* sim-fpu.h (enum sim_fpu_class): Add sim_fpu_class_denorm.

(sim_fpu_fpto, sim_fpu_tofp): Define.
This commit is contained in:
Andrew Cagney 1998-02-23 09:18:30 +00:00
parent 3c1e924307
commit bdfe5c0439
3 changed files with 351 additions and 52 deletions

View file

@ -1,3 +1,8 @@
Mon Feb 23 13:24:54 1998 Andrew Cagney <cagney@b1.cygnus.com>
* sim-fpu.h (enum sim_fpu_class): Add sim_fpu_class_denorm.
(sim_fpu_fpto, sim_fpu_tofp): Define.
Fri Feb 20 18:08:51 1998 Andrew Cagney <cagney@b1.cygnus.com>
* sim-fpu.c (sim_fpu_cmp): New function.

View file

@ -163,6 +163,7 @@ typedef union {
#define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
#define NR_INTBITS (is_64bit ? 64 : 32)
/* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
STATIC_INLINE_SIM_FPU (unsigned64)
pack_fpu (const sim_fpu *src,
int is_double)
@ -202,6 +203,7 @@ pack_fpu (const sim_fpu *src,
fraction = 0;
break;
case sim_fpu_class_number:
case sim_fpu_class_denorm:
ASSERT (src->fraction >= IMPLICIT_1);
ASSERT (src->fraction < IMPLICIT_2);
if (src->normal_exp < NORMAL_EXPMIN)
@ -293,6 +295,7 @@ pack_fpu (const sim_fpu *src,
}
/* Unpack a 32/64 bit integer into a sim_fpu structure */
STATIC_INLINE_SIM_FPU (void)
unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
{
@ -315,7 +318,7 @@ unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
so there isn't a leading implicit one - we'll shift it so
it gets one. */
dst->normal_exp = exp - EXPBIAS + 1;
dst->class = sim_fpu_class_number;
dst->class = sim_fpu_class_denorm;
dst->sign = sign;
fraction <<= NR_GUARDS;
while (fraction < IMPLICIT_1)
@ -389,6 +392,7 @@ unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
}
/* Convert a floating point into an integer */
STATIC_INLINE_SIM_FPU (int)
fpu2i (signed64 *i,
const sim_fpu *s,
@ -488,6 +492,7 @@ fpu2i (signed64 *i,
return status;
}
/* convert an integer into a floating point */
STATIC_INLINE_SIM_FPU (int)
i2fpu (sim_fpu *f, signed64 i, int is_64bit)
{
@ -559,6 +564,7 @@ i2fpu (sim_fpu *f, signed64 i, int is_64bit)
}
/* Convert a floating point into an integer */
STATIC_INLINE_SIM_FPU (int)
fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
{
@ -615,6 +621,7 @@ fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
return 0;
}
/* Convert an unsigned integer into a floating point */
STATIC_INLINE_SIM_FPU (int)
u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
{
@ -831,6 +838,7 @@ do_round (sim_fpu *f,
return sim_fpu_status_invalid_snan;
break;
case sim_fpu_class_number:
case sim_fpu_class_denorm:
{
int status;
ASSERT (f->fraction < IMPLICIT_2);
@ -846,10 +854,11 @@ do_round (sim_fpu *f,
if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
&& !(denorm & sim_fpu_denorm_zero))
{
status = do_normal_round (f, shift + NR_GUARDS, round);
if (f->fraction == 0) /* rounding underflowed */
status |= do_normal_underflow (f, is_double, round);
{
status |= do_normal_underflow (f, is_double, round);
}
else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
{
status |= sim_fpu_status_denorm;
@ -858,6 +867,8 @@ do_round (sim_fpu *f,
before rounding, some after! */
if (status & sim_fpu_status_inexact)
status |= sim_fpu_status_underflow;
/* Flag that resultant value has been denormalized */
f->class = sim_fpu_class_denorm;
}
else if ((denorm & sim_fpu_denorm_underflow_inexact))
{
@ -885,7 +896,8 @@ do_round (sim_fpu *f,
/* oops! rounding caused overflow */
status |= do_normal_overflow (f, is_double, round);
}
ASSERT ((f->class == sim_fpu_class_number)
ASSERT ((f->class == sim_fpu_class_number
|| f->class == sim_fpu_class_denorm)
<= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
return status;
}
@ -1959,6 +1971,7 @@ sim_fpu_is_number (const sim_fpu *d)
{
switch (d->class)
{
case sim_fpu_class_denorm:
case sim_fpu_class_number:
return 1;
default:
@ -1966,6 +1979,18 @@ sim_fpu_is_number (const sim_fpu *d)
}
}
INLINE_SIM_FPU (int)
sim_fpu_is_denorm (const sim_fpu *d)
{
switch (d->class)
{
case sim_fpu_class_denorm:
return 1;
default:
return 0;
}
}
INLINE_SIM_FPU (int)
sim_fpu_is (const sim_fpu *d)
{
@ -1980,21 +2005,14 @@ sim_fpu_is (const sim_fpu *d)
return SIM_FPU_IS_PINF;
case sim_fpu_class_number:
if (d->sign)
return SIM_FPU_IS_NNUM;
return SIM_FPU_IS_NNUMBER;
else
return SIM_FPU_IS_PNUM;
#if 0
/* FIXME: Since the intermediate sim_fpu format can hold numbers
far smaller then the targets FP format, the test for denorm
is currently bogus. Perhaphs the code converting a number to
the internal format should flag such situtations with
`ndemorm' */
case ???:
return SIM_FPU_IS_PNUMBER;
case sim_fpu_class_denorm:
if (d->sign)
return SIM_FPU_IS_NDENORM;
else
return SIM_FPU_IS_PDENORM;
#endif
case sim_fpu_class_zero:
if (d->sign)
return SIM_FPU_IS_NZERO;
@ -2219,6 +2237,7 @@ sim_fpu_print_fpu (const sim_fpu *f,
print (arg, "INF");
break;
case sim_fpu_class_number:
case sim_fpu_class_denorm:
print (arg, "1.");
print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
print (arg, "*2^%+-5d", f->normal_exp);

View file

@ -20,68 +20,343 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#ifndef _SIM_FPU_H_
#define _SIM_FPU_H_
#ifndef SIM_FPU_H
#define SIM_FPU_H
/* the FPU intermediate type */
/* The FPU intermediate type - this object, passed by reference,
should be treated as opaque.
Pragmatics - pass struct by ref:
The alternatives for this object/interface that were considered
were: a packed 64 bit value; an unpacked structure passed by value;
and an unpacked structure passed by reference.
The packed 64 bit value was rejected because: it limited the
precision of intermediate values; reasonable performance would only
be achieved when the sim_fpu package was in-lined allowing repeated
unpacking operations to be eliminated.
For unpacked structures (passed by value and reference), the code
quality of GCC-2.7 (on x86) for each alternative was compared.
Needless to say the results, while better then for a packed 64 bit
object, were still poor (GCC had only limited support for the
optimization of references to structure members). Regardless, the
struct-by-ref alternative achieved better results when compiled
with (better speed) and without (better code density) in-lining.
Here's looking forward to an improved GCC optimizer.
Pragmatics - avoid host FP hardware:
FP operations can be implemented by either: the host's floating
point hardware; or by emulating the FP operations using integer
only routines. This is direct tradeoff between speed, portability
and correctness.
The two principal reasons for selecting portability and correctness
over speed are:
1 - Correctness. The assumption that FP correctness wasn't an
issue for code being run on simulators was wrong. Instead of
running FP tolerant (?) code, simulator users instead typically run
very aggressive FP code sequences. The sole purpose of those
sequences being to test the target ISA's FP implementation.
2 - Portability. The host FP implementation is not predictable. A
simulator modeling aggressive FP code sequences using the hosts FPU
relies heavily on the correctness of the hosts FP implementation.
It turns out that such trust can be misplaced. The behavior of
host FP implementations when handling edge conditions such as SNaNs
and exceptions varied widely.
*/
typedef enum
{
sim_fpu_class_zero,
sim_fpu_class_snan,
sim_fpu_class_qnan,
sim_fpu_class_number,
sim_fpu_class_denorm,
sim_fpu_class_infinity,
} sim_fpu_class;
typedef struct _sim_fpu {
double val;
sim_fpu_class class;
int normal_exp;
int result;
int sign;
unsigned64 fraction;
} sim_fpu;
/* Directly map a 32/64bit register quantity into the sim_fpu internal
type ready for various arithmetic and conversion operations. */
INLINE_SIM_FPU (sim_fpu) sim_fpu_32to (unsigned32 s);
INLINE_SIM_FPU (sim_fpu) sim_fpu_64to (unsigned64 s);
/* Rounding options.
INLINE_SIM_FPU (unsigned32) sim_fpu_to32 (sim_fpu s);
INLINE_SIM_FPU (unsigned64) sim_fpu_to64 (sim_fpu s);
The value zero (sim_fpu_round_default) for ALU operations indicates
that, when possible, rounding should be avoided. */
typedef enum
{
sim_fpu_round_default = 0,
sim_fpu_round_near = 1,
sim_fpu_round_zero = 2,
sim_fpu_round_up = 3,
sim_fpu_round_down = 4,
} sim_fpu_round;
/* Arrithmetic operators */
/* Options when handling denormalized numbers. */
INLINE_SIM_FPU (sim_fpu) sim_fpu_add (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (sim_fpu) sim_fpu_sub (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (sim_fpu) sim_fpu_mul (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (sim_fpu) sim_fpu_div (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (sim_fpu) sim_fpu_inv (sim_fpu l);
INLINE_SIM_FPU (sim_fpu) sim_fpu_sqrt (sim_fpu sqr);
typedef enum
{
sim_fpu_denorm_underflow_inexact = 1,
sim_fpu_denorm_zero = 2,
} sim_fpu_denorm;
/* Conversion of integer value into floating point types */
INLINE_SIM_FPU (sim_fpu) sim_fpu_i32to (signed32 s);
INLINE_SIM_FPU (sim_fpu) sim_fpu_u32to (unsigned32 s);
INLINE_SIM_FPU (sim_fpu) sim_fpu_i64to (signed64 s);
INLINE_SIM_FPU (sim_fpu) sim_fpu_u64to (unsigned64 s);
/* Status values returned by FPU operators.
When checking the result of an FP sequence (ex 32to, add, single,
to32) the caller may either: check the return value of each FP
operator; or form the union (OR) of the returned values and examine
them once at the end.
FIXME: This facility is still being developed. The choice of
status values returned and their exact meaning may changed in the
future. */
typedef enum
{
sim_fpu_status_invalid_snan = 1,
sim_fpu_status_invalid_qnan = 2,
sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
sim_fpu_status_invalid_cvi = 64, /* convert to integer */
sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
sim_fpu_status_invalid_cmp = 256, /* compare */
sim_fpu_status_invalid_sqrt = 512,
sim_fpu_status_rounded = 1024,
sim_fpu_status_inexact = 2048,
sim_fpu_status_overflow = 4096,
sim_fpu_status_underflow = 8192,
sim_fpu_status_denorm = 16384,
} sim_fpu_status;
/* Conversion of internal sim_fpu type to host float and double
formats - for debuging/tracing */
INLINE_SIM_FPU (float) sim_fpu_2f (sim_fpu f);
INLINE_SIM_FPU (double) sim_fpu_2d (sim_fpu d);
#if 0
INLINE_SIM_FPU (sim_fpu) sim_fpu_f2 (float f);
INLINE_SIM_FPU (sim_fpu) sim_fpu_d2 (double d);
/* Directly map between a 32/64 bit register and the sim_fpu internal
type.
When converting from the 32/64 bit packed format to the sim_fpu
internal type, the operation is exact.
When converting from the sim_fpu internal type to 32/64 bit packed
format, the operation may result in a loss of precision. The
configuration macro WITH_FPU_CONVERSION controls this. By default,
silent round to nearest is performed. Alternativly, round up,
round down and round to zero can be performed. In a simulator
emulating exact FPU behavour, sim_fpu_round_{32,64} should be
called before packing the sim_fpu value. */
INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
#if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
#define sim_fpu_tofp sim_fpu_to32
#define sim_fpu_fpto sim_fpu_32to
#define sim_fpu_round_fp sim_fpu_round_32
#endif
#if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
#define sim_fpu_tofp sim_fpu_to64
#define sim_fpu_fpto sim_fpu_64to
#define sim_fpu_round_fp sim_fpu_round_64
#endif
/* Signalling or NonSignalling NaN */
/* Rounding operators.
INLINE_SIM_FPU (int) sim_fpu_is_nan (sim_fpu s);
Force an intermediate result to an exact 32/64 bit
representation. */
INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
sim_fpu_round round,
sim_fpu_denorm denorm);
INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
sim_fpu_round round,
sim_fpu_denorm denorm);
/* compare l with r; return <0, ==0, >0 accordingly */
INLINE_SIM_FPU (int) sim_fpu_is_lt (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (int) sim_fpu_is_le (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (int) sim_fpu_is_eq (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (int) sim_fpu_is_ne (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (int) sim_fpu_is_ge (sim_fpu l, sim_fpu r);
INLINE_SIM_FPU (int) sim_fpu_is_gt (sim_fpu l, sim_fpu r);
/* Arrithmetic operators.
FIXME: In the future, additional arguments ROUNDING and BITSIZE may
be added. */
INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
const sim_fpu *a);
INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
const sim_fpu *a);
INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
const sim_fpu *a);
INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
const sim_fpu *sqr);
/* Conversion of integer <-> floating point. */
INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
sim_fpu_round round);
INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
sim_fpu_round round);
/* Conversion of internal sim_fpu type to host double format.
For debuging/tracing only. A SNaN is never returned. */
/* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
/* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
/* Specific number classes.
NB: When either a 32/64 bit floating points is converted to
internal format, or an internal format number is rounded to 32/64
bit precision, a special marker is retained that indicates that the
value was normalized. For such numbers both is_number and
is_denorm will return true. */
INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
/* Specific comparison operators
The comparison operators set *IS to zero and return a nonzero
result for NaNs et.al. */
INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
/* General number class and comparison operators.
The result of the comparison is indicated by returning one of the
values below. Efficient emulation of a target FP compare
instruction can be achieved by redefining the values below to match
corresponding target FP status bits.
For instance. SIM_FPU_QNAN may be redefined to be the bit
`INVALID' while SIM_FPU_NINF might be redefined as the bits
`NEGATIVE | INFINITY | VALID'. */
#ifndef SIM_FPU_IS_SNAN
enum {
SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
SIM_FPU_IS_QNAN = 2, /* Quite not-a-number */
SIM_FPU_IS_NINF = 3, /* -infinity */
SIM_FPU_IS_PINF = 4, /* +infinity */
SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
SIM_FPU_IS_NZERO = 9, /* -0 */
SIM_FPU_IS_PZERO = 10, /* +0 */
};
#endif
INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
/* A constant of useful numbers */
extern const sim_fpu sim_fpu_zero;
extern const sim_fpu sim_fpu_one;
extern const sim_fpu sim_fpu_two;
extern const sim_fpu sim_fpu_qnan;
/* For debugging */
typedef void sim_fpu_print_func (void *, char *, ...);
INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
sim_fpu_print_func *print,
void *arg);
INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
sim_fpu_print_func *print,
void *arg);
#endif