Implement support for checking /proc/PID/coredump_filter

This patch, as the subject says, extends GDB so that it is able to use
the contents of the file /proc/PID/coredump_filter when generating a
corefile.  This file contains a bit mask that is a representation of
the different types of memory mappings in the Linux kernel; the user
can choose to dump or not dump a certain type of memory mapping by
enabling/disabling the respective bit in the bit mask.  Currently,
here is what is supported:

  bit 0  Dump anonymous private mappings.
  bit 1  Dump anonymous shared mappings.
  bit 2  Dump file-backed private mappings.
  bit 3  Dump file-backed shared mappings.
  bit 4 (since Linux 2.6.24)
         Dump ELF headers.
  bit 5 (since Linux 2.6.28)
         Dump private huge pages.
  bit 6 (since Linux 2.6.28)
         Dump shared huge pages.

(This table has been taken from core(5), but you can also read about it
on Documentation/filesystems/proc.txt inside the Linux kernel source
tree).

The default value for this file, used by the Linux kernel, is 0x33,
which means that bits 0, 1, 4 and 5 are enabled.  This is also the
default for GDB implemented in this patch, FWIW.

Well, reading the file is obviously trivial.  The hard part, mind you,
is how to determine the types of the memory mappings.  For that, I
extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and
made it rely *much more* on the information gathered from
/proc/<PID>/smaps.  This file contains a "verbose dump" of the
inferior's memory mappings, and we were not using as much information as
we could from it.  If you want to read more about this file, take a look
at the proc(5) manpage (I will also write a blog post soon about
everything I had to learn to get this patch done, and when I it is ready
I will post it here).

With Oleg Nesterov's help, we could improve the current algorithm for
determining whether a memory mapping is anonymous/file-backed,
private/shared.  GDB now also respects the MADV_DONTDUMP flag and does
not dump the memory mapping marked as so, and will always dump
"[vsyscall]" or "[vdso]" mappings (just like the Linux kernel).

In a nutshell, what the new code is doing is:

- If the mapping is associated to a file whose name ends with
  " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x"
  (shared memory), or if there is no file associated with it, or if
  the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps
  have contents, then GDB considers this mapping to be anonymous.
  There is a special case in this, though: if the memory mapping is a
  file-backed one, but *also* contains "Anonymous:" or
  "AnonHugePages:" pages, then GDB considers this mapping to be *both*
  anonymous and file-backed, just like the Linux kernel does.  What
  that means is simple: this mapping will be dumped if the user
  requested anonymous mappings *or* if the user requested file-backed
  mappings to be present in the corefile.

  It is worth mentioning that, from all those checks described above,
  the most fragile is the one to see if the file name ends with
  " (deleted)".  This does not necessarily mean that the mapping is
  anonymous, because the deleted file associated with the mapping may
  have been a hard link to another file, for example.  The Linux
  kernel checks to see if "i_nlink == 0", but GDB cannot easily do
  this check (as it has been discussed, GDB would need to run as root,
  and would need to check the contents of the /proc/PID/map_files/
  directory in order to determine whether the deleted was a hardlink
  or not).  Therefore, we made a compromise here, and we assume that
  if the file name ends with " (deleted)", then the mapping is indeed
  anonymous.  FWIW, this is something the Linux kernel could do
  better: expose this information in a more direct way.

- If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps),
  then certainly the memory mapping is shared (VM_SHARED).  If we have
  access to the VmFlags, and we don't see the "sh" there, then
  certainly the mapping is private.  However, older Linux kernels (see
  the code for more details) do not have the VmFlags field; in that
  case, we use another heuristic: if we see 'p' in the permission
  flags, then we assume that the mapping is private, even though the
  presence of the 's' flag there would mean VM_MAYSHARE, which means
  the mapping could still be private.  This should work OK enough,
  however.

Finally, it is worth mentioning that I added a new command, 'set
use-coredump-filter on/off'.  When it is 'on', it will read the
coredump_filter' file (if it exists) and use its value; otherwise, it
will use the default value mentioned above (0x33) to decide which memory
mappings to dump.

gdb/ChangeLog:
2015-03-31  Sergio Durigan Junior  <sergiodj@redhat.com>
	    Jan Kratochvil  <jan.kratochvil@redhat.com>
	    Oleg Nesterov  <oleg@redhat.com>

	PR corefiles/16092
	* linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'.
	New enum identifying the various options of the coredump_filter
	file.
	(struct smaps_vmflags): New struct.
	(use_coredump_filter): New variable.
	(decode_vmflags): New function.
	(mapping_is_anonymous_p): Likewise.
	(dump_mapping_p): Likewise.
	(linux_find_memory_regions_full): New variables
	'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'.
	Removed variable 'modified'.  Read /proc/<PID>/smaps file; improve
	parsing of its information.  Implement memory mapping filtering
	based on its contents.
	(show_use_coredump_filter): New function.
	(_initialize_linux_tdep): New command 'set use-coredump-filter'.
	* NEWS: Mention the possibility of using the
	'/proc/PID/coredump_filter' file when generating a corefile.
	Mention new command 'set use-coredump-filter'.

gdb/doc/ChangeLog:
2015-03-31  Sergio Durigan Junior  <sergiodj@redhat.com>

	PR corefiles/16092
	* gdb.texinfo (gcore): Mention new command 'set
	use-coredump-filter'.
	(set use-coredump-filter): Document new command.

gdb/testsuite/ChangeLog:
2015-03-31  Sergio Durigan Junior  <sergiodj@redhat.com>

	PR corefiles/16092
	* gdb.base/coredump-filter.c: New file.
	* gdb.base/coredump-filter.exp: Likewise.
This commit is contained in:
Sergio Durigan Junior 2015-03-31 19:32:34 -04:00
parent 416f679e68
commit df8411da08
8 changed files with 764 additions and 27 deletions

View file

@ -1,3 +1,27 @@
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
Jan Kratochvil <jan.kratochvil@redhat.com>
Oleg Nesterov <oleg@redhat.com>
PR corefiles/16092
* linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'.
New enum identifying the various options of the coredump_filter
file.
(struct smaps_vmflags): New struct.
(use_coredump_filter): New variable.
(decode_vmflags): New function.
(mapping_is_anonymous_p): Likewise.
(dump_mapping_p): Likewise.
(linux_find_memory_regions_full): New variables
'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'.
Removed variable 'modified'. Read /proc/<PID>/smaps file; improve
parsing of its information. Implement memory mapping filtering
based on its contents.
(show_use_coredump_filter): New function.
(_initialize_linux_tdep): New command 'set use-coredump-filter'.
* NEWS: Mention the possibility of using the
'/proc/PID/coredump_filter' file when generating a corefile.
Mention new command 'set use-coredump-filter'.
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
* solib-svr4.c (solib_svr4_r_ldsomap): Catch possible exception by

View file

@ -2,6 +2,15 @@
(Organized release by release)
*** Changes since GDB 7.9
=======
* GDB now honors the content of the file /proc/PID/coredump_filter
(PID is the process ID) on GNU/Linux systems. This file can be used
to specify the types of memory mappings that will be included in a
corefile. For more information, please refer to the manual page of
"core(5)". GDB also has a new command: "set use-coredump-filter
on|off". It allows to set whether GDB will read the content of the
/proc/PID/coredump_filter file when generating a corefile.
* The "info os" command on GNU/Linux can now display information on
cpu information :

View file

@ -1,3 +1,10 @@
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
PR corefiles/16092
* gdb.texinfo (gcore): Mention new command 'set
use-coredump-filter'.
(set use-coredump-filter): Document new command.
2015-03-31 Antoine Tremblay <antoine.tremblay@ericsson.com>
* gdb.texinfo (Operating System Auxiliary Information): Add info os cpus

View file

@ -10959,6 +10959,39 @@ specified, the file name defaults to @file{core.@var{pid}}, where
Note that this command is implemented only for some systems (as of
this writing, @sc{gnu}/Linux, FreeBSD, Solaris, and S390).
On @sc{gnu}/Linux, this command can take into account the value of the
file @file{/proc/@var{pid}/coredump_filter} when generating the core
dump (@pxref{set use-coredump-filter}).
@kindex set use-coredump-filter
@anchor{set use-coredump-filter}
@item set use-coredump-filter on
@itemx set use-coredump-filter off
Enable or disable the use of the file
@file{/proc/@var{pid}/coredump_filter} when generating core dump
files. This file is used by the Linux kernel to decide what types of
memory mappings will be dumped or ignored when generating a core dump
file. @var{pid} is the process ID of a currently running process.
To make use of this feature, you have to write in the
@file{/proc/@var{pid}/coredump_filter} file a value, in hexadecimal,
which is a bit mask representing the memory mapping types. If a bit
is set in the bit mask, then the memory mappings of the corresponding
types will be dumped; otherwise, they will be ignored. This
configuration is inherited by child processes. For more information
about the bits that can be set in the
@file{/proc/@var{pid}/coredump_filter} file, please refer to the
manpage of @code{core(5)}.
By default, this option is @code{on}. If this option is turned
@code{off}, @value{GDBN} does not read the @file{coredump_filter} file
and instead uses the same default value as the Linux kernel in order
to decide which pages will be dumped in the core dump file. This
value is currently @code{0x33}, which means that bits @code{0}
(anonymous private mappings), @code{1} (anonymous shared mappings),
@code{4} (ELF headers) and @code{5} (private huge pages) are active.
This will cause these memory mappings to be dumped automatically.
@end table
@node Character Sets

View file

@ -35,9 +35,61 @@
#include "observer.h"
#include "objfiles.h"
#include "infcall.h"
#include "gdbcmd.h"
#include "gdb_regex.h"
#include <ctype.h>
/* This enum represents the values that the user can choose when
informing the Linux kernel about which memory mappings will be
dumped in a corefile. They are described in the file
Documentation/filesystems/proc.txt, inside the Linux kernel
tree. */
enum
{
COREFILTER_ANON_PRIVATE = 1 << 0,
COREFILTER_ANON_SHARED = 1 << 1,
COREFILTER_MAPPED_PRIVATE = 1 << 2,
COREFILTER_MAPPED_SHARED = 1 << 3,
COREFILTER_ELF_HEADERS = 1 << 4,
COREFILTER_HUGETLB_PRIVATE = 1 << 5,
COREFILTER_HUGETLB_SHARED = 1 << 6,
};
/* This struct is used to map flags found in the "VmFlags:" field (in
the /proc/<PID>/smaps file). */
struct smaps_vmflags
{
/* Zero if this structure has not been initialized yet. It
probably means that the Linux kernel being used does not emit
the "VmFlags:" field on "/proc/PID/smaps". */
unsigned int initialized_p : 1;
/* Memory mapped I/O area (VM_IO, "io"). */
unsigned int io_page : 1;
/* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
unsigned int uses_huge_tlb : 1;
/* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
unsigned int exclude_coredump : 1;
/* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
unsigned int shared_mapping : 1;
};
/* Whether to take the /proc/PID/coredump_filter into account when
generating a corefile. */
static int use_coredump_filter = 1;
/* This enum represents the signals' numbers on a generic architecture
running the Linux kernel. The definition of "generic" comes from
the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
@ -381,6 +433,248 @@ read_mapping (const char *line,
*filename = p;
}
/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
This function was based on the documentation found on
<Documentation/filesystems/proc.txt>, on the Linux kernel.
Linux kernels before commit
834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
field on smaps. */
static void
decode_vmflags (char *p, struct smaps_vmflags *v)
{
char *saveptr;
const char *s;
v->initialized_p = 1;
p = skip_to_space (p);
p = skip_spaces (p);
for (s = strtok_r (p, " ", &saveptr);
s != NULL;
s = strtok_r (NULL, " ", &saveptr))
{
if (strcmp (s, "io") == 0)
v->io_page = 1;
else if (strcmp (s, "ht") == 0)
v->uses_huge_tlb = 1;
else if (strcmp (s, "dd") == 0)
v->exclude_coredump = 1;
else if (strcmp (s, "sh") == 0)
v->shared_mapping = 1;
}
}
/* Return 1 if the memory mapping is anonymous, 0 otherwise.
FILENAME is the name of the file present in the first line of the
memory mapping, in the "/proc/PID/smaps" output. For example, if
the first line is:
7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
Then FILENAME will be "/path/to/file". */
static int
mapping_is_anonymous_p (const char *filename)
{
static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
static int init_regex_p = 0;
if (!init_regex_p)
{
struct cleanup *c = make_cleanup (null_cleanup, NULL);
/* Let's be pessimistic and assume there will be an error while
compiling the regex'es. */
init_regex_p = -1;
/* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
without the "(deleted)" string in the end). We know for
sure, based on the Linux kernel code, that memory mappings
whose associated filename is "/dev/zero" are guaranteed to be
MAP_ANONYMOUS. */
compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
_("Could not compile regex to match /dev/zero "
"filename"));
/* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
without the "(deleted)" string in the end). These filenames
refer to shared memory (shmem), and memory mappings
associated with them are MAP_ANONYMOUS as well. */
compile_rx_or_error (&shmem_file_regex,
"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
_("Could not compile regex to match shmem "
"filenames"));
/* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
Linux kernel's 'n_link == 0' code, which is responsible to
decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
mapping. In other words, if FILE_DELETED_REGEX matches, it
does not necessarily mean that we are dealing with an
anonymous shared mapping. However, there is no easy way to
detect this currently, so this is the best approximation we
have.
As a result, GDB will dump readonly pages of deleted
executables when using the default value of coredump_filter
(0x33), while the Linux kernel will not dump those pages.
But we can live with that. */
compile_rx_or_error (&file_deleted_regex, " (deleted)$",
_("Could not compile regex to match "
"'<file> (deleted)'"));
/* We will never release these regexes, so just discard the
cleanups. */
discard_cleanups (c);
/* If we reached this point, then everything succeeded. */
init_regex_p = 1;
}
if (init_regex_p == -1)
{
const char deleted[] = " (deleted)";
size_t del_len = sizeof (deleted) - 1;
size_t filename_len = strlen (filename);
/* There was an error while compiling the regex'es above. In
order to try to give some reliable information to the caller,
we just try to find the string " (deleted)" in the filename.
If we managed to find it, then we assume the mapping is
anonymous. */
return (filename_len >= del_len
&& strcmp (filename + filename_len - del_len, deleted) == 0);
}
if (*filename == '\0'
|| regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
|| regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
|| regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
return 1;
return 0;
}
/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
greater than 0 if it should.
In a nutshell, this is the logic that we follow in order to decide
if a mapping should be dumped or not.
- If the mapping is associated to a file whose name ends with
" (deleted)", or if the file is "/dev/zero", or if it is
"/SYSV%08x" (shared memory), or if there is no file associated
with it, or if the AnonHugePages: or the Anonymous: fields in the
/proc/PID/smaps have contents, then GDB considers this mapping to
be anonymous. Otherwise, GDB considers this mapping to be a
file-backed mapping (because there will be a file associated with
it).
It is worth mentioning that, from all those checks described
above, the most fragile is the one to see if the file name ends
with " (deleted)". This does not necessarily mean that the
mapping is anonymous, because the deleted file associated with
the mapping may have been a hard link to another file, for
example. The Linux kernel checks to see if "i_nlink == 0", but
GDB cannot easily (and normally) do this check (iff running as
root, it could find the mapping in /proc/PID/map_files/ and
determine whether there still are other hard links to the
inode/file). Therefore, we made a compromise here, and we assume
that if the file name ends with " (deleted)", then the mapping is
indeed anonymous. FWIW, this is something the Linux kernel could
do better: expose this information in a more direct way.
- If we see the flag "sh" in the "VmFlags:" field (in
/proc/PID/smaps), then certainly the memory mapping is shared
(VM_SHARED). If we have access to the VmFlags, and we don't see
the "sh" there, then certainly the mapping is private. However,
Linux kernels before commit
834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
"VmFlags:" field; in that case, we use another heuristic: if we
see 'p' in the permission flags, then we assume that the mapping
is private, even though the presence of the 's' flag there would
mean VM_MAYSHARE, which means the mapping could still be private.
This should work OK enough, however. */
static int
dump_mapping_p (unsigned int filterflags, const struct smaps_vmflags *v,
int maybe_private_p, int mapping_anon_p, int mapping_file_p,
const char *filename)
{
/* Initially, we trust in what we received from our caller. This
value may not be very precise (i.e., it was probably gathered
from the permission line in the /proc/PID/smaps list, which
actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
what we have until we take a look at the "VmFlags:" field
(assuming that the version of the Linux kernel being used
supports it, of course). */
int private_p = maybe_private_p;
/* We always dump vDSO and vsyscall mappings, because it's likely that
there'll be no file to read the contents from at core load time.
The kernel does the same. */
if (strcmp ("[vdso]", filename) == 0
|| strcmp ("[vsyscall]", filename) == 0)
return 1;
if (v->initialized_p)
{
/* We never dump I/O mappings. */
if (v->io_page)
return 0;
/* Check if we should exclude this mapping. */
if (v->exclude_coredump)
return 0;
/* Update our notion of whether this mapping is shared or
private based on a trustworthy value. */
private_p = !v->shared_mapping;
/* HugeTLB checking. */
if (v->uses_huge_tlb)
{
if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
|| (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
return 1;
return 0;
}
}
if (private_p)
{
if (mapping_anon_p && mapping_file_p)
{
/* This is a special situation. It can happen when we see a
mapping that is file-backed, but that contains anonymous
pages. */
return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
|| (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
}
else if (mapping_anon_p)
return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
else
return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
}
else
{
if (mapping_anon_p && mapping_file_p)
{
/* This is a special situation. It can happen when we see a
mapping that is file-backed, but that contains anonymous
pages. */
return ((filterflags & COREFILTER_ANON_SHARED) != 0
|| (filterflags & COREFILTER_MAPPED_SHARED) != 0);
}
else if (mapping_anon_p)
return (filterflags & COREFILTER_ANON_SHARED) != 0;
else
return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
}
}
/* Implement the "info proc" command. */
static void
@ -819,48 +1113,97 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
void *obfd)
{
char mapsfilename[100];
char *data;
char coredumpfilter_name[100];
char *data, *coredumpfilterdata;
pid_t pid;
/* Default dump behavior of coredump_filter (0x33), according to
Documentation/filesystems/proc.txt from the Linux kernel
tree. */
unsigned int filterflags = (COREFILTER_ANON_PRIVATE
| COREFILTER_ANON_SHARED
| COREFILTER_ELF_HEADERS
| COREFILTER_HUGETLB_PRIVATE);
/* We need to know the real target PID to access /proc. */
if (current_inferior ()->fake_pid_p)
return 1;
xsnprintf (mapsfilename, sizeof mapsfilename,
"/proc/%d/smaps", current_inferior ()->pid);
pid = current_inferior ()->pid;
if (use_coredump_filter)
{
xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
"/proc/%d/coredump_filter", pid);
coredumpfilterdata = target_fileio_read_stralloc (coredumpfilter_name);
if (coredumpfilterdata != NULL)
{
sscanf (coredumpfilterdata, "%x", &filterflags);
xfree (coredumpfilterdata);
}
}
xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
data = target_fileio_read_stralloc (mapsfilename);
if (data == NULL)
{
/* Older Linux kernels did not support /proc/PID/smaps. */
xsnprintf (mapsfilename, sizeof mapsfilename,
"/proc/%d/maps", current_inferior ()->pid);
xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
data = target_fileio_read_stralloc (mapsfilename);
}
if (data)
if (data != NULL)
{
struct cleanup *cleanup = make_cleanup (xfree, data);
char *line;
char *line, *t;
line = strtok (data, "\n");
while (line)
line = strtok_r (data, "\n", &t);
while (line != NULL)
{
ULONGEST addr, endaddr, offset, inode;
const char *permissions, *device, *filename;
struct smaps_vmflags v;
size_t permissions_len, device_len;
int read, write, exec;
int modified = 0, has_anonymous = 0;
int read, write, exec, private;
int has_anonymous = 0;
int should_dump_p = 0;
int mapping_anon_p;
int mapping_file_p;
memset (&v, 0, sizeof (v));
read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
&offset, &device, &device_len, &inode, &filename);
mapping_anon_p = mapping_is_anonymous_p (filename);
/* If the mapping is not anonymous, then we can consider it
to be file-backed. These two states (anonymous or
file-backed) seem to be exclusive, but they can actually
coexist. For example, if a file-backed mapping has
"Anonymous:" pages (see more below), then the Linux
kernel will dump this mapping when the user specified
that she only wants anonymous mappings in the corefile
(*even* when she explicitly disabled the dumping of
file-backed mappings). */
mapping_file_p = !mapping_anon_p;
/* Decode permissions. */
read = (memchr (permissions, 'r', permissions_len) != 0);
write = (memchr (permissions, 'w', permissions_len) != 0);
exec = (memchr (permissions, 'x', permissions_len) != 0);
/* 'private' here actually means VM_MAYSHARE, and not
VM_SHARED. In order to know if a mapping is really
private or not, we must check the flag "sh" in the
VmFlags field. This is done by decode_vmflags. However,
if we are using a Linux kernel released before the commit
834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
not have the VmFlags there. In this case, there is
really no way to know if we are dealing with VM_SHARED,
so we just assume that VM_MAYSHARE is enough. */
private = memchr (permissions, 'p', permissions_len) != 0;
/* Try to detect if region was modified by parsing smaps counters. */
for (line = strtok (NULL, "\n");
line && line[0] >= 'A' && line[0] <= 'Z';
line = strtok (NULL, "\n"))
/* Try to detect if region should be dumped by parsing smaps
counters. */
for (line = strtok_r (NULL, "\n", &t);
line != NULL && line[0] >= 'A' && line[0] <= 'Z';
line = strtok_r (NULL, "\n", &t))
{
char keyword[64 + 1];
@ -869,11 +1212,17 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
break;
}
if (strcmp (keyword, "Anonymous:") == 0)
has_anonymous = 1;
if (strcmp (keyword, "Shared_Dirty:") == 0
|| strcmp (keyword, "Private_Dirty:") == 0
|| strcmp (keyword, "Swap:") == 0
{
/* Older Linux kernels did not support the
"Anonymous:" counter. Check it here. */
has_anonymous = 1;
}
else if (strcmp (keyword, "VmFlags:") == 0)
decode_vmflags (line, &v);
if (strcmp (keyword, "AnonHugePages:") == 0
|| strcmp (keyword, "Anonymous:") == 0)
{
unsigned long number;
@ -884,19 +1233,46 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
mapsfilename);
break;
}
if (number != 0)
modified = 1;
if (number > 0)
{
/* Even if we are dealing with a file-backed
mapping, if it contains anonymous pages we
consider it to be *also* an anonymous
mapping, because this is what the Linux
kernel does:
// Dump segments that have been written to.
if (vma->anon_vma && FILTER(ANON_PRIVATE))
goto whole;
Note that if the mapping is already marked as
file-backed (i.e., mapping_file_p is
non-zero), then this is a special case, and
this mapping will be dumped either when the
user wants to dump file-backed *or* anonymous
mappings. */
mapping_anon_p = 1;
}
}
}
/* Older Linux kernels did not support the "Anonymous:" counter.
If it is missing, we can't be sure - dump all the pages. */
if (!has_anonymous)
modified = 1;
if (has_anonymous)
should_dump_p = dump_mapping_p (filterflags, &v, private,
mapping_anon_p, mapping_file_p,
filename);
else
{
/* Older Linux kernels did not support the "Anonymous:" counter.
If it is missing, we can't be sure - dump all the pages. */
should_dump_p = 1;
}
/* Invoke the callback function to create the corefile segment. */
func (addr, endaddr - addr, offset, inode,
read, write, exec, modified, filename, obfd);
if (should_dump_p)
func (addr, endaddr - addr, offset, inode,
read, write, exec, 1, /* MODIFIED is true because we
want to dump the mapping. */
filename, obfd);
}
do_cleanups (cleanup);
@ -1972,6 +2348,17 @@ linux_infcall_mmap (CORE_ADDR size, unsigned prot)
return retval;
}
/* Display whether the gcore command is using the
/proc/PID/coredump_filter file. */
static void
show_use_coredump_filter (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
" corefiles is %s.\n"), value);
}
/* To be called from the various GDB_OSABI_LINUX handlers for the
various GNU/Linux architectures and machine types. */
@ -2008,4 +2395,16 @@ _initialize_linux_tdep (void)
/* Observers used to invalidate the cache when needed. */
observer_attach_inferior_exit (invalidate_linux_cache_inf);
observer_attach_inferior_appeared (invalidate_linux_cache_inf);
add_setshow_boolean_cmd ("use-coredump-filter", class_files,
&use_coredump_filter, _("\
Set whether gcore should consider /proc/PID/coredump_filter."),
_("\
Show whether gcore should consider /proc/PID/coredump_filter."),
_("\
Use this command to set whether gcore should consider the contents\n\
of /proc/PID/coredump_filter when generating the corefile. For more information\n\
about this file, refer to the manpage of core(5)."),
NULL, show_use_coredump_filter,
&setlist, &showlist);
}

View file

@ -1,3 +1,9 @@
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
PR corefiles/16092
* gdb.base/coredump-filter.c: New file.
* gdb.base/coredump-filter.exp: Likewise.
2015-03-27 Petr Machata <pmachata@redhat.com>
* lib/dwarf.exp (Dwarf::_handle_DW_FORM): Handle DW_FORM_sec_offset.

View file

@ -0,0 +1,61 @@
/* Copyright 2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define _GNU_SOURCE
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <errno.h>
#include <string.h>
static void *
do_mmap (void *addr, size_t size, int prot, int flags, int fd, off_t offset)
{
void *ret = mmap (addr, size, prot, flags, fd, offset);
assert (ret != NULL);
return ret;
}
int
main (int argc, char *argv[])
{
const size_t size = 10;
const int default_prot = PROT_READ | PROT_WRITE;
char *private_anon, *shared_anon;
char *dont_dump;
int i;
private_anon = do_mmap (NULL, size, default_prot,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
memset (private_anon, 0x11, size);
shared_anon = do_mmap (NULL, size, default_prot,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
memset (shared_anon, 0x22, size);
dont_dump = do_mmap (NULL, size, default_prot,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
memset (dont_dump, 0x55, size);
i = madvise (dont_dump, size, MADV_DONTDUMP);
assert_perror (errno);
assert (i == 0);
return 0; /* break-here */
}

View file

@ -0,0 +1,198 @@
# Copyright 2015 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
standard_testfile
if { [prepare_for_testing "failed to prepare" $testfile $srcfile debug] } {
untested "could not compile test program"
return -1
}
if { ![runto_main] } {
untested "could not run to main"
return -1
}
gdb_breakpoint [gdb_get_line_number "break-here"]
gdb_continue_to_breakpoint "break-here" ".* break-here .*"
proc do_save_core { filter_flag core ipid } {
verbose -log "writing $filter_flag to /proc/$ipid/coredump_filter"
remote_exec target "sh -c \"echo $filter_flag > /proc/$ipid/coredump_filter\""
# Generate a corefile.
gdb_gcore_cmd "$core" "save corefile"
}
proc do_load_and_test_core { core var working_var working_value } {
global hex decimal addr
set core_loaded [gdb_core_cmd "$core" "load core"]
if { $core_loaded == -1 } {
fail "loading $core"
return
}
# Access the memory the addresses point to.
gdb_test "print/x *(char *) $addr($var)" "\(\\\$$decimal = <error: \)?Cannot access memory at address $hex\(>\)?" \
"printing $var when core is loaded (should not work)"
gdb_test "print/x *(char *) $addr($working_var)" " = $working_value.*" \
"print/x *$working_var ( = $working_value)"
}
# We do not do file-backed mappings in the test program, but it is
# important to test this anyway. One way of performing the test is to
# load GDB with a corefile but without a binary, and then ask for the
# disassemble of a function (i.e., the binary's .text section). GDB
# should fail in this case. However, it must succeed if the binary is
# provided along with the corefile. This is what we test here.
proc test_disasm { core address should_fail } {
global testfile hex
# Restart GDB without loading the binary.
with_test_prefix "no binary" {
gdb_exit
gdb_start
set core_loaded [gdb_core_cmd "$core" "load core"]
if { $core_loaded == -1 } {
fail "loading $core"
return
}
if { $should_fail == 1 } {
gdb_test "x/i \$pc" "=> $hex:\tCannot access memory at address $hex" \
"disassemble function with corefile and without a binary"
} else {
gdb_test "x/i \$pc" "=> $hex:\t\[^C\].*" \
"disassemble function with corefile and without a binary"
}
}
with_test_prefix "with binary" {
clean_restart $testfile
set core_loaded [gdb_core_cmd "$core" "load core"]
if { $core_loaded == -1 } {
fail "loading $core"
return
}
gdb_test "disassemble $address" "Dump of assembler code for function.*" \
"disassemble function with corefile and with a binary"
}
}
set non_private_anon_core [standard_output_file non-private-anon.gcore]
set non_shared_anon_core [standard_output_file non-shared-anon.gcore]
# A corefile without {private,shared} {anonymous,file-backed} pages
set non_private_shared_anon_file_core [standard_output_file non-private-shared-anon-file.gcore]
set dont_dump_core [standard_output_file dont-dump.gcore]
# We will generate a few corefiles.
#
# This list is composed by sub-lists, and their elements are (in
# order):
#
# - name of the test
# - hexadecimal value to be put in the /proc/PID/coredump_filter file
# - name of the variable that contains the name of the corefile to be
# generated (including the initial $).
# - name of the variable in the C source code that points to the
# memory mapping that will NOT be present in the corefile.
# - name of a variable in the C source code that points to a memory
# mapping that WILL be present in the corefile
# - corresponding value expected for the above variable
#
# This list refers to the corefiles generated by MAP_ANONYMOUS in the
# test program.
set all_anon_corefiles { { "non-Private-Anonymous" "0x7e" \
$non_private_anon_core \
"private_anon" \
"shared_anon" "0x22" }
{ "non-Shared-Anonymous" "0x7d" \
$non_shared_anon_core "shared_anon" \
"private_anon" "0x11" }
{ "DoNotDump" "0x33" \
$dont_dump_core "dont_dump" \
"shared_anon" "0x22" } }
# If corefile loading is not supported, we do not even try to run the
# tests.
set core_supported [gdb_gcore_cmd "$non_private_anon_core" "save a corefile"]
if { !$core_supported } {
untested "corefile generation is not supported"
return -1
}
# Get the inferior's PID.
set infpid ""
gdb_test_multiple "info inferiors" "getting inferior pid" {
-re "process \($decimal\).*\r\n$gdb_prompt $" {
set infpid $expect_out(1,string)
}
}
# Get the main function's address.
set main_addr ""
gdb_test_multiple "print/x &main" "getting main's address" {
-re "$decimal = \($hex\)\r\n$gdb_prompt $" {
set main_addr $expect_out(1,string)
}
}
# Obtain the address of each variable that will be checked on each
# case.
foreach item $all_anon_corefiles {
foreach name [list [lindex $item 3] [lindex $item 4]] {
set test "print/x $name"
gdb_test_multiple $test $test {
-re " = \($hex\)\r\n$gdb_prompt $" {
set addr($name) $expect_out(1,string)
}
}
}
}
# Generate corefiles for the "anon" case.
foreach item $all_anon_corefiles {
with_test_prefix "saving corefile for [lindex $item 0]" {
do_save_core [lindex $item 1] [subst [lindex $item 2]] $infpid
}
}
with_test_prefix "saving corefile for non-Private-Shared-Anon-File" {
do_save_core "0x60" $non_private_shared_anon_file_core $infpid
}
clean_restart $testfile
foreach item $all_anon_corefiles {
with_test_prefix "loading and testing corefile for [lindex $item 0]" {
do_load_and_test_core [subst [lindex $item 2]] [lindex $item 3] \
[lindex $item 4] [lindex $item 5]
}
with_test_prefix "disassembling function main for [lindex $item 0]" {
test_disasm [subst [lindex $item 2]] $main_addr 0
}
}
with_test_prefix "loading and testing corefile for non-Private-Shared-Anon-File" {
test_disasm $non_private_shared_anon_file_core $main_addr 1
}