Commit graph

4 commits

Author SHA1 Message Date
Pedro Alves
8d707a12ef gdb/18216: displaced step+deliver signal, a thread needs step-over, crash
The problem is that with hardware step targets and displaced stepping,
"signal FOO" when stopped at a breakpoint steps the breakpoint
instruction at the same time it delivers a signal.  This results in
tp->stepped_breakpoint set, but no step-resume breakpoint set.  When
the next stop event arrives, GDB crashes.  Irrespective of whether we
should do something more/different to step past the breakpoint in this
scenario (e.g., PR 18225), it's just wrong to assume there'll be a
step-resume breakpoint set (and was not the original intention).

gdb/ChangeLog:
2015-04-10  Pedro Alves  <palves@redhat.com>

	PR gdb/18216
	* infrun.c (process_event_stop_test): Don't assume a step-resume
	is set if tp->stepped_breakpoint is true.

gdb/testsuite/ChangeLog:
2015-04-10  Pedro Alves  <palves@redhat.com>

	PR gdb/18216
	* gdb.threads/multiple-step-overs.exp: Remove expected eof.
2015-04-10 10:36:23 +01:00
Pedro Alves
f3770638ca Add test for PR18214 and PR18216 - multiple step-overs with queued signals
Both PRs are triggered by the same use case.

PR18214 is about software single-step targets.  On those, the 'resume'
code that detects that we're stepping over a breakpoint and delivering
a signal at the same time:

  /* Currently, our software single-step implementation leads to different
     results than hardware single-stepping in one situation: when stepping
     into delivering a signal which has an associated signal handler,
     hardware single-step will stop at the first instruction of the handler,
     while software single-step will simply skip execution of the handler.
...
     Fortunately, we can at least fix this particular issue.  We detect
     here the case where we are about to deliver a signal while software
     single-stepping with breakpoints removed.  In this situation, we
     revert the decisions to remove all breakpoints and insert single-
     step breakpoints, and instead we install a step-resume breakpoint
     at the current address, deliver the signal without stepping, and
     once we arrive back at the step-resume breakpoint, actually step
     over the breakpoint we originally wanted to step over.  */

doesn't handle the case of _another_ thread also needing to step over
a breakpoint.  Because the other thread is just resumed at the PC
where it had stopped and a breakpoint is still inserted there, the
thread immediately re-traps the same breakpoint.  This test exercises
that.  On software single-step targets, it fails like this:

 KFAIL: gdb.threads/multiple-step-overs.exp: displaced=off: signal thr3: continue to sigusr1_handler
 KFAIL: gdb.threads/multiple-step-overs.exp: displaced=off: signal thr2: continue to sigusr1_handler

gdb.log (simplified):

 (gdb) continue
 Continuing.

 Breakpoint 4, child_function_2 (arg=0x0) at src/gdb/testsuite/gdb.threads/multiple-step-overs.c:66
 66            callme (); /* set breakpoint thread 2 here */
 (gdb) thread 3
 (gdb) queue-signal SIGUSR1
 (gdb) thread 1
 [Switching to thread 1 (Thread 0x7ffff7fc1740 (LWP 24824))]
 #0  main () at src/gdb/testsuite/gdb.threads/multiple-step-overs.c:106
 106       wait_threads (); /* set wait-threads breakpoint here */
 (gdb) break sigusr1_handler
 Breakpoint 5 at 0x400837: file src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 31.
 (gdb) continue
 Continuing.
 [Switching to Thread 0x7ffff7fc0700 (LWP 24828)]

 Breakpoint 4, child_function_2 (arg=0x0) at src/gdb/testsuite/gdb.threads/multiple-step-overs.c:66
 66            callme (); /* set breakpoint thread 2 here */
 (gdb) KFAIL: gdb.threads/multiple-step-overs.exp: displaced=off: signal thr3: continue to sigusr1_handler


For good measure, I made the test try displaced stepping too.  And
then I found it crashes GDB on x86-64 (a hardware step target), but
only when displaced stepping... :

 KFAIL: gdb.threads/multiple-step-overs.exp: displaced=on: signal thr1: continue to sigusr1_handler (PRMS: gdb/18216)
 KFAIL: gdb.threads/multiple-step-overs.exp: displaced=on: signal thr2: continue to sigusr1_handler (PRMS: gdb/18216)
 KFAIL: gdb.threads/multiple-step-overs.exp: displaced=on: signal thr3: continue to sigusr1_handler (PRMS: gdb/18216)

 Program terminated with signal SIGSEGV, Segmentation fault.
 #0  0x000000000062a83a in process_event_stop_test (ecs=0x7fff847eeee0) at src/gdb/infrun.c:4964
 4964          if (sr_bp->loc->permanent
 Setting up the environment for debugging gdb.
 Breakpoint 1 at 0x79fcfc: file src/gdb/common/errors.c, line 54.
 Breakpoint 2 at 0x50a26c: file src/gdb/cli/cli-cmds.c, line 217.
 (top-gdb) p sr_bp
 $1 = (struct breakpoint *) 0x0
 (top-gdb) bt
 #0  0x000000000062a83a in process_event_stop_test (ecs=0x7fff847eeee0) at src/gdb/infrun.c:4964
 #1  0x000000000062a1af in handle_signal_stop (ecs=0x7fff847eeee0) at src/gdb/infrun.c:4715
 #2  0x0000000000629097 in handle_inferior_event (ecs=0x7fff847eeee0) at src/gdb/infrun.c:4165
 #3  0x0000000000627482 in fetch_inferior_event (client_data=0x0) at src/gdb/infrun.c:3298
 #4  0x000000000064ad7b in inferior_event_handler (event_type=INF_REG_EVENT, client_data=0x0) at src/gdb/inf-loop.c:56
 #5  0x00000000004c375f in handle_target_event (error=0, client_data=0x0) at src/gdb/linux-nat.c:4658
 #6  0x0000000000648c47 in handle_file_event (file_ptr=0x2e0eaa0, ready_mask=1) at src/gdb/event-loop.c:658

The all-stop-non-stop series fixes this, but meanwhile, this augments
the multiple-step-overs.exp test to cover this, KFAILed.

gdb/testsuite/ChangeLog:
2015-04-08  Pedro Alves  <palves@redhat.com>

	PR gdb/18214
	PR gdb/18216
	* gdb.threads/multiple-step-overs.c (sigusr1_handler): New
	function.
	(main): Install it as SIGUSR1 handler.
	* gdb.threads/multiple-step-overs.exp (setup): Remove 'prefix'
	parameter.  Always use "setup" as prefix.  Toggle "set
	displaced-stepping" off/on depending on global.  Don't switch to
	thread 1 here.
	(top level): Add displaced stepping "off/on" test axis.  Update
	"setup" calls.  Wrap each subtest with with_test_prefix.  Test
	continuing with a queued signal in each thread.
2015-04-08 19:59:03 +01:00
Joel Brobecker
32d0add0a6 Update year range in copyright notice of all files owned by the GDB project.
gdb/ChangeLog:

        Update year range in copyright notice of all files.
2015-01-01 13:32:14 +04:00
Pedro Alves
99619beac6 Handle multiple step-overs.
This test fails with current mainline.

If the program stopped for a breakpoint in thread 1, and then the user
switches to thread 2, and resumes the program, GDB first switches back
to thread 1 to step it over the breakpoint, in order to make progress.

However, that logic only considers the last reported event, assuming
only one thread needs that stepping over dance.

That's actually not true when we play with scheduler-locking.  The
patch adds an example to the testsuite of multiple threads needing a
step-over before the stepping thread can be resumed.  With current
mainline, the program re-traps the same breakpoint it had already
trapped before.

E.g.:

 Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 99	  wait_threads (); /* set wait-threads breakpoint here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint
 info threads
   Id   Target Id         Frame
   3    Thread 0x7ffff77c9700 (LWP 4310) "multiple-step-o" 0x00000000004007ca in child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:43
   2    Thread 0x7ffff7fca700 (LWP 4309) "multiple-step-o" 0x0000000000400827 in child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:60
 * 1    Thread 0x7ffff7fcb740 (LWP 4305) "multiple-step-o" main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: info threads shows all threads
 set scheduler-locking on
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: set scheduler-locking on
 break 44
 Breakpoint 3 at 0x4007d3: file ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 44.
 (gdb) break 61
 Breakpoint 4 at 0x40082d: file ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 61.
 (gdb) thread 3
 [Switching to thread 3 (Thread 0x7ffff77c9700 (LWP 4310))]
 #0  0x00000000004007ca in child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:43
 43	      (*myp) ++;
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 3
 continue
 Continuing.

 Breakpoint 3, child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:44
 44	      callme (); /* set breakpoint thread 3 here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint in thread 3
 p *myp = 0
 $1 = 0
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: unbreak loop in thread 3
 thread 2
 [Switching to thread 2 (Thread 0x7ffff7fca700 (LWP 4309))]
 #0  0x0000000000400827 in child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:60
 60	      (*myp) ++;
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 2
 continue
 Continuing.

 Breakpoint 4, child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:61
 61	      callme (); /* set breakpoint thread 2 here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint in thread 2
 p *myp = 0
 $2 = 0
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: unbreak loop in thread 2
 thread 1
 [Switching to thread 1 (Thread 0x7ffff7fcb740 (LWP 4305))]
 #0  main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 99	  wait_threads (); /* set wait-threads breakpoint here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 1
 set scheduler-locking off
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: set scheduler-locking off

At this point all thread are stopped for a breakpoint that needs stepping over.

 (gdb) step

 Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 99	  wait_threads (); /* set wait-threads breakpoint here */
 (gdb) FAIL: gdb.threads/multiple-step-overs.exp: step

But that "step" retriggers the same breakpoint instead of making
progress.

The patch teaches GDB to step over all breakpoints of all threads
before resuming the stepping thread.

Tested on x86_64 Fedora 17, against pristine mainline, and also my
branch that implements software single-stepping on x86.

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* infrun.c (prepare_to_proceed): Delete.
	(thread_still_needs_step_over): New function.
	(find_thread_needs_step_over): New function.
	(proceed): If the current thread needs a step-over, set its
	steping_over_breakpoint flag.  Adjust to use
	find_thread_needs_step_over instead of prepare_to_proceed.
	(process_event_stop_test): For BPSTAT_WHAT_STOP_NOISY and
	BPSTAT_WHAT_STOP_SILENT, assume the thread stopped for a
	breakpoint.
	(switch_back_to_stepped_thread): Step over breakpoints of all
	threads not the stepping thread, before switching back to the
	stepping thread.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/multiple-step-overs.c: New file.
	* gdb.threads/multiple-step-overs.exp: New file.
	* gdb.threads/signal-while-stepping-over-bp-other-thread.exp:
	Adjust expected infrun debug output.
2014-03-20 13:43:28 +00:00