redhat.com>
* nat/linux-personality.c: Replace "#ifndef
HAVE_DECL_ADDR_NO_RANDOMIZE" by "#if
!HAVE_DECL_ADDR_NO_RANDOMIZE", fixing a regression in RHEL-5
systems.
gdb/
2015-01-16 Eli Zaretskii <eliz@gnu.org>
* tui/tui-win.c (tui_rehighlight_all, tui_set_var_cmd): New
functions.
(_initialize_tui_win) <border-kind, border-mode>:
<active-border-mode>: Use tui_set_var_cmd as the "set" function.
* tui/tui-win.h: Add prototype for tui_rehighlight_all.
gdb/ChangeLog:
2015-01-16 Eli Zaretskii <eliz@gnu.org>
* tui/tui-win.c (tui_set_tab_width_command): Delete and
recreate the source and the disassembly windows, to show the
effect of the changed tab size immediately.
tui/tui-win.c (tui_scroll_left_command, tui_scroll_right_command):
Doc fix.
doc/gdb.texinfo (TUI Commands): Document the possible
values of NAME argument to 'winheight' command. Explain the
effect of 'tabset' setting better.
gdb/tui/tui-data.h (LINE_PREFIX): Make shorter
(MAX_PID_WIDTH): Enlarge from 14 to 19, to leave enough space for
"Thread NNNNN.XXXX" thread ID notation on Windows.
With gcc-5.0 pre-release one gets:
hppa-tdep.c: In function ‘inst_saves_gr’:
hppa-tdep.c:1406:30: error: comparison of constant ‘9’ with boolean expression is always false [-Werror=bool-compare]
I find the misplaced parentheses obvious.
gdb/ChangeLog
2015-01-16 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix gcc-5 compilation.
* hppa-tdep.c (inst_saves_gr): Fix parentheses typo.
This patch moves the shared code present on
gdb/linux-nat.c:linux_nat_create_inferior and
gdb/gdbserver/linux-low.c:linux_create_inferior to
nat/linux-personality.c. This code is responsible for disabling
address space randomization based on user setting, and using
<sys/personality.h> to do that. I decided to put the prototype of the
maybe_disable_address_space_randomization on nat/linux-osdata.h
because it seemed the best place to put it.
I regression-tested this patch on Fedora 20 x86_64, and found no
regressions.
gdb/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (HFILES_NO_SRCDIR): Add nat/linux-personality.h.
(linux-personality.o): New rule.
* common/common-defs.h: Include <stdint.h>.
* config/aarch64/linux.mh (NATDEPFILES): Include
linux-personality.o.
* config/alpha/alpha-linux.mh (NATDEPFILES): Likewise.
* config/arm/linux.mh (NATDEPFILES): Likewise.
* config/i386/linux64.mh (NATDEPFILES): Likewise.
* config/i386/linux.mh (NATDEPFILES): Likewise.
* config/ia64/linux.mh (NATDEPFILES): Likewise.
* config/m32r/linux.mh (NATDEPFILES): Likewise.
* config/m68k/linux.mh (NATDEPFILES): Likewise.
* config/mips/linux.mh (NATDEPFILES): Likewise.
* config/pa/linux.mh (NATDEPFILES): Likewise.
* config/powerpc/linux.mh (NATDEPFILES): Likewise.
* config/powerpc/ppc64-linux.mh (NATDEPFILES): Likewise.
* config/powerpc/spu-linux.mh (NATDEPFILES): Likewise.
* config/s390/linux.mh (NATDEPFILES): Likewise.
* config/sparc/linux64.mh (NATDEPFILES): Likewise.
* config/sparc/linux.mh (NATDEPFILES): Likewise.
* config/tilegx/linux.mh (NATDEPFILES): Likewise.
* config/xtensa/linux.mh (NATDEPFILES): Likewise.
* defs.h: Remove #include <stdint.h> (moved to
common/common-defs.h).
* linux-nat.c: Include nat/linux-personality.h. Remove #include
<sys/personality.h>; do not define ADDR_NO_RANDOMIZE (moved to
nat/linux-personality.c).
(linux_nat_create_inferior): Remove code to disable address space
randomization (moved to nat/linux-personality.c). Create cleanup
to disable address space randomization.
* nat/linux-personality.c: New file.
* nat/linux-personality.h: Likewise.
gdb/gdbserver/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (SFILES): Add linux-personality.c.
(linux-personality.o): New rule.
* configure.srv (srv_linux_obj): Add linux-personality.o to the
list of objects to be built.
* linux-low.c: Include nat/linux-personality.h.
(linux_create_inferior): Remove code to disable address space
randomization (moved to ../nat/linux-personality.c). Create
cleanup to disable address space randomization.
This patch moves safe_strerror from the gdb/{posix,mingw}-hdep.c files
to the respective common/{posix,mingw}-strerror.c files. This is a
preparation for the next patch, which shares a common code (to disable
address space randomization when creating a new inferior).
The patch has been regtested on Fedora 20 x86_64, and no regressions
were found.
gdb/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (ALLDEPFILES): Including common/mingw-strerror.c and
common/posix-strerror.c.
(posix-strerror.o): New rule.
(mingw-strerror.o): Likewise.
* common/common-utils.h (safe_strerror): Move prototype to here,
from utils.h.
* common/common.host: New file.
* common/mingw-strerror.c: Likewise.
* common/posix-strerror.c: Likewise.
* configure: Regenerated.
* configure.ac: Source common/common.host. Add variable
common_host_obs to gdb_host_obs.
* contrib/ari/gdb_ari.sh: Mention gdb/common/mingw-strerror.c and
gdb/common/posix-strerror.c when warning about the use of
strerror.
* mingw-hdep.c (safe_strerror): Remove definition; move it to
common/mingw-strerror.c.
* posix-hdep.c (safe_strerror): Remove definition; move it to
common/posix-hdep.c.
* utils.h (safe_strerror): Remove prototype; move to
common/common-utils.h.
gdb/gdbserver/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (posix-strerror.o): New rule.
(mingw-strerror.o): Likewise.
* configure: Regenerated.
* configure.ac: Source file ../common/common.host. Initialize new
variable srv_host_obs. Add srv_host_obs to GDBSERVER_DEPFILES.
Consider the following code:
type Table is array (Positive range <>) of Integer;
type Object (N : Integer) is record
Data : Table (1 .. N);
end record;
My_Object : Object := (N => 3, Data => (3, 5, 8));
Trying to print the range and length of the My_Object.Data array yields:
(gdb) print my_object.data'first
$1 = 1
(gdb) print my_object.data'last
$2 = 0
(gdb) print my_object.data'length
$3 = 0
The first one is correct, and that is thanks to the fact that
the lower bound is statically known. However, for the upper
bound, and consequently the array's length, the values are incorrect.
It should be:
(gdb) print my_object.data'last
$2 = 3
(gdb) print my_object.data'length
$3 = 3
What happens here is that ada_array_bound_from_type sees that
our array has a parallel "___XA" type, and therefore tries to
use it. In particular, it described our array's index type as:
[...]___XDLU_1__n, which means lower bound = 1, and upper bound
is value of "n". Unfortunately, ada_array_bound_from_type does
not have access to the discriminant, and is therefore unable to
compute the bound correctly.
Fortunately, at this stage, the bound has already been computed
a while ago, and therefore doesn't need to be re-computed here.
This patch fixes the issue by ignoring that ___XA type if the array
is marked as already fixed.
This also fixes the same issue with packed arrays.
gdb/ChangeLog:
* ada-lang.c (ada_array_bound_from_type): Ignore array's parallel
___XA type if the array has already been fixed.
gdb/testsuite/ChangeLog:
* gdb.ada/var_arr_attrs: New testcase.
This patch is to teach both GDB and GDBServer to detect 64-bit inferior
correctly. We find a problem that GDBServer is unable to detect on a
e5500 core processor. Current GDBServer assumes that MSR is a 64-bit
register, but MSR is a 32-bit register in Book III-E. This patch is
to fix this problem by checking the right bit in MSR, in order to handle
both Book III-S and Book III-E. In order to detect Book III-S and
Book III-E, we check the PPC_FEATURE_BOOKE from the host's HWCAP (by
getauxval on glibc >= 2.16. If getauxval doesn't exist, we implement
the fallback by parsing /proc/self/auxv), because it should an invariant
on the same machine cross different processes.
In order to share code, I add nat/ppc-linux.c for both GDB and
GDBserver side.
gdb:
2015-01-14 Yao Qi <yao@codesourcery.com>
* Makefile.in (ppc-linux.o): New rule.
* config/powerpc/ppc64-linux.mh (NATDEPFILES): Add ppc-linux.o.
* configure.ac: AC_CHECK_FUNCS(getauxval).
* config.in: Re-generated.
* configure: Re-generated.
* nat/ppc-linux.h [__powerpc64__] (ppc64_64bit_inferior_p):
Declare.
* nat/ppc-linux.c: New file.
* ppc-linux-nat.c (ppc_linux_target_wordsize) [__powerpc64__]:
Call ppc64_64bit_inferior_p.
gdb/gdbserver:
2015-01-14 Yao Qi <yao@codesourcery.com>
* Makefile.in (SFILES): Add nat/ppc-linux.c.
(ppc-linux.o): New rule.
* configure.srv (powerpc*-*-linux*): Add ppc-linux.o.
* configure.ac: AC_CHECK_FUNCS(getauxval).
* config.in: Re-generated.
* configure: Re-generated.
* linux-ppc-low.c (ppc_arch_setup) [__powerpc64__]: Call
ppc64_64bit_inferior_p
When I use PPC_FEATURE_BOOKE in GDBserver, I find it is defined in GDB
but not in GDBserver. After taking a further look, I find some macros
are duplicated between ppc-linux-nat.c and linux-ppc-low.c, so this
patch is to move them into nat/ppc-linux.h.
gdb/gdbserver:
2015-01-14 Yao Qi <yao@codesourcery.com>
* linux-ppc-low.c: Include "nat/ppc-linux.h".
(PPC_FEATURE_HAS_VSX): Move to nat/ppc-linux.h.
(PPC_FEATURE_HAS_ALTIVEC, PPC_FEATURE_HAS_SPE): Likewise.
(PT_ORIG_R3, PT_TRAP): Likewise.
(PTRACE_GETVSXREGS, PTRACE_SETVSXREGS): Likewise.
(PTRACE_GETVRREGS, PTRACE_SETVRREGS): Likewise.
(PTRACE_GETEVRREGS, PTRACE_SETEVRREGS): Likewise.
gdb:
2015-01-14 Yao Qi <yao@codesourcery.com>
* ppc-linux-nat.c (PT_ORIG_R3, PT_TRAP): Move to
nat/ppc-linux.h.
(PPC_FEATURE_CELL, PPC_FEATURE_BOOKE): Likewise.
(PPC_FEATURE_HAS_DFP): Likewise.
(PTRACE_GETVRREGS, PTRACE_SETVRREGS): Likewise.
(PTRACE_GETVSXREGS, PTRACE_SETVSXREGS): Likewise.
(PTRACE_GETEVRREGS, PTRACE_SETEVRREGS): Likewise.
Include "nat/ppc-linux.h".
* nat/ppc-linux.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add nat/ppc-linux.h.
Executing a gdb script that runs the inferior (from the command line
with -x), and has it hit breakpoints with breakpoint commands that
themselves run the target, is currently broken on async targets
(Linux, remote).
While we're executing a command list or a script, we force the
interpreter to be sync, which results in some functions nesting an
event loop and waiting for the target to stop, instead of returning
immediately and having the top level event loop handle the stop.
The issue with this bug is simply that bpstat_do_actions misses
checking whether the interpreter is sync. When we get here, in the
case of executing a script (or, when the interpreter is sync), the
program has already advanced to the next breakpoint, through
maybe_wait_sync_command_done. We need to process its breakpoints
immediately, just like with a sync target.
Tested on x86_64 Fedora 20.
gdb/
2015-01-14 Pedro Alves <palves@redhat.com>
PR gdb/17525
* breakpoint.c: Include "interps.h".
(bpstat_do_actions_1): Also check whether the interpreter is
async.
gdb/testsuite/
2015-01-14 Pedro Alves <palves@redhat.com>
Joel Brobecker <brobecker@adacore.com>
PR gdb/17525
* gdb.base/bp-cmds-execution-x-script.c: New file.
* gdb.base/bp-cmds-execution-x-script.exp: New file.
* gdb.base/bp-cmds-execution-x-script.gdb: New file.
Commit d3d4baed (PR python/17372 - Python hangs when displaying
help()) had the side effect of causing 'gdb -batch' to leave the
terminal in the wrong state if the program was run. E.g,.
$ echo 'main(){*(int*)0=0;}' | gcc -x c -; ./gdb/gdb -batch -ex r ./a.out
Program received signal SIGSEGV, Segmentation fault.
0x00000000004004ff in main ()
$
If you start typing the next command, seemingly nothing happens - GDB
left the terminal with echo disabled.
The issue is that that "r" ends up in fetch_inferior_event, which
calls reinstall_readline_callback_handler_cleanup, which causes
readline to prep the terminal (raw, echo disabled). But "-batch"
causes GDB to exit before the top level event loop is first started,
and then nothing de-preps the terminal.
The reinstall_readline_callback_handler_cleanup function's intro
comment mentions:
"Need to do this as we go back to the event loop, ready to process
further input."
but the implementation forgets the case of when the interpreter is
sync, which indicates we won't return to the event loop yet, or as in
the case of -batch, we have not started it yet.
The fix is to not install the readline callback in that case.
For the test, in this case, checking that command echo still works is
sufficient. Comparing stty output before/after running GDB is even
better. Because stty may not be available, the test tries both ways.
In any case, since expect's spawn (what we use to start gdb) creates a
new pseudo tty, another expect spawn or tcl exec after GDB exits would
not see the wrong terminal settings. So instead, the test spawns a
shell and runs stty and GDB in it.
Tested on x86_64 Fedora 20.
gdb/
2015-01-14 Pedro Alves <palves@redhat.com>
PR cli/17828
* infrun.c (reinstall_readline_callback_handler_cleanup): Don't
reinstall if the interpreter is sync.
gdb/testsuite/
2015-01-14 Pedro Alves <palves@redhat.com>
PR cli/17828
* gdb.base/batch-preserve-term-settings.c: New file.
* gdb.base/batch-preserve-term-settings.exp: New file.
gdb/Changelog:
* objfiles.c (objfile_filename): New function.
* objfiles.h (objfile_filename): Declare it.
(objfile_name): Add function comment.
* python/py-objfile.c (objfpy_lookup_objfile_by_name): Try both the
bfd file name (which may be realpath'd), and the original name.
gdb/testsuite/ChangeLog:
* gdb.python/py-objfile.exp: Test gdb.lookup_objfile on symlinked
binary.
Now that the GDB 7.9 branch has been created, we can
bump the version number.
gdb/ChangeLog:
GDB 7.9 branch created (92fc2e6978):
* version.in: Bump version to 7.9.50.DATE-cvs.
The following change...
commit 1994afbf19
Date: Tue Dec 23 07:55:39 2014 -0800
Subject: Look up primitive types as symbols.
... caused the following regression:
% gdb
(gdb) set lang ada
(gdb) python print gdb.lookup_type('character')
Traceback (most recent call last):
File "<string>", line 1, in <module>
gdb.error: No type named character.
Error while executing Python code.
This is because the language_lookup_primitive_type_as_symbol call
was moved to the la_lookup_symbol_nonlocal hook. A couple of
implementations have been upated accordingly, but the Ada version
has not. This patch fixes this omission.
gdb/ChangeLog:
* ada-lang.c (ada_lookup_symbol_nonlocal): If name not found
in static block, then try searching for primitive types.
gdb/testsuite/ChangeLog:
* gdb.python/py-lookup-type.exp: New file.
This patch makes readline append new history lines to the GDB history
file on exit instead of overwriting the entire history file on exit.
This change allows us to run multiple simultaneous GDB sessions without
having each session overwrite the added history of each other session on
exit.
Care must be taken to ensure that the history file doesn't get corrupted
when multiple GDB processes are trying to simultaneously append to and
then truncate it. Safety is achieved in such a situation by using an
intermediate local history file to mutually exclude multiple processes
from simultaneously performing write operations on the global history
file.
gdb/ChangeLog:
* top.h (gdb_add_history): Declare.
* top.c (command_count): New variable.
(gdb_add_history): New function.
(gdb_safe_append_history): New static function.
(quit_force): Call it.
(command_line_input): Use gdb_add_history instead of
add_history.
* event-top.c (command_line_handler): Likewise.
The `machine/setjmp.h' header is no longer present on OS X 10.10, and is
non-standard. Instead, `darwin-nat.c' should be using the standard
`setjmp.h' header.
gdb/ChangeLog:
2015-01-12 James Clarke <jrtc27@jrtc27.com> (tiny patch)
PR gdb/17046
* darwin-nat.c: Replace <machine/setjmp.h> #include by
<setjmp.h> #include.
clear_symtab_users calls breakpoint_re_set before
observer_notify_new_objfile(NULL), and thus symbol lookup
done during breakpoint_re_set will see a stale cache.
Presumably we just need to move the call to observer_notify_new_objfile(NULL)
to before breakpoint_re_set, but need to check for other such issues,
and 7.9 is scheduled to branch tomorrow.
Reverts commits:
b2fb95e006400678a494d98b9ccbcc77087adf50
gdb/ChangeLog:
* symtab.c (eq_symbol_entry): Use SYMBOL_SEARCH_NAME and
symbol_matches_domain for symbol comparisons.
* symtab.c (symbol_cache_mark_found): Improve function comment.
Rename parameter objfile to objfile_context.
(symbol_cache_mark_not_found): Improve function comment.
Add symbol lookup cache.
* NEWS: Document new options and commands.
* symtab.c (symbol_cache_key): New static global.
(DEFAULT_SYMBOL_CACHE_SIZE, MAX_SYMBOL_CACHE_SIZE): New macros.
(SYMBOL_LOOKUP_FAILED): New macro.
(symbol_cache_slot_state): New enum.
(block_symbol_cache): New struct.
(symbol_cache): New struct.
(new_symbol_cache_size, symbol_cache_size): New static globals.
(hash_symbol_entry, eq_symbol_entry): New functions.
(symbol_cache_byte_size, resize_symbol_cache): New functions.
(make_symbol_cache, free_symbol_cache): New functions.
(get_symbol_cache, symbol_cache_cleanup): New function.
(set_symbol_cache_size, set_symbol_cache_size_handler): New functions.
(symbol_cache_lookup, symbol_cache_clear_slot): New function.
(symbol_cache_mark_found, symbol_cache_mark_not_found): New functions.
(symbol_cache_flush, symbol_cache_dump): New functions.
(maintenance_print_symbol_cache): New function.
(maintenance_flush_symbol_cache): New function.
(symbol_cache_stats): New function.
(maintenance_print_symbol_cache_statistics): New function.
(symtab_new_objfile_observer): New function.
(symtab_free_objfile_observer): New function.
(lookup_static_symbol, lookup_global_symbol): Use symbol cache.
(_initialize_symtab): Init symbol_cache_key. New parameter
maint symbol-cache-size. New maint commands print symbol-cache,
print symbol-cache-statistics, flush-symbol-cache.
Install new_objfile, free_objfile observers.
gdb/doc/ChangeLog:
* gdb.texinfo (Symbols): Document new commands
"maint print symbol-cache", "maint print symbol-cache-statistics",
"maint flush-symbol-cache". Document new option
"maint set symbol-cache-size".
gdb/ChangeLog:
PR gdb/15830
* NEWS: The "maint demangle" command is renamed as "demangle".
* demangle.c: #include cli/cli-utils.h, language.h.
(demangle_command): New function.
(_initialize_demangle): Add new command "demangle".
* maint.c (maintenance_demangle): Stub out.
(_initialize_maint_cmds): Update help text for "maint demangle",
and mark as deprecated.
gdb/doc/ChangeLog:
* gdb.texinfo (Debugging C Plus Plus): Mention "demangle".
(Symbols): Ditto.
(Maintenance Commands): Delete docs for "maint demangle".
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp: Remove references to "maint demangle".
* gdb.cp/demangle.exp: Update. "maint demangle" -> "demangle".
Add tests for explicitly specifying language to demangle.
* gdb.dlang/demangle.exp: Ditto.
gdb/ChangeLog:
Add symbol lookup cache.
* NEWS: Document new options and commands.
* symtab.c (symbol_cache_key): New static global.
(DEFAULT_SYMBOL_CACHE_SIZE, MAX_SYMBOL_CACHE_SIZE): New macros.
(SYMBOL_LOOKUP_FAILED): New macro.
(symbol_cache_slot_state): New enum.
(block_symbol_cache): New struct.
(symbol_cache): New struct.
(new_symbol_cache_size, symbol_cache_size): New static globals.
(hash_symbol_entry, eq_symbol_entry): New functions.
(symbol_cache_byte_size, resize_symbol_cache): New functions.
(make_symbol_cache, free_symbol_cache): New functions.
(get_symbol_cache, symbol_cache_cleanup): New function.
(set_symbol_cache_size, set_symbol_cache_size_handler): New functions.
(symbol_cache_lookup, symbol_cache_clear_slot): New function.
(symbol_cache_mark_found, symbol_cache_mark_not_found): New functions.
(symbol_cache_flush, symbol_cache_dump): New functions.
(maintenance_print_symbol_cache): New function.
(maintenance_flush_symbol_cache): New function.
(symbol_cache_stats): New function.
(maintenance_print_symbol_cache_statistics): New function.
(symtab_new_objfile_observer): New function.
(symtab_free_objfile_observer): New function.
(lookup_static_symbol, lookup_global_symbol): Use symbol cache.
(_initialize_symtab): Init symbol_cache_key. New parameter
maint symbol-cache-size. New maint commands print symbol-cache,
print symbol-cache-statistics, flush-symbol-cache.
Install new_objfile, free_objfile observers.
doc/ChangeLog:
* gdb.texinfo (Symbols): Document new commands
"maint print symbol-cache", "maint print symbol-cache-statistics",
"maint flush-symbol-cache". Document new option
"maint set symbol-cache-size".
The #line directives within GDB's autogenerated yacc files (e.g.
c-exp.c) are being incorrectly munged, causing these directives to refer
to nonexistent source files, e.g.
#line 36 "/home/patrick/binutils-gdb/gdb//home/patrick/binutils-gdb/gdb/c-exp.y"
as opposed to
#line 36 "/home/patrick/binutils-gdb/gdb/c-exp.y"
The munging happens due to a sed expression added by commit 954d8cae
whose intended purpose[1] was to work around the fact that ylwrap emitted #line
directives without any directory information, e.g.
#line 36 "c-exp.y"
So the sed expression was meant to munge such directives to refer to
absolute paths instead. But the behavior of ylwrap was changed some
years ago[2] to emit absolute paths within #line directives. And when
our local copy of ylwrap was synced by commit e30465112, the sed
expression in question became unnecessary, and indeed harmful.
This patch removes the now-obsolete sed expression. The emitted #line
directives are now correct without it.
gdb/ChangeLog:
* Makefile.in (.y.c): Don't munge yacc's #line
directives.
[1]: https://sourceware.org/ml/gdb-patches/2010-11/msg00265.html
[2]: http://git.savannah.gnu.org/cgit/automake.git/commit/lib/ylwrap?id=b6359a5f3
This patch primarily rewrites defaulted_query() to use
gdb_readline_wrapper() to prompt the user for input, like
prompt_for_continue() does. The motivation for this rewrite is to be
able to reuse the default query hook in TUI, obviating the need for a
custom TUI query hook.
However, having TUI use the default query mechanism exposed a couple of
latent bugs in tui_redisplay_readline() related to the handling of
multi-line prompts, in particular GDB's multi-line quit prompt.
The first issue is an off-by-one error in the calculation of the height
of the prompt. The check in question should be col <= prev_col, not c <
prev_col, to properly account for the case when a prompt contains
multiple consecutive newlines. Failing to do so makes TUI have the
wrong idea of the vertical height of the prompt. This patch fixes the
column check.
The second issue is that cur_line does not get updated to reflect the
cursor position if the user's prompt cursor is at the end of the prompt
(i.e. if rl_point == rl_end). cur_line only gets updated if rl_point
lies between 0..rl_end-1 because that is the bounds of the for loop
responsible for updating cur_line. This patch changes the loop's bounds
to 0..rl_end so that cur_line always gets updated.
With these two bug fixes out of the way, the default query mechanism
works well in TUI even with multi-line prompts like GDB's quit prompt.
gdb/ChangeLog:
* utils.c (defaulted_query): Rewrite to use gdb_readline_wrapper
to prompt for input.
* tui/tui-hooks.c (tui_query_hook): Remove.
(tui_install_hooks): Don't set deprecated_query_hook.
* tui/tui-io.c (tui_redisplay_readline): Fix off-by-one error in
height calculation. Always update the command window's cur_line.
Running the testsuite with a series that reimplements user-visible
all-stop behavior on top of a target running in non-stop mode revealed
problems related to event starvation avoidance.
For example, I see
gdb.threads/signal-while-stepping-over-bp-other-thread.exp failing.
What happens is that GDB core never gets to see the signal event. It
ends up processing the events for the same threads over an over,
because Linux's waitpid(-1, ...) returns that first task in the task
list that has an event, starving threads on the tail of the task list.
So I wrote a non-stop mode test originally inspired by
signal-while-stepping-over-bp-other-thread.exp, to stress this
independently of all-stop on top of non-stop. Fixing it required the
changes described below. The test will be added in a following
commit.
1) linux-nat.c has code in place that picks an event LWP at random out
of all that have had events. This is because on the kernel side,
"waitpid(-1, ...)" just walks the task list linearly looking for the
first that had an event. But, this code is currently only used in
all-stop mode. So with a multi-threaded program that has multiple
events triggering debug events in parallel, GDB ends up starving some
threads.
To make the event randomization work in non-stop mode too, the patch
makes us pull out all the already pending events on the kernel side,
with waitpid, before deciding which LWP to report to the core.
There's some code in linux_wait that takes care of leaving events
pending if they were for LWPs the caller is not interested in. The
patch moves that to linux_nat_filter_event, so that we only have one
place that leaves events pending. With that in place, conceptually,
the flow is simpler and more normalized:
#1 - walk the LWP list looking for an LWP with a pending event to report.
#2 - if no pending event, pull events out of the kernel, and store
them in the LWP structures as pending.
#3- goto #1.
2) Then, currently the event randomization code only considers SIGTRAP
(or trap-like) events. That means that if e.g., have have multiple
threads stepping in parallel that hit a breakpoint that needs stepping
over, and one gets a signal, the signal may end up never getting
processed, because GDB will always be giving priority to the SIGTRAPs.
The patch fixes this by making the randomization code consider all
kinds of pending events.
3) If multiple threads hit a breakpoint, we report one of those, and
"cancel" the others. Cancelling means decrementing the PC, and
discarding the event. If the next time the LWP is resumed the
breakpoint is still installed, the LWP should hit it again, and we'll
report the hit then. The problem I found is that this delays threads
from advancing too much, with the kernel potentially ending up
scheduling the same threads over and over, and others not advancing.
So the patch switches away from cancelling the breakpoints, and
instead remembering that the LWP had stopped for a breakpoint. If on
resume the breakpoint is still installed, we report it. If it's no
longer installed, we discard the pending event then. This is actually
how GDBserver used to handle this before d50171e4 (Teach linux
gdbserver to step-over-breakpoints), but with the difference that back
then we'd delay adjusting the PC until resuming, which made it so that
"info threads" could wrongly see threads with unadjusted PCs.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* breakpoint.c (hardware_breakpoint_inserted_here_p): New
function.
* breakpoint.h (hardware_breakpoint_inserted_here_p): New
declaration.
* linux-nat.c (linux_nat_status_is_event): Move higher up in file.
(linux_resume_one_lwp): Store the thread's PC. Adjust to clear
stop_reason.
(check_stopped_by_watchpoint): New function.
(save_sigtrap): Reimplement.
(linux_nat_stopped_by_watchpoint): Adjust.
(linux_nat_lp_status_is_event): Delete.
(stop_wait_callback): Only call save_sigtrap after storing the
pending status.
(status_callback): If the thread had been stopped for a breakpoint
that has since been removed, discard the event and resume the LWP.
(count_events_callback, select_event_lwp_callback): Use
lwp_status_pending_p instead of linux_nat_lp_status_is_event.
(cancel_breakpoint): Rename to ...
(check_stopped_by_breakpoint): ... this. Record whether the LWP
stopped for a software breakpoint or hardware breakpoint.
(select_event_lwp): Only give preference to the stepping LWP in
all-stop mode. Adjust comments.
(stop_and_resume_callback): Remove references to new_pending_p.
(linux_nat_filter_event): Likewise. Leave exit events of the
leader thread pending here. Handle signal short circuiting here.
Only call save_sigtrap after storing the pending waitstatus.
(linux_nat_wait_1): Remove 'retry' label. Remove references to
new_pending. Don't handle leaving events the caller is not
interested in pending here, nor handle signal short-circuiting
here. Also give equal priority to all LWPs that have had events
in non-stop mode. If reporting a software breakpoint event,
unadjust the LWP's PC.
* linux-nat.h (enum lwp_stop_reason): New.
(struct lwp_info) <stop_pc>: New field.
(struct lwp_info) <stopped_by_watchpoint>: Delete field.
(struct lwp_info) <stop_reason>: New field.
* x86-linux-nat.c (x86_linux_prepare_to_resume): Adjust.
A subsequent patch will make the Linux backend's target_wait method
pull all events out of the kernel (with waitpid) and store them as
pending status in the LWP structure if no pending status was already
available. Then, the backend goes over the pending statuses and pick
one to report to the core.
With that, the existing thread-execl.exp test exposes a bug, like:
(gdb) set scheduler-locking on
(gdb) PASS: gdb.threads/thread-execl.exp: schedlock on: set scheduler-locking on
next
FAIL: gdb.threads/thread-execl.exp: schedlock on: get to main in new image (timeout)
Recall that when the non-leader thread execs, all threads in the
process die, the execing thread changes its pid to the tgid, and then
waitpid returns an exec event to the tgid. If GDB didn't resume the
leader LWP, then GDB sees an event for an LWP that was supposedly
stopped, and thus not marked as resumed. Because the code that picks
a pending event to report to the core ignores not-resumed LWPs:
/* Return non-zero if LP has a wait status pending. */
static int
status_callback (struct lwp_info *lp, void *data)
{
/* Only report a pending wait status if we pretend that this has
indeed been resumed. */
if (!lp->resumed)
return 0;
the event ends up pending forever, thus the timeout.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_handle_extended_wait) <PTRACE_EVENT_EXEC>:
Set the LWP's 'resumed' flag.
Whenever we resume an LWP, we must clear a few flags and flush the
LWP's register cache. We actually currently flush the register cache
of all LWPs, but that's unnecessary. This patch makes us flush the
register cache of only the LWP that is resumed. Instead of open
coding all that in many places, we use a helper function.
Likewise, we have two fields in the LWP structure where a pending
status may be recorded. Add a helper predicate that checks both and
use it throughout instead of open coding the checks.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_resume_one_lwp): New function.
(resume_lwp): Use lwp_status_pending_p and linux_resume_one_lwp.
(linux_nat_resume): Use lwp_status_pending_p and
linux_resume_one_lwp.
(linux_handle_syscall_trap): Use linux_resume_one_lwp.
(linux_handle_extended_wait): Use linux_resume_one_lwp.
(status_callback, running_callback): Use lwp_status_pending_p.
(lwp_status_pending_p): New function.
(stop_and_resume_callback): Use lwp_status_pending_p.
(linux_nat_filter_event): Use linux_resume_one_lwp.
(linux_nat_wait_1): Always use status_callback to look for an LWP
with a pending status. Use linux_resume_one_lwp.
(resume_stopped_resumed_lwps): Use lwp_status_pending_p and
linux_resume_one_lwp.
Factor out common code, and use the more efficient
ALL_BP_LOCATIONS_AT_ADDR.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* breakpoint.c (bp_location_inserted_here_p): New function,
factored out from ...
(breakpoint_inserted_here_p): ... here. Use
ALL_BP_LOCATIONS_AT_ADDR.
(software_breakpoint_inserted_here_p): Use
bp_location_inserted_here_p and ALL_BP_LOCATIONS_AT_ADDR.
[A test I wrote stumbled on a libthread_db issue related to thread
event breakpoints. See glibc PR17705:
[nptl_db: stale thread create/death events if debugger detaches]
https://sourceware.org/bugzilla/show_bug.cgi?id=17705
This patch avoids that whole issue by making GDB stop using thread
event breakpoints in the first place, which is good for other reasons
as well, anyway.]
Before PTRACE_EVENT_CLONE (Linux 2.6), the only way to learn about new
threads in the inferior (to attach to them) or to learn about thread
exit was to coordinate with the inferior's glibc/runtime, using
libthread_db. That works by putting a breakpoint at a magic address
which is called when a new thread is spawned, or when a thread is
about to exit. When that breakpoint is hit, all threads are stopped,
and then GDB coordinates with libthread_db to read data structures out
of the inferior to learn about what happened. Then the breakpoint is
single-stepped, and then all threads are re-resumed. This isn't very
efficient (stops all threads) and is more fragile (inferior's thread
list in memory may be corrupt; libthread_db bugs, etc.) than ideal.
When the kernel supports PTRACE_EVENT_CLONE (which we already make use
of), there's really no need to use libthread_db's event reporting
mechanism to learn about new LWPs. And if the kernel supports that,
then we learn about LWP exits through regular WIFEXITED wait statuses,
so no need for the death event breakpoint either.
GDBserver has been likewise skipping the thread_db events for a long
while:
https://sourceware.org/ml/gdb-patches/2007-10/msg00547.html
There's one user-visible difference: we'll no longer print about
threads being created and exiting while the program is running, like:
[Thread 0x7ffff7dbb700 (LWP 30670) exited]
[New Thread 0x7ffff7db3700 (LWP 30671)]
[Thread 0x7ffff7dd3700 (LWP 30667) exited]
[New Thread 0x7ffff7dab700 (LWP 30672)]
[Thread 0x7ffff7db3700 (LWP 30671) exited]
[Thread 0x7ffff7dcb700 (LWP 30668) exited]
This is exactly the same behavior as when debugging against remote
targets / gdbserver. I actually think that's a good thing (and as
such have listed this in the local/remote parity wiki page a while
ago), as the printing slows down the inferior. It's also a
distraction to keep bothering the user about short-lived threads that
she won't be able to interact with anyway. Instead, the user (and
frontend) will be informed about new threads that currently exist in
the program when the program next stops:
(gdb) c
...
* ctrl-c *
[New Thread 0x7ffff7963700 (LWP 7797)]
[New Thread 0x7ffff796b700 (LWP 7796)]
Program received signal SIGINT, Interrupt.
[Switching to Thread 0x7ffff796b700 (LWP 7796)]
clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:81
81 testq %rax,%rax
(gdb) info threads
A couple of tests had assumptions on GDB thread numbers that no longer
hold.
Tested on x86_64 Fedora 20.
gdb/
2014-01-09 Pedro Alves <palves@redhat.com>
Skip enabling event reporting if the kernel supports
PTRACE_EVENT_CLONE.
* linux-thread-db.c: Include "nat/linux-ptrace.h".
(thread_db_use_events): New function.
(try_thread_db_load_1): Check thread_db_use_events before enabling
event reporting.
(update_thread_state): New function.
(attach_thread): Use it. Check thread_db_use_events before
enabling event reporting.
(thread_db_detach): Check thread_db_use_events before disabling
event reporting.
(find_new_threads_callback): Check thread_db_use_events before
enabling event reporting. Update the thread's state if not using
libthread_db events.
gdb/testsuite/
2014-01-09 Pedro Alves <palves@redhat.com>
* gdb.threads/fork-thread-pending.exp: Switch to the main thread
instead of to thread 2.
* gdb.threads/signal-command-multiple-signals-pending.c (main):
Add barrier around each pthread_create call instead of around all
calls.
* gdb.threads/signal-command-multiple-signals-pending.exp (test):
Set a break on thread_function and have the child threads hit it
one at at a time.
I wrote a test that attaches to a program that constantly spawns
short-lived threads, which exposed several issues. This is one of
them.
On GNU/Linux, attaching to a multi-threaded program sometimes prints
out warnings like:
...
[New LWP 20700]
warning: unable to open /proc file '/proc/-1/status'
[New LWP 20850]
[New LWP 21019]
...
That happens because when a thread exits, and is joined, glibc does:
nptl/pthread_join.c:
pthread_join ()
{
...
if (__glibc_likely (result == 0))
{
/* We mark the thread as terminated and as joined. */
pd->tid = -1;
...
/* Free the TCB. */
__free_tcb (pd);
}
So if we attach or interrupt the program (which does an implicit "info
threads") at just the right (or rather, wrong) time, we can find and
return threads in the libthread_db/pthreads thread list with kernel
thread ID -1. I've filed glibc PR nptl/17707 for this. You'll find
more info there.
This patch handles this as a special case in GDB.
This is actually more than just a cosmetic issue. lin_lwp_attach_lwp
will think that this -1 is an LWP we're not attached to yet, and after
failing to attach will try to check we were already attached to the
process, using a waitpid call, which in this case ends up being
"waitpid (-1, ...", which obviously results in GDB potentially
discarding an event when it shouldn't...
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* thread-db.c (find_new_threads_callback): Ignore thread if the
kernel thread ID is -1.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (lin_lwp_attach_lwp): Assert that the lwp id we're
about to wait for is > 0.
* linux-thread-db.c (find_new_threads_callback): Ignore thread if
the kernel thread ID is -1.
... instead of relying on libthread_db.
I wrote a test that attaches to a program that constantly spawns
short-lived threads, which exposed several issues. This is one of
them.
On Linux, we need to attach to all threads of a process (thread group)
individually. We currently rely on libthread_db to list the threads,
but that is problematic, because libthread_db relies on reading data
structures out of the inferior (which may well be corrupted). If
threads are being created or exiting just while we try to attach, we
may trip on inconsistencies in the inferior's thread list. To work
around that, when we see a seemingly corrupt list, we currently retry
a few times:
static void
thread_db_find_new_threads_2 (ptid_t ptid, int until_no_new)
{
...
if (until_no_new)
{
/* Require 4 successive iterations which do not find any new threads.
The 4 is a heuristic: there is an inherent race here, and I have
seen that 2 iterations in a row are not always sufficient to
"capture" all threads. */
...
That heuristic may well fail, and when it does, we end up with threads
in the program that aren't under GDB's control. That's obviously bad
and results in quite mistifying failures, like e.g., the process dying
for seeminly no reason when a thread that wasn't attached trips on a
breakpoint.
There's really no reason to rely on libthread_db for this nowadays
when we have /proc mounted. In that case, which is the usual case, we
can list the LWPs from /proc/PID/task/. In fact, GDBserver is already
doing this. The patch factors out that code that knows to walk the
task/ directory out of GDBserver, and makes GDB use it too.
Like GDBserver, the patch makes GDB attach to LWPs and _not_ wait for
them to stop immediately. Instead, we just tag the LWP as having an
expected stop. Because we can only set the ptrace options when the
thread stops, we need a new flag in the lwp structure to keep track of
whether we've already set the ptrace options, just like in GDBserver.
Note that nothing issues any ptrace command to the threads between the
PTRACE_ATTACH and the stop, so this is safe (unlike one scenario
described in gdbserver's linux-low.c).
When we attach to a program that has threads exiting while we attach,
it's easy to race with a thread just exiting as we try to attach to
it, like:
#1 - get current list of threads
#2 - attach to each listed thread
#3 - ooops, attach failed, thread is already gone
As this is pretty normal, we shouldn't be issuing a scary warning in
step #3.
When #3 happens, PTRACE_ATTACH usually fails with ESRCH, but sometimes
we'll see EPERM as well. That happens when the kernel still has the
thread in its task list, but the thread is marked as dead.
Unfortunately, EPERM is ambiguous and we'll get it also on other
scenarios where the thread isn't dead, and in those cases, it's useful
to get a warning. To distiguish the cases, when we get an EPERM
failure, we open /proc/PID/status, and check the thread's state -- if
the /proc file no longer exists, or the state is "Z (Zombie)" or "X
(Dead)", we ignore the EPERM error silently; otherwise, we'll warn.
Unfortunately, there seems to be a kernel race here. Sometimes I get
EPERM, and then the /proc state still indicates "R (Running)"... If
we wait a bit and retry, we do end up seeing X or Z state, or get an
ESRCH. I thought of making GDB retry the attach a few times, but even
with a 500ms wait and 4 retries, I still see the warning sometimes. I
haven't been able to identify the kernel path that causes this yet,
but in any case, it looks like a kernel bug to me. As this just
results failure to suppress a warning that we've been printing since
about forever anyway, I'm just making the test cope with it, and issue
an XFAIL.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_attach_fail_reason_string): Move to
nat/linux-ptrace.c, and rename.
(linux_attach_lwp): Update comment.
(attach_proc_task_lwp_callback): New function.
(linux_attach): Adjust to rename and use
linux_proc_attach_tgid_threads.
(linux_attach_fail_reason_string): Delete declaration.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (attach_proc_task_lwp_callback): New function.
(linux_nat_attach): Use linux_proc_attach_tgid_threads.
(wait_lwp, linux_nat_filter_event): If not set yet, set the lwp's
ptrace option flags.
* linux-nat.h (struct lwp_info) <must_set_ptrace_flags>: New
field.
* nat/linux-procfs.c: Include <dirent.h>.
(linux_proc_get_int): New parameter "warn". Handle it.
(linux_proc_get_tgid): Adjust.
(linux_proc_get_tracerpid): Rename to ...
(linux_proc_get_tracerpid_nowarn): ... this.
(linux_proc_pid_get_state): New function, factored out from
(linux_proc_pid_has_state): ... this. Add new parameter "warn"
and handle it.
(linux_proc_pid_is_gone): New function.
(linux_proc_pid_is_stopped): Adjust.
(linux_proc_pid_is_zombie_maybe_warn)
(linux_proc_pid_is_zombie_nowarn): New functions.
(linux_proc_pid_is_zombie): Use
linux_proc_pid_is_zombie_maybe_warn.
(linux_proc_attach_tgid_threads): New function.
* nat/linux-procfs.h (linux_proc_get_tgid): Update comment.
(linux_proc_get_tracerpid): Rename to ...
(linux_proc_get_tracerpid_nowarn): ... this, and update comment.
(linux_proc_pid_is_gone): New declaration.
(linux_proc_pid_is_zombie): Update comment.
(linux_proc_pid_is_zombie_nowarn): New declaration.
(linux_proc_attach_lwp_func): New typedef.
(linux_proc_attach_tgid_threads): New declaration.
* nat/linux-ptrace.c (linux_ptrace_attach_fail_reason): Adjust to
use nowarn functions.
(linux_ptrace_attach_fail_reason_string): Move here from
gdbserver/linux-low.c and rename.
(ptrace_supports_feature): If the current ptrace options are not
known yet, check them now, instead of asserting.
* nat/linux-ptrace.h (linux_ptrace_attach_fail_reason_string):
Declare.
Some debug output in linux-thread-db.c was being sent to gdb_stdout,
and some to gdb_stderr, while the right place to send debug output to is
gdb_stdlog.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-thread-db.c (thread_db_find_new_threads_silently)
(try_thread_db_load_1, try_thread_db_load, thread_db_load_search)
(find_new_threads_once): Print debug output on gdb_stdlog.
I see the error message "access outside bounds of object referenced
via synthetic pointer" in the two fails below of mips gdb testing
print d[-2]^M
access outside bounds of object referenced via synthetic pointer^M
(gdb) FAIL: gdb.dwarf2/implptrconst.exp: print d[-2]
(gdb) print/d p[-1]^M
access outside bounds of object referenced via synthetic pointer^M
(gdb) FAIL: gdb.dwarf2/implptrpiece.exp: print/d p[-1]
in the first test, 'd[-2]' is processed by GDB as '* (&d[-2])'. 'd'
is a synthetic pointer, so its value is zero, the address of 'd[-2]'
is -2. In dwarf2loc.c:indirect_pieced_value,
/* This is an offset requested by GDB, such as value subscripts.
However, due to how synthetic pointers are implemented, this is
always presented to us as a pointer type. This means we have to
sign-extend it manually as appropriate. */
byte_offset = value_as_address (value);
if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
byte_offset = gdb_sign_extend (byte_offset,
8 * TYPE_LENGTH (value_type (value)));
byte_offset += piece->v.ptr.offset;
We know that the value is really an offset instead of address, so the
fix is to extract the value as an (signed) offset.
gdb:
2015-01-08 Pedro Alves <palves@redhat.com>
Yao Qi <yao@codesourcery.com>
* dwarf2loc.c (indirect_pieced_value): Don't call
gdb_sign_extend. Call extract_signed_integer instead.
* utils.c (gdb_sign_extend): Remove.
* utils.h (gdb_sign_extend): Remove declaration.
The special handling of C++ special symbol
generates symbols that have no language.
Those symbols cannot be displayed correctly in the backtrace stack.
See
https://sourceware.org/bugzilla/show_bug.cgi?id=17811
for details and examples in C++ and pascal language.
The patch below fixes this issue, by
setting language of new symbol before
special handling of special C++ symbols.
2015-01-07 Pierre Muller <muller@sourceware.org>
PR symtab/17811
* stabsread.c (define_symbol): Set language for C++ special symbols.
Currently when we start an inferior we have the inferior inherit our
terminal state. Under TUI, our terminal is highly modified by ncurses
and readline. So when starting an inferior under TUI, the inferior will
have a highly modified terminal state which will interfere with standard
I/O. For example,
$ gdb gdb
(gdb) break main
(gdb) run
(gdb) print puts ("a\nb")
a
b
$1 = 4
(gdb) [enter TUI mode]
(gdb) run
(gdb) [exit TUI mode]
(gdb) print puts ("a\nb")
a
b
$2 = 4
(gdb) print puts ("a\r\nb\r")
a
b
$3 = 6
As you can see, when we start the inferior under the regular interface,
puts() prints the text properly. But when we start the inferior under
TUI, puts() does not print the text properly. This is because when we
start the inferior under TUI it inherits our current terminal state
which has been modified by ncurses to, among other things, require an
explicit \r\n to print a new line. As a result the inferior performs
standard I/O in an unexpected way.
Because of this discrepancy, it doesn't seem like a good idea to have
the inferior inherit our _current_ terminal state for it may have been
modified by readline and/or ncurses. Instead, we should have the
inferior inherit a pristine snapshot of our terminal state taken before
readline or ncurses have had a chance to alter it. This enables the
inferior to run in a more accurate way, more closely mimicking the
program's behavior had it run standalone. And it fixes the above
mentioned issue.
Tested on x86_64-unknown-linux-gnu.
gdb/ChangeLog:
* terminal.h (set_initial_gdb_ttystate): Declare.
* inflow.c (initial_gdb_ttystate): New static variable.
(set_initial_gdb_ttystate): New setter.
(child_terminal_init_with_pgrp): Copy initial_gdb_ttystate
instead of our current terminal state.
* top.c (gdb_init): Call set_initial_gdb_ttystate.
This fixes a similar error as in the Python support code where
trying to create an empty array.
In guile/scm-type.c::tyscm_array_1, the funtion raises an exception
if N2 < N1:
if (n2 < n1)
{
gdbscm_out_of_range_error (func_name, SCM_ARG3,
But it should be doing so if N2 == N1 - 1, since that would simply
be an empty array, not an array with a negative length.
gdb/ChangeLog:
* guile/scm-type.c (tyscm_array_1): Do not raise out-of-range
error if N2 is equal to N1 - 1.
The following python command fails:
(gdb) python print gdb.lookup_type('char').array(1, 0)
Traceback (most recent call last):
File "<string>", line 1, in <module>
ValueError: Array length must not be negative
Error while executing Python code.
The above is trying to create an empty array, which is fairly command
in Ada.
gdb/ChangeLog:
* python/py-type.c (typy_array_1): Do not raise negative-length
exception if N2 is equal to N1 - 1.
gdb/testsuite/ChangeLog:
* gdb.python/py-type.exp: Add a couple test about empty
array creation, and negative-length array creation.
Make the extracted stack offset signed in the standard MIPS prologue
scanner, to simplify handling and make sure register offsets are correct
in all cases, especially where $fp equals the virtual frame pointer (old
GCC frames) and therefore offsets to save slots are negative.
* mips-tdep.c (mips32_scan_prologue): Make the extracted stack
offset signed.
This patch renames gdb/'s ChangeLog to ChangeLog-2014 and creates
a new one for 2015. config/djgpp/fnchange.lst is updated accordingly.
gdb/ChangeLog:
* config/djgpp/fnchange.lst: Add entry for gdb/ChangeLog-2014.
This patch removes documentation from some commands whose support has
been recently removed.
gdb/ChangeLog:
* NEWS: Document removal of "dll-symbols", "add-shared-symbol-files"
and "assf" commands.
gdb/doc/ChangeLog:
* gdb.texinfo (Files): Remove documentation of the
"add-shared-symbol-files" and "assf" commands.
(Cygwin Native): Remove documentation of the "dll-symbols"
command.
This patch removes a set of commands that have been deprecated for
a while, and which we agreed to remove after the GDB 7.8 release.
gdb/ChangeLog:
* windows-nat.c (safe_symbol_file_add_stub)
(safe_symbol_file_add_cleanup, safe_symbol_file_add)
(dll_symbol_command): Delete.
(_initialize_windows_nat): Delete local variable "c".
Remove "dll-symbols", "add-shared-symbol-files" and assf"
commands.
Tested by rebuilding GDB on x86-windows.
2014-12-29 Thomas Preud'homme <thomas.preudhomme@arm.com>
gdb/
* arm-tdep.c (arm_gdbarch_init): Remove casts in Tag_ABI_VFP_args
switch case statements.
*** bfd/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* elf32-arm.c (elf32_arm_merge_eabi_attributes): Handle new
Tag_ABI_VFP_args value and replace hardcoded values by enum
values.
(elf32_arm_post_process_headers): Set e_flags in ELF header
as hard float only when Tag_ABI_VFP_args is 1, using new enum
value AEABI_VFP_args_vfp to check that.
*** binutils/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* readelf.c (arm_attr_tag_ABI_VFP_args): Add "compatible".
*** gdb/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* arm-tdep.c (arm_gdbarch_init): Explicitely handle value 3 of
Tag_ABI_VFP_args. Also replace hardcoded values by enum values
in the switch handling the different values of Tag_ABI_VFP_args.
*** gold/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* arm.cc (Target_arm::do_adjust_elf_header): Set e_flags in ELF
header as hard float only when Tag_ABI_VFP_args is 1, using new
enum value AEABI_VFP_args_vfp to check that.
(Target_arm::merge_object_attributes): Handle new Tag_ABI_VFP_args
value and replace hardcoded values by enum values.
*** include/elf/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* arm.h: New AEABI_FP_number_model_* and AEABI_VFP_args_* enum
values.
*** ld/testsuite/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* ld-arm/attr-merge-2a.s: Add Tag_ABI_VFP_args.
* ld-arm/attr-merge-2b.s: Likewise.
* ld-arm/attr-merge-2.attr: Likewise.
* ld-arm/attr-merge-4a.s: Add Tag_ABI_FP_number_model and
Tag_ABI_VFP_args.
* ld-arm/attr-merge-4b.s: Likewise.
* ld-arm/attr-merge-4.attr: Likewise.
* ld-arm/attr-merge-6a.s: Likewise.
* ld-arm/attr-merge-6b.s: Likewise.
* ld-arm/attr-merge-6.attr: Add Tag_ABI_FP_number_model.
gdb/ChangeLog:
* ada-lang.c (user_select_syms): Only fetch symtab if symbol is
objfile-owned.
(cache_symbol): Ignore symbols that are not objfile-owned.
* block.c (block_objfile): New function.
(block_gdbarch): New function.
* block.h (block_objfile): Declare.
(block_gdbarch): Declare.
* c-exp.y (classify_name): Remove call to
language_lookup_primitive_type. No longer necessary.
* gdbtypes.c (lookup_typename): Call lookup_symbol_in_language.
Remove call to language_lookup_primitive_type. No longer necessary.
* guile/scm-symbol.c (syscm_gdbarch_data_key): New static global.
(syscm_gdbarch_data): New struct.
(syscm_init_arch_symbols): New function.
(syscm_get_symbol_map): Renamed from syscm_objfile_symbol_map.
All callers updated. Handle symbols owned by arches.
(gdbscm_symbol_symtab): Handle symbols owned by arches.
(gdbscm_initialize_symbols): Initialize syscm_gdbarch_data_key.
* language.c (language_lookup_primitive_type_1): New function.
(language_lookup_primitive_type): Call it.
(language_alloc_type_symbol): New function.
(language_init_primitive_type_symbols): New function.
(language_lookup_primitive_type_as_symbol): New function.
* language.h (struct language_arch_info) <primitive_type_symbols>:
New member.
(language_lookup_primitive_type): Add function comment.
(language_lookup_primitive_type_as_symbol): Declare.
* printcmd.c (address_info): Handle arch-owned symbols.
* python/py-symbol.c (sympy_get_symtab): Ditto.
(set_symbol): Ditto.
(sympy_dealloc): Ditto.
* symmisc.c (print_symbol): Ditto.
* symtab.c (fixup_symbol_section): Ditto.
(lookup_symbol_aux): Initialize block_found.
(basic_lookup_symbol_nonlocal): Try looking up the symbol as a
primitive type.
(initialize_objfile_symbol_1): New function.
(initialize_objfile_symbol): Call it.
(allocate_symbol): Call it.
(allocate_template_symbol): Call it.
(symbol_objfile): Assert symbol is objfile-owned.
(symbol_arch, symbol_symtab, symbol_set_symtab): Ditto.
* symtab.h (struct symbol) <owner>: Replaces member "symtab".
(struct symbol) <is_objfile_owned>: New member.
(SYMBOL_OBJFILE_OWNED): New macro.
* cp-namespace.c (cp_lookup_bare_symbol): New arg langdef.
All callers updated. Try to find the symbol as a primitive type.
(lookup_namespace_scope): New arg langdef. All callers updated.
Call cp_lookup_bare_symbol directly for simple bare symbols.
This patch fixes a problem when trying to insert a breakpoint on
a specific symbol defined in a specific file, eg:
break foo.c:func
This currently works for files in C/C++/Ada, etc, but doesn't always
work for Asm files. Analysis of the problem showed that this related
to a limitation in gas, which does not generate debug info for functions/
symbols. Thus, we have a symtab for the file ("info sources" shows
the file), but it contains no symbols.
When find_linespec_symbols is called in linespec_parse_basic, it calls
find_function_symbols, which uses add_matching_symbols_to_info to
collect all matching symbols.
That function does [pardon any mangled formatting]:
for (ix = 0; VEC_iterate (symtab_ptr, info->file_symtabs, ix, elt); ++ix)
{
if (elt == NULL)
{
iterate_over_all_matching_symtabs (info->state, name, VAR_DOMAIN,
collect_symbols, info,
pspace, 1);
search_minsyms_for_name (info, name, pspace);
}
else if (pspace == NULL || pspace == SYMTAB_PSPACE (elt))
{
/* Program spaces that are executing startup should have
been filtered out earlier. */
gdb_assert (!SYMTAB_PSPACE (elt)->executing_startup);
set_current_program_space (SYMTAB_PSPACE (elt));
iterate_over_file_blocks (elt, name, VAR_DOMAIN,
collect_symbols, info);
}
}
This iterates over the symtabs. In the failing use case, ELT is
non-NULL (points to the symtab for the .s file), so it calls
iterate_over_file_blocks. Herein is where the problem exists: it is
assumed that if NAME exists, it must exist in the given symtab -- a
reasonable assumption for "normal" (non-asm) cases. It never searches
minimal symbols (or in the global default symtab).
This patch fixes the problem by doing so. It is important to note that
iterating over minsyms is fairly expensive, so this patch only adds
that extra search if the language is language_asm and
iterate_over_file_blocks returns no symbols.
gdb/ChangeLog:
2014-12-20 Keith Seitz <keiths@redhat.com>
Mihail-Marian Nistor <mihail.nistor@freescale.com>
PR gdb/17394
* linespec.c (struct collect_minsyms): Add new member `symtab'.
(add_minsym): Handle cases where info.symtab is non-NULL.
(search_minsyms_for_name): Add new parameter `symtab'.
Handle limiting searches to a specific symtab.
(add_matching_symtabs_to_info): Search through minimal symbols
for language_asm files for which no new symbols are found.
gdb/testsuite/ChangeLog:
2014-12-20 Mihail-Marian Nistor <mihail.nistor@freescale.com>
PR gdb/17394
* gdb.linespec/break-asm-file.c: New file.
* gdb.linespec/break-asm-file.exp: New file.
* gdb.linespec/break-asm-file0.s: New file.
* gdb.linespec/break-asm-file1.s: New file.
This patch is to add SDE OS ABI support in GDB, which has been used in
codesourcery gdb tree for some years.
gdb:
2014-12-19 Maciej W. Rozycki <macro@codesourcery.com>
Nigel Stephens <nigel@mips.com>
Chris Dearman <chris@mips.com>
Luis Machado <lgustavo@codesourcery.com>
* Makefile.in (ALL_TARGET_OBS): Add mips-sde-tdep.o.
(ALLDEPFILES): Add mips-sde-tdep.c.
* mips-sde-tdep.c: New file containg SDE specific code.
* configure.tgt (mips*-sde*-elf*): Add mips-sde-dep.o to
gdb_target_obs.
* defs.h (gdb_osabi): Add GDB_OSABI_SDE.
* osabi.c (gdb_osabi_names): Add SDE.
* NEWS: Mention the change.
I stumbled upon a few comments that I think are outdated.
Comment for elfread.c (elf_symfile_init): As far as history goes in git,
I don't see anything related to that.
Comment for elfread.c (elf_symfile_read): References a parameter that was
removed in 1999.
Comment for struct sym_fns/sym_offsets: References a parameter that was
changed in 1999.
gdb/ChangeLog:
* elfread.c (elf_symfile_init): Remove stale comment.
(elf_symfile_read): Same.
* symfile.h (struct sym_fns): Same.
This patch is the V2. V1 can be found in
https://sourceware.org/ml/gdb-patches/2012-05/msg00938.html
V2 is to address Joel's comment
<https://sourceware.org/ml/gdb-patches/2012-06/msg00289.html> about
keeping dumping floating point registers. Additionally, command
'info float' prints bits on nan2008 and abs2008.
------------------------------------------------------------------
The change below provides a MIPS-specific handler for the:
(gdb) info float
command. It provides information about the FPU type available (if any),
the FPU register width, and decodes the CP1 Floating Point Control and
Status Register (FCSR):
(gdb) print /x $fsr
$1 = 0xff83ffff
(gdb) info float
fpu type: double-precision
reg size: 32 bits
cond : 0 1 2 3 4 5 6 7
cause : inexact uflow oflow div0 inval unimp
mask : inexact uflow oflow div0 inval
flags : inexact uflow oflow div0 inval
rounding: -inf
flush : zero
One point to note about CP1.FCSR are the non-standard Flush-to-Nearest
and Flush-Override bits. They are not a part of the MIPS architecture and
take two positions reserved for an implementation-dependent use in the
architecture. They are present in all the FPU implementations made by
MIPS Technologies since the spin-off from SGI.
I haven't been able to track down a single other MIPS FPU implementation
that would make any use of these bits and they are required to be
hardwired to zero by the architecture specification if unimplemented.
Therefore I think it makes sense to report them in the current way.
GDB has no guaranteed access to the CP0 Processor Identification (PRId)
register to validate this feature properly and the ID information stored
in the CP1 Floating Point Implementation Register (FIR) is from my
experience not reliable enough (there's no Company ID available there for
once unlike in CP0.PRId and Processor ID is not guaranteed to be unique).
As a side note we should probably dump CP1.FIR information as well, as
there's useful stuff indicating some FPU features there. That's material
for another change however.
gdb/
2014-12-18 Nigel Stephens <nigel@mips.com>
Maciej W. Rozycki <macro@codesourcery.com>
* mips-tdep.c (print_fpu_flags): New function.
(mips_print_float_info): Likewise.
(mips_gdbarch_init): Install mips_print_float_info as gdbarch
print_float_info routine.
gdb/testsuite/
2014-12-18 Nigel Stephens <nigel@mips.com>
Maciej W. Rozycki <macro@codesourcery.com>
* gdb.base/float.exp: Handle the new output from "info float" on
MIPS targets.
This patch is to change print_float_info gdbarch method for the
following two reasons,
1. we want to add a default implementation of print_float_info to
dump the float pointer registers. It can be reused by backend to
print something more than float point registers.
2. we want to simplify the caller of print_float_info,
infcmd.c:print_float_info.
gdb:
2014-12-18 Yao Qi <yao@codesourcery.com>
* gdbarch.sh (print_float_info): Change its type from 'M' to 'm'.
* gdbarch.c: Re-generated.
* gdbarch.h: Likewise.
* infcmd.c (default_print_float_info): New function.
(print_float_info): Removed. Move code to
default_print_float_info.
(float_info): Adjust to call gdbarch_print_float_info.
* inferior.h (default_print_float_info): Declare it.
In infcmd.c:print_float_info, if the architecture doesn't have gdbarch
method print_float_info implemented and doesn't float reggroup, GDB
will prints "No floating-point info available for this processor."
The h8300 port doesn't have float registers, and don't need to
implement print_float_info. This patch is to remove it.
gdb:
2014-12-18 Yao Qi <yao@codesourcery.com>
* h8300-tdep.c (h8300_print_float_info): Remove.
(h8300_gdbarch_init): Remove the call to
set_gdbarch_print_float_info.
On Sun, 14 Dec 2014 07:00:28 +0100, Yao Qi wrote:
The build on mingw host is broken because mingw has no mkdtemp.
../../../git/gdb/compile/compile.c: In function 'get_compile_file_tempdir':
../../../git/gdb/compile/compile.c:194:3: error: implicit declaration of function 'mkdtemp' [-Werror=implicit-function-declaration]
tempdir_name = mkdtemp (tname);
^
../../../git/gdb/compile/compile.c:194:16: error: assignment makes pointer from integer without a cast [-Werror]
tempdir_name = mkdtemp (tname);
^
cc1: all warnings being treated as errors
In the end I have managed to test it by Wine myself:
$ wine build_win32/gdb/gdb.exe -q build_win32/gdb/gdb.exe -ex start -ex 'compile code 1' -ex 'set confirm no' -ex quit
[...]
Temporary breakpoint 1, main (argc=1, argv=0x241418) at ../../gdb/gdb.c:29
29 args.argc = argc;
Could not load libcc1.so: Module not found.
Even if it managed to load libcc1.so (it needs host-dependent name libcc1.dll)
then it would soon end up at least on:
default_infcall_mmap:
error (_("This target does not support inferior memory allocation by mmap."));
As currently there is only:
linux-tdep.c:
set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
While one could debug Linux targets from MS-Windows host I find it somehow
overcomplicated now when we are trying to get it running at least on native
Linux x86*.
The 'compile' project needs a larger port effort to run on MS-Windows.
gdb/ChangeLog
2014-12-17 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix MinGW compilation.
* compile/compile.c (get_compile_file_tempdir): Call error if
!HAVE_MKDTEMP.
* config.in: Regenerate.
* configure: Regenerate.
* configure.ac (AC_CHECK_FUNCS): Add mkdtemp.
gdb/testsuite/ChangeLog
2014-12-17 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix MinGW compilation.
* gdb.compile/compile-ops.exp: Update untested message if
!skip_compile_feature_tests.
* gdb.compile/compile-setjmp.exp: Likewise.
* gdb.compile/compile-tls.exp: Likewise.
* gdb.compile/compile.exp: Likewise.
* lib/gdb.exp (skip_compile_feature_tests): Check also "Command not
supported on this host".
Anytime you can remove a symbol lookup that loops over all objfiles
is A Good Thing.
The call to lookup_static_symbol in valops.c:value_maybe_namespace_elt
is redundant with this call in cp_lookup_nested_symbol:
/* Now search all static file-level symbols. We have to do this
for things like typedefs in the class. We do not try to
guess any imported namespace as even the fully specified
namespace search is already not C++ compliant and more
assumptions could make it too magic. */
size = strlen (parent_name) + 2 + strlen (nested_name) + 1;
concatenated_name = alloca (size);
xsnprintf (concatenated_name, size, "%s::%s",
parent_name, nested_name);
sym = lookup_static_symbol (concatenated_name, VAR_DOMAIN);
if (sym != NULL)
return sym;
Earlier in value_maybe_namespace_elt we do this:
sym = cp_lookup_symbol_namespace (namespace_name, name,
get_selected_block (0), VAR_DOMAIN);
That sequence goes like:
value_maybe_namespace_elt
-> cp_lookup_symbol_namespace
-> cp_lookup_symbol_in_namespace
-> lookup_symbol_file
-> cp_lookup_nested_symbol
-> lookup_static_symbol
The call was added in commit 41f62f3939.
https://sourceware.org/ml/gdb-patches/2010-06/msg00663.html
With a part 2 here:
https://sourceware.org/ml/gdb-patches/2010-06/msg00664.html
At the time the call to lookup_static_symbol (spelled
lookup_static_symbol_aux at the time) was needed.
However, this patch, 8dea366bbe,
https://sourceware.org/ml/gdb-patches/2012-11/msg00387.html
augmented lookup_symbol_file to call cp_lookup_nested_symbol
and introduced the redundancy.
It's kinda buried, so it's totally not unexpected that this happened.
gdb/ChangeLog:
* valops.c (value_maybe_namespace_elt): Remove redundant call to
lookup_static_symbol.
gdb/ChangeLog:
* buildsym.c: Add comments describing how the buildsym machinery
is used by the various file formats.
(really_free_pendings): Enhance function comment.
See pending_macros to NULL. Simplify resetting pending_addrmap.
Call free_buildsym_compunit.
(free_buildsym_compunit): Set current_subfile to NULL.
(prepare_for_building): New function.
(start_symtab): Call it. Remove call to set_last_source_file.
(restart_symtab): New arg "cust". All callers updated.
Simplify, call prepare_for_building. Re-initialize buildsym_compunit.
(reset_symtab_globals): Enhance function comment.
Set local_symbols, file_symbols, global_symbols to NULL.
Set pending_macros to NULL. Simplify resetting pending_addrmap.
Call free_buildysym_compunit.
(end_symtab_without_blockvector): Delete. All callers updated.
(end_symtab_with_blockvector): Remove redundant call to
free_buildsym_compunit.
(augment_type_symtab): Remove arg "cust". All callers updated.
(buildsym_init): Remove resetting of free_pendings, file_symbols,
global_symbols, pending_blocks, pending_macros. Instead make
handling consistent with pending_addrmap: Assert value was reset
at end of previous symtab building. Initialize context_stack here.
This fixes a failure of the test case "complete 'info registers '" in
completion.exp on architectures where the user registers have numbers
above 99. In that case the output of "maint print user-registers" was
no longer indented, and the regexp in the test case failed to add them
to the list of expected completion results. The fix also swaps the
columns "Name" and "Nr", such that the indentation is always the same,
and to be consistent with the output of "maint print registers".
gdb/ChangeLog:
* user-regs.c (maintenance_print_user_registers): Swap "Nr" and
"Name" columns. Assure that the output is always indented.
gdb/testsuite/ChangeLog:
* gdb.base/completion.exp: Adjust to format changes of "maint
print user-registers".
This patch enhances GDB on GNU/Linux systems in the situation where
we are debugging an inferior that was created from GDB (as opposed
to attached to), by asking the kernel to kill the inferior if GDB
terminates without doing it itself.
This would typically happen when GDB encounters a problem and
crashes, or when it gets killed by an external process. This can
be observed by starting a program under GDB, and then killing
GDB with signal 9. After GDB is killed, the inferior still remains.
This patch also fixes GDBserver similarly.
This fix is conditional on the kernel supporting the PTRACE_O_EXITKILL
feature. On older kernels, the behavior remains unchanged.
gdb/ChangeLog:
* nat/linux-ptrace.h (PTRACE_O_EXITKILL): Define if not
already defined.
(linux_enable_event_reporting): Add parameter "attached".
* nat/linux-ptrace.c (linux_test_for_exitkill): New forward
declaration. New function.
(linux_check_ptrace_features): Add linux_test_for_exitkill call.
(linux_enable_event_reporting): Add new parameter "attached".
Do not call ptrace with the PTRACE_O_EXITKILL if ATTACHED is
nonzero.
* linux-nat.c (linux_init_ptrace): Add parameter "attached".
Use it. Update function description.
(linux_child_post_attach, linux_child_post_startup_inferior):
Update call to linux_enable_event_reporting.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_low_filter_event): Update call to
linux_enable_event_reporting following the addition of
a new parameter to that function.
Tested on x86_64-linux, native and native-gdbserver.
I also verified by hand that the inferior gets killed when killing
GDB in the "run" case, while the inferior remains in the "attach"
case. Same for GDBserver.