a 2-byte JMP instruction, when this can be done safely.
* elf32-msp430.c (msp430_elf_relax_section): Add relaxation of
16-bit absolute BR instructions to 10-bit pc-relative JMP
instructions.
PR binutils/17512
* coffcode.h (coff_slurp_symbol_table): Return false if we failed
to load the line table.
* elf.c (_bfd_elf_map_sections_to_segments): Enforce a minimum
maxpagesize of 1.
* peXXigen.c (_bfd_XX_bfd_copy_private_bfd_data_common): Fail if
the Data Directory Size is too large.
* objcopy.c (copy_object): Free the symbol table if no symbols
could be loaded.
(copy_file): Use bfd_close_all_done to close files that could not
be copied.
PR binutils/17512
* sysdump.c (getINT): Fail if reading off the end of the buffer.
Replace call to abort with a call to fatal.
(getCHARS): Prevetn reading off the end of the buffer.
The original test output expectations cause it to fail when configure
determines enable_initfini_array=no (which was observed on a cross
build on an old 32-bit host, pointing out that taking into account host
properties in such a case is bogus anyway).
ld/testsuite/
2015-01-08 Jan Beulich <jbeulich@suse.com>
* ld-x86-64/pr14207.d: Adjust expecations to cover the
enable_initfini_array=no case.
I see the error message "access outside bounds of object referenced
via synthetic pointer" in the two fails below of mips gdb testing
print d[-2]^M
access outside bounds of object referenced via synthetic pointer^M
(gdb) FAIL: gdb.dwarf2/implptrconst.exp: print d[-2]
(gdb) print/d p[-1]^M
access outside bounds of object referenced via synthetic pointer^M
(gdb) FAIL: gdb.dwarf2/implptrpiece.exp: print/d p[-1]
in the first test, 'd[-2]' is processed by GDB as '* (&d[-2])'. 'd'
is a synthetic pointer, so its value is zero, the address of 'd[-2]'
is -2. In dwarf2loc.c:indirect_pieced_value,
/* This is an offset requested by GDB, such as value subscripts.
However, due to how synthetic pointers are implemented, this is
always presented to us as a pointer type. This means we have to
sign-extend it manually as appropriate. */
byte_offset = value_as_address (value);
if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
byte_offset = gdb_sign_extend (byte_offset,
8 * TYPE_LENGTH (value_type (value)));
byte_offset += piece->v.ptr.offset;
We know that the value is really an offset instead of address, so the
fix is to extract the value as an (signed) offset.
gdb:
2015-01-08 Pedro Alves <palves@redhat.com>
Yao Qi <yao@codesourcery.com>
* dwarf2loc.c (indirect_pieced_value): Don't call
gdb_sign_extend. Call extract_signed_integer instead.
* utils.c (gdb_sign_extend): Remove.
* utils.h (gdb_sign_extend): Remove declaration.
fuzzed binaries.
PR binutils/17512
* nlmconv.c (i386_mangle_relocs): Skip relocs without an
associated symbol.
(powerpc_mangle_relocs): Skip unrecognised relocs. Check address
range before applying a reloc.
The special handling of C++ special symbol
generates symbols that have no language.
Those symbols cannot be displayed correctly in the backtrace stack.
See
https://sourceware.org/bugzilla/show_bug.cgi?id=17811
for details and examples in C++ and pascal language.
The patch below fixes this issue, by
setting language of new symbol before
special handling of special C++ symbols.
2015-01-07 Pierre Muller <muller@sourceware.org>
PR symtab/17811
* stabsread.c (define_symbol): Set language for C++ special symbols.
The test entry-values.exp doesn't recognize the call instructions
on MIPS, such as JAL, JALS and etc, so this patch sets call_insn
to match various jump and branch instructions first.
Currently, we assume the next instruction address of call instruction
is the address returned from foo, however it is not correct on MIPS
which has delay slot. We extend variable call_insn to match one
instruction after jump or branch instruction, so that
$returned_from_foo is correct on MIPS.
All tests in entry-values.exp are PASS.
gdb/testsuite:
2015-01-08 Yao Qi <yao@codesourcery.com>
* gdb.trace/entry-values.exp: Set call_insn for MIPS target.
PR binutils/17512
* objdump.c (display_any_bfd): Add a depth limit to nested archive
display in order to avoid infinite loops.
* srconv.c: Replace calls to abort with calls to fatal with an
error message.
Currently when we start an inferior we have the inferior inherit our
terminal state. Under TUI, our terminal is highly modified by ncurses
and readline. So when starting an inferior under TUI, the inferior will
have a highly modified terminal state which will interfere with standard
I/O. For example,
$ gdb gdb
(gdb) break main
(gdb) run
(gdb) print puts ("a\nb")
a
b
$1 = 4
(gdb) [enter TUI mode]
(gdb) run
(gdb) [exit TUI mode]
(gdb) print puts ("a\nb")
a
b
$2 = 4
(gdb) print puts ("a\r\nb\r")
a
b
$3 = 6
As you can see, when we start the inferior under the regular interface,
puts() prints the text properly. But when we start the inferior under
TUI, puts() does not print the text properly. This is because when we
start the inferior under TUI it inherits our current terminal state
which has been modified by ncurses to, among other things, require an
explicit \r\n to print a new line. As a result the inferior performs
standard I/O in an unexpected way.
Because of this discrepancy, it doesn't seem like a good idea to have
the inferior inherit our _current_ terminal state for it may have been
modified by readline and/or ncurses. Instead, we should have the
inferior inherit a pristine snapshot of our terminal state taken before
readline or ncurses have had a chance to alter it. This enables the
inferior to run in a more accurate way, more closely mimicking the
program's behavior had it run standalone. And it fixes the above
mentioned issue.
Tested on x86_64-unknown-linux-gnu.
gdb/ChangeLog:
* terminal.h (set_initial_gdb_ttystate): Declare.
* inflow.c (initial_gdb_ttystate): New static variable.
(set_initial_gdb_ttystate): New setter.
(child_terminal_init_with_pgrp): Copy initial_gdb_ttystate
instead of our current terminal state.
* top.c (gdb_init): Call set_initial_gdb_ttystate.
Mention that readelf can be used as a test program in the comment of
run_dump_test.
ld/testsuite/ChangeLog:
* lib/ld-lib.exp (run_dump_test): Extend comment to mention
readelf.
... using automake 1.11.1, which is the version we're currently
using throughout, instead of 1.11.3. This should be a no-op in
practice, but will help automake/aclocal version-related
differences to cloud real changes being made.
sim/common/ChangeLog:
* aclocal.m4, configure: Regenerate using automake 1.11.1.
Using e.g.
.arch_extension simd
.arch_extension nocrypto
so far results in SIMD support getting disabled, which I can't see being
the purpose of the "no"-prefixed variants of architecture extension
specifications.
Of course it is questionable whether the current, counter intuitive
behavior needs to be retained, and the new behavior perhaps be made work
through e.g. a newly recognized "no-" prefix.
gas/
2015-01-07 Jan Beulich <jbeulich@suse.com>
* gas/config/tc-arm.c (struct arm_option_extension_value_table):
Split field "value" into fields "merge_value" and "clear_value".
(arm_extensions): Adjust initializer accordingly.
PR binutils/17512
* reloc.c (bfd_get_reloc_size): Handle a reloc size of -1.
(bfd_perform_relocation): Include the size of the reloc in the
test for an out of range relocation.
(bfd_generic_get_relocated_section_contents): Remove reloc range
test.
PR binutils/17512
* coffdump.c (dump_coff_section): Check for a symbol being
available before printing its name.
(main): Check the return value from coff_grok.
* coffgrok.c: Reformat and tidy.
Add range checks to most functions.
(coff_grok): Return NULL if the input bfd is not in a COFF
format.
* coffgrok.h: Reformat and tidy.
(struct coff_section): Change the nrelocs field to unsigned.
* srconv.c (main): Check the return value from coff_grok.
* coff-i860.c (CALC_ADDEND): Always set an addend value.
* tekhex.c (getvalue): Add an end pointer parameter. Use it to
avoid reading off the end of the buffer.
(getsym): Likewise.
(first_phase): Likewise.
(pass_over): Pass an end pointer to the invoked function.
This fixes a similar error as in the Python support code where
trying to create an empty array.
In guile/scm-type.c::tyscm_array_1, the funtion raises an exception
if N2 < N1:
if (n2 < n1)
{
gdbscm_out_of_range_error (func_name, SCM_ARG3,
But it should be doing so if N2 == N1 - 1, since that would simply
be an empty array, not an array with a negative length.
gdb/ChangeLog:
* guile/scm-type.c (tyscm_array_1): Do not raise out-of-range
error if N2 is equal to N1 - 1.
The following python command fails:
(gdb) python print gdb.lookup_type('char').array(1, 0)
Traceback (most recent call last):
File "<string>", line 1, in <module>
ValueError: Array length must not be negative
Error while executing Python code.
The above is trying to create an empty array, which is fairly command
in Ada.
gdb/ChangeLog:
* python/py-type.c (typy_array_1): Do not raise negative-length
exception if N2 is equal to N1 - 1.
gdb/testsuite/ChangeLog:
* gdb.python/py-type.exp: Add a couple test about empty
array creation, and negative-length array creation.
PR binutils/17512
* nm.c (print_symbol): Add 'is_synthetic' parameter. Use it to
help initialize the info.elfinfo field.
(print_size_symbols): Add 'synth_count' parameter. Use it to set
the is_synthetic parameter when calling print_symbol.
(print_symbols): Likewise.
(display_rel_file): Pass synth_count to printing function.
(display_archive): Break loop if the last archive displayed
matches the current archive.
* size.c (display_archive): Likewise.
* archive.c (do_slurp_bsd_armap): Make sure that the parsed sized
is at least big enough for the header to be read.
* elf32-i386.c (elf_i386_get_plt_sym_val): Skip unknown relocs.
* mach-o.c (bfd_mach_o_get_synthetic_symtab): Add range checks.
(bfd_mach_o_read_command): Prevetn duplicate error messages about
unrecognized commands.
* syms.c (_bfd_stab_section_find_nearest_line): Add range checks
when indexing into the string table.
PR binutils/17531
* dwarf.c (alloc_num_debug_info_entries): New variable.
(process_debug_info): Set it. Use it to avoid displaying
attributes for which there is no info.
(display_debug_abbrev): Check that the debug_info_entry index is
valid before using it.
(display_loc_list_dwo): Likewise.
(process_cu_tu_index): Add range check for an overlarge dw_sect
value.
(free_debug_memory): Reset alloc_num_debug_info_entries.
* readelf.c (slurp_ia64_unwind_table): Warn if the reloc could not
be indentified.
(dynamic_section_mips_val): Warn if the timestamp is invalid.
(print_mips_got_entry): Add a data_end parameter. Warn if a read
would go beyond the end of the data, and return an error value.
(process_mips_specific): Do not read options from beyond the end
of the section.
Correct code to display optional data at the end of an option.
Warn if there are too many GOT symbols.
Update calls to print_mips_got_entry, and handle error returns.
Make the extracted stack offset signed in the standard MIPS prologue
scanner, to simplify handling and make sure register offsets are correct
in all cases, especially where $fp equals the virtual frame pointer (old
GCC frames) and therefore offsets to save slots are negative.
* mips-tdep.c (mips32_scan_prologue): Make the extracted stack
offset signed.