* sim-fpu.h (enum sim_fpu_class): Add sim_fpu_class_denorm.
(sim_fpu_fpto, sim_fpu_tofp): Define.
This commit is contained in:
parent
3c1e924307
commit
bdfe5c0439
3 changed files with 351 additions and 52 deletions
|
@ -1,3 +1,8 @@
|
|||
Mon Feb 23 13:24:54 1998 Andrew Cagney <cagney@b1.cygnus.com>
|
||||
|
||||
* sim-fpu.h (enum sim_fpu_class): Add sim_fpu_class_denorm.
|
||||
(sim_fpu_fpto, sim_fpu_tofp): Define.
|
||||
|
||||
Fri Feb 20 18:08:51 1998 Andrew Cagney <cagney@b1.cygnus.com>
|
||||
|
||||
* sim-fpu.c (sim_fpu_cmp): New function.
|
||||
|
|
|
@ -163,6 +163,7 @@ typedef union {
|
|||
#define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
|
||||
#define NR_INTBITS (is_64bit ? 64 : 32)
|
||||
|
||||
/* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
|
||||
STATIC_INLINE_SIM_FPU (unsigned64)
|
||||
pack_fpu (const sim_fpu *src,
|
||||
int is_double)
|
||||
|
@ -202,6 +203,7 @@ pack_fpu (const sim_fpu *src,
|
|||
fraction = 0;
|
||||
break;
|
||||
case sim_fpu_class_number:
|
||||
case sim_fpu_class_denorm:
|
||||
ASSERT (src->fraction >= IMPLICIT_1);
|
||||
ASSERT (src->fraction < IMPLICIT_2);
|
||||
if (src->normal_exp < NORMAL_EXPMIN)
|
||||
|
@ -293,6 +295,7 @@ pack_fpu (const sim_fpu *src,
|
|||
}
|
||||
|
||||
|
||||
/* Unpack a 32/64 bit integer into a sim_fpu structure */
|
||||
STATIC_INLINE_SIM_FPU (void)
|
||||
unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
|
||||
{
|
||||
|
@ -315,7 +318,7 @@ unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
|
|||
so there isn't a leading implicit one - we'll shift it so
|
||||
it gets one. */
|
||||
dst->normal_exp = exp - EXPBIAS + 1;
|
||||
dst->class = sim_fpu_class_number;
|
||||
dst->class = sim_fpu_class_denorm;
|
||||
dst->sign = sign;
|
||||
fraction <<= NR_GUARDS;
|
||||
while (fraction < IMPLICIT_1)
|
||||
|
@ -389,6 +392,7 @@ unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
|
|||
}
|
||||
|
||||
|
||||
/* Convert a floating point into an integer */
|
||||
STATIC_INLINE_SIM_FPU (int)
|
||||
fpu2i (signed64 *i,
|
||||
const sim_fpu *s,
|
||||
|
@ -488,6 +492,7 @@ fpu2i (signed64 *i,
|
|||
return status;
|
||||
}
|
||||
|
||||
/* convert an integer into a floating point */
|
||||
STATIC_INLINE_SIM_FPU (int)
|
||||
i2fpu (sim_fpu *f, signed64 i, int is_64bit)
|
||||
{
|
||||
|
@ -559,6 +564,7 @@ i2fpu (sim_fpu *f, signed64 i, int is_64bit)
|
|||
}
|
||||
|
||||
|
||||
/* Convert a floating point into an integer */
|
||||
STATIC_INLINE_SIM_FPU (int)
|
||||
fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
|
||||
{
|
||||
|
@ -615,6 +621,7 @@ fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Convert an unsigned integer into a floating point */
|
||||
STATIC_INLINE_SIM_FPU (int)
|
||||
u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
|
||||
{
|
||||
|
@ -831,6 +838,7 @@ do_round (sim_fpu *f,
|
|||
return sim_fpu_status_invalid_snan;
|
||||
break;
|
||||
case sim_fpu_class_number:
|
||||
case sim_fpu_class_denorm:
|
||||
{
|
||||
int status;
|
||||
ASSERT (f->fraction < IMPLICIT_2);
|
||||
|
@ -846,10 +854,11 @@ do_round (sim_fpu *f,
|
|||
if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
|
||||
&& !(denorm & sim_fpu_denorm_zero))
|
||||
{
|
||||
|
||||
status = do_normal_round (f, shift + NR_GUARDS, round);
|
||||
if (f->fraction == 0) /* rounding underflowed */
|
||||
status |= do_normal_underflow (f, is_double, round);
|
||||
{
|
||||
status |= do_normal_underflow (f, is_double, round);
|
||||
}
|
||||
else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
|
||||
{
|
||||
status |= sim_fpu_status_denorm;
|
||||
|
@ -858,6 +867,8 @@ do_round (sim_fpu *f,
|
|||
before rounding, some after! */
|
||||
if (status & sim_fpu_status_inexact)
|
||||
status |= sim_fpu_status_underflow;
|
||||
/* Flag that resultant value has been denormalized */
|
||||
f->class = sim_fpu_class_denorm;
|
||||
}
|
||||
else if ((denorm & sim_fpu_denorm_underflow_inexact))
|
||||
{
|
||||
|
@ -885,7 +896,8 @@ do_round (sim_fpu *f,
|
|||
/* oops! rounding caused overflow */
|
||||
status |= do_normal_overflow (f, is_double, round);
|
||||
}
|
||||
ASSERT ((f->class == sim_fpu_class_number)
|
||||
ASSERT ((f->class == sim_fpu_class_number
|
||||
|| f->class == sim_fpu_class_denorm)
|
||||
<= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
|
||||
return status;
|
||||
}
|
||||
|
@ -1959,6 +1971,7 @@ sim_fpu_is_number (const sim_fpu *d)
|
|||
{
|
||||
switch (d->class)
|
||||
{
|
||||
case sim_fpu_class_denorm:
|
||||
case sim_fpu_class_number:
|
||||
return 1;
|
||||
default:
|
||||
|
@ -1966,6 +1979,18 @@ sim_fpu_is_number (const sim_fpu *d)
|
|||
}
|
||||
}
|
||||
|
||||
INLINE_SIM_FPU (int)
|
||||
sim_fpu_is_denorm (const sim_fpu *d)
|
||||
{
|
||||
switch (d->class)
|
||||
{
|
||||
case sim_fpu_class_denorm:
|
||||
return 1;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
INLINE_SIM_FPU (int)
|
||||
sim_fpu_is (const sim_fpu *d)
|
||||
{
|
||||
|
@ -1980,21 +2005,14 @@ sim_fpu_is (const sim_fpu *d)
|
|||
return SIM_FPU_IS_PINF;
|
||||
case sim_fpu_class_number:
|
||||
if (d->sign)
|
||||
return SIM_FPU_IS_NNUM;
|
||||
return SIM_FPU_IS_NNUMBER;
|
||||
else
|
||||
return SIM_FPU_IS_PNUM;
|
||||
#if 0
|
||||
/* FIXME: Since the intermediate sim_fpu format can hold numbers
|
||||
far smaller then the targets FP format, the test for denorm
|
||||
is currently bogus. Perhaphs the code converting a number to
|
||||
the internal format should flag such situtations with
|
||||
`ndemorm' */
|
||||
case ???:
|
||||
return SIM_FPU_IS_PNUMBER;
|
||||
case sim_fpu_class_denorm:
|
||||
if (d->sign)
|
||||
return SIM_FPU_IS_NDENORM;
|
||||
else
|
||||
return SIM_FPU_IS_PDENORM;
|
||||
#endif
|
||||
case sim_fpu_class_zero:
|
||||
if (d->sign)
|
||||
return SIM_FPU_IS_NZERO;
|
||||
|
@ -2219,6 +2237,7 @@ sim_fpu_print_fpu (const sim_fpu *f,
|
|||
print (arg, "INF");
|
||||
break;
|
||||
case sim_fpu_class_number:
|
||||
case sim_fpu_class_denorm:
|
||||
print (arg, "1.");
|
||||
print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
|
||||
print (arg, "*2^%+-5d", f->normal_exp);
|
||||
|
|
|
@ -20,68 +20,343 @@ with this program; if not, write to the Free Software Foundation, Inc.,
|
|||
|
||||
|
||||
|
||||
#ifndef _SIM_FPU_H_
|
||||
#define _SIM_FPU_H_
|
||||
#ifndef SIM_FPU_H
|
||||
#define SIM_FPU_H
|
||||
|
||||
/* the FPU intermediate type */
|
||||
|
||||
|
||||
/* The FPU intermediate type - this object, passed by reference,
|
||||
should be treated as opaque.
|
||||
|
||||
|
||||
Pragmatics - pass struct by ref:
|
||||
|
||||
The alternatives for this object/interface that were considered
|
||||
were: a packed 64 bit value; an unpacked structure passed by value;
|
||||
and an unpacked structure passed by reference.
|
||||
|
||||
The packed 64 bit value was rejected because: it limited the
|
||||
precision of intermediate values; reasonable performance would only
|
||||
be achieved when the sim_fpu package was in-lined allowing repeated
|
||||
unpacking operations to be eliminated.
|
||||
|
||||
For unpacked structures (passed by value and reference), the code
|
||||
quality of GCC-2.7 (on x86) for each alternative was compared.
|
||||
Needless to say the results, while better then for a packed 64 bit
|
||||
object, were still poor (GCC had only limited support for the
|
||||
optimization of references to structure members). Regardless, the
|
||||
struct-by-ref alternative achieved better results when compiled
|
||||
with (better speed) and without (better code density) in-lining.
|
||||
Here's looking forward to an improved GCC optimizer.
|
||||
|
||||
|
||||
Pragmatics - avoid host FP hardware:
|
||||
|
||||
FP operations can be implemented by either: the host's floating
|
||||
point hardware; or by emulating the FP operations using integer
|
||||
only routines. This is direct tradeoff between speed, portability
|
||||
and correctness.
|
||||
|
||||
The two principal reasons for selecting portability and correctness
|
||||
over speed are:
|
||||
|
||||
1 - Correctness. The assumption that FP correctness wasn't an
|
||||
issue for code being run on simulators was wrong. Instead of
|
||||
running FP tolerant (?) code, simulator users instead typically run
|
||||
very aggressive FP code sequences. The sole purpose of those
|
||||
sequences being to test the target ISA's FP implementation.
|
||||
|
||||
2 - Portability. The host FP implementation is not predictable. A
|
||||
simulator modeling aggressive FP code sequences using the hosts FPU
|
||||
relies heavily on the correctness of the hosts FP implementation.
|
||||
It turns out that such trust can be misplaced. The behavior of
|
||||
host FP implementations when handling edge conditions such as SNaNs
|
||||
and exceptions varied widely.
|
||||
|
||||
|
||||
*/
|
||||
|
||||
|
||||
typedef enum
|
||||
{
|
||||
sim_fpu_class_zero,
|
||||
sim_fpu_class_snan,
|
||||
sim_fpu_class_qnan,
|
||||
sim_fpu_class_number,
|
||||
sim_fpu_class_denorm,
|
||||
sim_fpu_class_infinity,
|
||||
} sim_fpu_class;
|
||||
|
||||
typedef struct _sim_fpu {
|
||||
double val;
|
||||
sim_fpu_class class;
|
||||
int normal_exp;
|
||||
int result;
|
||||
int sign;
|
||||
unsigned64 fraction;
|
||||
} sim_fpu;
|
||||
|
||||
|
||||
/* Directly map a 32/64bit register quantity into the sim_fpu internal
|
||||
type ready for various arithmetic and conversion operations. */
|
||||
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_32to (unsigned32 s);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_64to (unsigned64 s);
|
||||
/* Rounding options.
|
||||
|
||||
INLINE_SIM_FPU (unsigned32) sim_fpu_to32 (sim_fpu s);
|
||||
INLINE_SIM_FPU (unsigned64) sim_fpu_to64 (sim_fpu s);
|
||||
The value zero (sim_fpu_round_default) for ALU operations indicates
|
||||
that, when possible, rounding should be avoided. */
|
||||
|
||||
typedef enum
|
||||
{
|
||||
sim_fpu_round_default = 0,
|
||||
sim_fpu_round_near = 1,
|
||||
sim_fpu_round_zero = 2,
|
||||
sim_fpu_round_up = 3,
|
||||
sim_fpu_round_down = 4,
|
||||
} sim_fpu_round;
|
||||
|
||||
|
||||
/* Arrithmetic operators */
|
||||
/* Options when handling denormalized numbers. */
|
||||
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_add (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_sub (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_mul (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_div (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_inv (sim_fpu l);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_sqrt (sim_fpu sqr);
|
||||
typedef enum
|
||||
{
|
||||
sim_fpu_denorm_underflow_inexact = 1,
|
||||
sim_fpu_denorm_zero = 2,
|
||||
} sim_fpu_denorm;
|
||||
|
||||
|
||||
/* Conversion of integer value into floating point types */
|
||||
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_i32to (signed32 s);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_u32to (unsigned32 s);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_i64to (signed64 s);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_u64to (unsigned64 s);
|
||||
/* Status values returned by FPU operators.
|
||||
|
||||
When checking the result of an FP sequence (ex 32to, add, single,
|
||||
to32) the caller may either: check the return value of each FP
|
||||
operator; or form the union (OR) of the returned values and examine
|
||||
them once at the end.
|
||||
|
||||
FIXME: This facility is still being developed. The choice of
|
||||
status values returned and their exact meaning may changed in the
|
||||
future. */
|
||||
|
||||
typedef enum
|
||||
{
|
||||
sim_fpu_status_invalid_snan = 1,
|
||||
sim_fpu_status_invalid_qnan = 2,
|
||||
sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
|
||||
sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
|
||||
sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
|
||||
sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
|
||||
sim_fpu_status_invalid_cvi = 64, /* convert to integer */
|
||||
sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
|
||||
sim_fpu_status_invalid_cmp = 256, /* compare */
|
||||
sim_fpu_status_invalid_sqrt = 512,
|
||||
sim_fpu_status_rounded = 1024,
|
||||
sim_fpu_status_inexact = 2048,
|
||||
sim_fpu_status_overflow = 4096,
|
||||
sim_fpu_status_underflow = 8192,
|
||||
sim_fpu_status_denorm = 16384,
|
||||
} sim_fpu_status;
|
||||
|
||||
|
||||
/* Conversion of internal sim_fpu type to host float and double
|
||||
formats - for debuging/tracing */
|
||||
|
||||
INLINE_SIM_FPU (float) sim_fpu_2f (sim_fpu f);
|
||||
INLINE_SIM_FPU (double) sim_fpu_2d (sim_fpu d);
|
||||
|
||||
#if 0
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_f2 (float f);
|
||||
INLINE_SIM_FPU (sim_fpu) sim_fpu_d2 (double d);
|
||||
/* Directly map between a 32/64 bit register and the sim_fpu internal
|
||||
type.
|
||||
|
||||
When converting from the 32/64 bit packed format to the sim_fpu
|
||||
internal type, the operation is exact.
|
||||
|
||||
When converting from the sim_fpu internal type to 32/64 bit packed
|
||||
format, the operation may result in a loss of precision. The
|
||||
configuration macro WITH_FPU_CONVERSION controls this. By default,
|
||||
silent round to nearest is performed. Alternativly, round up,
|
||||
round down and round to zero can be performed. In a simulator
|
||||
emulating exact FPU behavour, sim_fpu_round_{32,64} should be
|
||||
called before packing the sim_fpu value. */
|
||||
|
||||
INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
|
||||
INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
|
||||
INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
|
||||
|
||||
INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
|
||||
INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
|
||||
INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
|
||||
|
||||
#if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
|
||||
#define sim_fpu_tofp sim_fpu_to32
|
||||
#define sim_fpu_fpto sim_fpu_32to
|
||||
#define sim_fpu_round_fp sim_fpu_round_32
|
||||
#endif
|
||||
#if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
|
||||
#define sim_fpu_tofp sim_fpu_to64
|
||||
#define sim_fpu_fpto sim_fpu_64to
|
||||
#define sim_fpu_round_fp sim_fpu_round_64
|
||||
#endif
|
||||
|
||||
|
||||
/* Signalling or NonSignalling NaN */
|
||||
/* Rounding operators.
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_nan (sim_fpu s);
|
||||
Force an intermediate result to an exact 32/64 bit
|
||||
representation. */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
|
||||
sim_fpu_round round,
|
||||
sim_fpu_denorm denorm);
|
||||
INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
|
||||
sim_fpu_round round,
|
||||
sim_fpu_denorm denorm);
|
||||
|
||||
|
||||
/* compare l with r; return <0, ==0, >0 accordingly */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_lt (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_le (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_eq (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_ne (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_ge (sim_fpu l, sim_fpu r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_gt (sim_fpu l, sim_fpu r);
|
||||
/* Arrithmetic operators.
|
||||
|
||||
FIXME: In the future, additional arguments ROUNDING and BITSIZE may
|
||||
be added. */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
|
||||
const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
|
||||
const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
|
||||
const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
|
||||
const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
|
||||
const sim_fpu *a);
|
||||
INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
|
||||
const sim_fpu *a);
|
||||
INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
|
||||
const sim_fpu *a);
|
||||
INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
|
||||
const sim_fpu *sqr);
|
||||
|
||||
|
||||
|
||||
/* Conversion of integer <-> floating point. */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
|
||||
sim_fpu_round round);
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
|
||||
sim_fpu_round round);
|
||||
INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
|
||||
sim_fpu_round round);
|
||||
|
||||
|
||||
|
||||
/* Conversion of internal sim_fpu type to host double format.
|
||||
|
||||
For debuging/tracing only. A SNaN is never returned. */
|
||||
|
||||
/* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
|
||||
INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
|
||||
|
||||
/* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
|
||||
INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
|
||||
|
||||
|
||||
|
||||
/* Specific number classes.
|
||||
|
||||
NB: When either a 32/64 bit floating points is converted to
|
||||
internal format, or an internal format number is rounded to 32/64
|
||||
bit precision, a special marker is retained that indicates that the
|
||||
value was normalized. For such numbers both is_number and
|
||||
is_denorm will return true. */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
|
||||
|
||||
|
||||
/* Specific comparison operators
|
||||
|
||||
The comparison operators set *IS to zero and return a nonzero
|
||||
result for NaNs et.al. */
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
|
||||
INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
|
||||
|
||||
|
||||
|
||||
/* General number class and comparison operators.
|
||||
|
||||
The result of the comparison is indicated by returning one of the
|
||||
values below. Efficient emulation of a target FP compare
|
||||
instruction can be achieved by redefining the values below to match
|
||||
corresponding target FP status bits.
|
||||
|
||||
For instance. SIM_FPU_QNAN may be redefined to be the bit
|
||||
`INVALID' while SIM_FPU_NINF might be redefined as the bits
|
||||
`NEGATIVE | INFINITY | VALID'. */
|
||||
|
||||
#ifndef SIM_FPU_IS_SNAN
|
||||
enum {
|
||||
SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
|
||||
SIM_FPU_IS_QNAN = 2, /* Quite not-a-number */
|
||||
SIM_FPU_IS_NINF = 3, /* -infinity */
|
||||
SIM_FPU_IS_PINF = 4, /* +infinity */
|
||||
SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
|
||||
SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
|
||||
SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
|
||||
SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
|
||||
SIM_FPU_IS_NZERO = 9, /* -0 */
|
||||
SIM_FPU_IS_PZERO = 10, /* +0 */
|
||||
};
|
||||
#endif
|
||||
|
||||
INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
|
||||
INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
|
||||
|
||||
|
||||
|
||||
/* A constant of useful numbers */
|
||||
|
||||
extern const sim_fpu sim_fpu_zero;
|
||||
extern const sim_fpu sim_fpu_one;
|
||||
extern const sim_fpu sim_fpu_two;
|
||||
extern const sim_fpu sim_fpu_qnan;
|
||||
|
||||
|
||||
/* For debugging */
|
||||
|
||||
typedef void sim_fpu_print_func (void *, char *, ...);
|
||||
|
||||
INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
|
||||
sim_fpu_print_func *print,
|
||||
void *arg);
|
||||
|
||||
INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
|
||||
sim_fpu_print_func *print,
|
||||
void *arg);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue