Better support for the h8, and various architecture things

This commit is contained in:
Steve Chamberlain 1991-10-01 03:46:35 +00:00
parent a26878d1fa
commit b39096a4f4
2 changed files with 655 additions and 492 deletions

View file

@ -310,6 +310,19 @@ extern CONST short _bfd_host_big_endian;
/*THE FOLLOWING IS EXTRACTED FROM THE SOURCE */
/*:init.c*/
/* bfd_init
This routine must be called before any other bfd function to initialize
magical internal data structures.
*/
void EXFUN(bfd_init,(void));
/*
*/
/*:opncls.c*/
/* *i bfd_openr
Opens the file supplied (using @code{fopen}) with the target supplied, it
@ -376,99 +389,6 @@ BFD.
/*
*/
/*:archures.c*/
/* bfd_architecture
This enum gives the object file's CPU
architecture, in a global sense. E.g. what processor family does it
belong to? There is another field, which indicates what processor
within the family is in use. The machine gives a number which
distingushes different versions of the architecture, containing for
example 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for
Motorola 68020 and 68030.
*/
enum bfd_architecture
{
bfd_arch_unknown, /* File arch not known */
bfd_arch_obscure, /* Arch known, not one of these */
bfd_arch_m68k, /* Motorola 68xxx */
bfd_arch_vax, /* DEC Vax */
bfd_arch_i960, /* Intel 960 */
/* The order of the following is important.
lower number indicates a machine type that
only accepts a subset of the instructions
available to machines with higher numbers.
The exception is the "ca", which is
incompatible with all other machines except
"core". */
#define bfd_mach_i960_core 1
#define bfd_mach_i960_ka_sa 2
#define bfd_mach_i960_kb_sb 3
#define bfd_mach_i960_mc 4
#define bfd_mach_i960_xa 5
#define bfd_mach_i960_ca 6
bfd_arch_a29k, /* AMD 29000 */
bfd_arch_sparc, /* SPARC */
bfd_arch_mips, /* MIPS Rxxxx */
bfd_arch_i386, /* Intel 386 */
bfd_arch_ns32k, /* National Semiconductor 32xxx */
bfd_arch_tahoe, /* CCI/Harris Tahoe */
bfd_arch_i860, /* Intel 860 */
bfd_arch_romp, /* IBM ROMP RS/6000 */
bfd_arch_alliant, /* Alliant */
bfd_arch_convex, /* Convex */
bfd_arch_m88k, /* Motorola 88xxx */
bfd_arch_pyramid, /* Pyramid Technology */
bfd_arch_h8_300, /* Hitachi H8/300 */
bfd_arch_last
};
/*
stuff
bfd_prinable_arch_mach
Return a printable string representing the architecture and machine
type. The result is only good until the next call to
@code{bfd_printable_arch_mach}.
*/
PROTO(CONST char *,bfd_printable_arch_mach,
(enum bfd_architecture arch, unsigned long machine));
/*
*i bfd_scan_arch_mach
Scan a string and attempt to turn it into an archive and machine type combination.
*/
PROTO(boolean, bfd_scan_arch_mach,
(CONST char *, enum bfd_architecture *, unsigned long *));
/*
*i bfd_arch_compatible
This routine is used to determine whether two BFDs' architectures and machine types are
compatible. It calculates the lowest common denominator between the
two architectures and machine types implied by the BFDs and sets the
objects pointed at by @var{archp} and @var{machine} if non NULL.
This routine returns @code{true} if the BFDs are of compatible type,
otherwise @code{false}.
*/
PROTO(boolean, bfd_arch_compatible,
(bfd *abfd,
bfd *bbfd,
enum bfd_architecture *archp,
unsigned long *machinep));
/*
bfd_set_arch_mach
Set atch mach
*/
#define bfd_set_arch_mach(abfd, arch, mach) \
BFD_SEND (abfd, _bfd_set_arch_mach,\
(abfd, arch, mach))
/*:libbfd.c*/
/* *i bfd_put_size
@ -919,6 +839,519 @@ Possible errors are:
*/
/*:archures.c*/
/* bfd_architecture
This enum gives the object file's CPU
architecture, in a global sense. E.g. what processor family does it
belong to? There is another field, which indicates what processor
within the family is in use. The machine gives a number which
distingushes different versions of the architecture, containing for
example 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for
Motorola 68020 and 68030.
*/
enum bfd_architecture
{
bfd_arch_unknown, /* File arch not known */
bfd_arch_obscure, /* Arch known, not one of these */
bfd_arch_m68k, /* Motorola 68xxx */
bfd_arch_vax, /* DEC Vax */
bfd_arch_i960, /* Intel 960 */
/* The order of the following is important.
lower number indicates a machine type that
only accepts a subset of the instructions
available to machines with higher numbers.
The exception is the "ca", which is
incompatible with all other machines except
"core". */
#define bfd_mach_i960_core 1
#define bfd_mach_i960_ka_sa 2
#define bfd_mach_i960_kb_sb 3
#define bfd_mach_i960_mc 4
#define bfd_mach_i960_xa 5
#define bfd_mach_i960_ca 6
bfd_arch_a29k, /* AMD 29000 */
bfd_arch_sparc, /* SPARC */
bfd_arch_mips, /* MIPS Rxxxx */
bfd_arch_i386, /* Intel 386 */
bfd_arch_ns32k, /* National Semiconductor 32xxx */
bfd_arch_tahoe, /* CCI/Harris Tahoe */
bfd_arch_i860, /* Intel 860 */
bfd_arch_romp, /* IBM ROMP RS/6000 */
bfd_arch_alliant, /* Alliant */
bfd_arch_convex, /* Convex */
bfd_arch_m88k, /* Motorola 88xxx */
bfd_arch_pyramid, /* Pyramid Technology */
bfd_arch_h8300, /* Hitachi H8/300 */
bfd_arch_last
};
/*
stuff
bfd_arch_info_struct
This structure contains information on architectures.
*/
typedef int bfd_reloc_code_enum_type;
typedef struct bfd_arch_info_struct
{
int bits_per_word;
int bits_per_address;
int bits_per_byte;
enum bfd_architecture arch;
long mach;
char *arch_name;
CONST char *printable_name;
/* true if this is the default machine for the architecture */
boolean the_default;
CONST struct bfd_arch_info_struct * EXFUN((*compatible),(CONST struct bfd_arch_info_struct *a,
CONST struct bfd_arch_info_struct *b));
boolean EXFUN((*scan),(CONST struct bfd_arch_info_struct *,CONST char *));
unsigned int EXFUN((*disassemble),(bfd_vma addr, CONST char *data,
PTR stream));
CONST struct reloc_howto_struct *EXFUN((*reloc_type_lookup), (bfd_reloc_code_enum_type code));
struct bfd_arch_info_struct *next;
} bfd_arch_info_struct_type;
/*
bfd_printable_arch_mach
Return a printable string representing the architecture and machine
type.
NB. The use of this routine is depreciated.
*/
PROTO(CONST char *,bfd_printable_arch_mach,
(enum bfd_architecture arch, unsigned long machine));
/*
bfd_printable_name
Return a printable string representing the architecture and machine
from the pointer to the arch info structure
*/
CONST char *EXFUN(bfd_printable_name,(bfd *abfd));
/*
*i bfd_scan_arch
This routine is provided with a string and tries to work out if bfd
supports any cpu which could be described with the name provided. The
routine returns a pointer to an arch_info structure if a machine is
found, otherwise NULL.
*/
bfd_arch_info_struct_type *EXFUN(bfd_scan_arch,(CONST char *));
/*
bfd_arch_get_compatible
This routine is used to determine whether two BFDs' architectures and
machine types are compatible. It calculates the lowest common
denominator between the two architectures and machine types implied by
the BFDs and returns a pointer to an arch_info structure describing
the compatible machine.
*/
CONST bfd_arch_info_struct_type *EXFUN(bfd_arch_get_compatible,
(CONST bfd *abfd,
CONST bfd *bbfd));
/*
bfd_set_arch_info
*/
void EXFUN(bfd_set_arch_info,(bfd *, bfd_arch_info_struct_type *));
/*
bfd_get_arch
Returns the enumerated type which describes the supplied bfd's
architecture
*/
enum bfd_architecture EXFUN(bfd_get_arch, (bfd *abfd));
/*
bfd_get_mach
Returns the long type which describes the supplied bfd's
machine
*/
unsigned long EXFUN(bfd_get_mach, (bfd *abfd));
/*
bfd_arch_bits_per_byte
Returns the number of bits in one of the architectures bytes
*/
unsigned int EXFUN(bfd_arch_bits_per_byte, (bfd *abfd));
/*
bfd_arch_bits_per_address
Returns the number of bits in one of the architectures addresses
*/
unsigned int EXFUN(bfd_arch_bits_per_address, (bfd *abfd));
/*
bfd_get_arch_info
*/
bfd_arch_info_struct_type * EXFUN(bfd_get_arch_info,(bfd *));
/*
*/
/*:howto.c*/
/* bfd_reloc_code_enum_type
*/
typedef enum
{
/*
16 bits wide, simple reloc
*/
BFD_RELOC_16,
/*
8 bits wide, but used to form an address like 0xffnn
*/
BFD_RELOC_8_FFnn,
/*
8 bits wide, simple
*/
BFD_RELOC_8,
/*
8 bits wide, pc relative
*/
BFD_RELOC_8_PCREL
} bfd_reloc_code_enum_real_type;
/*
bfd_reloc_type_lookup
This routine returns a pointer to a howto struct which when invoked,
will perform the supplied relocation on data from the architecture
noted.
[Note] This function will go away.
*/
PROTO(struct reloc_howto_struct *,
bfd_reloc_type_lookup,
(enum bfd_architecture arch, bfd_reloc_code_enum_type code));
/*
*/
/*:reloc.c*/
/* bfd_perform_relocation
The relocation routine returns as a status an enumerated type:
*/
typedef enum bfd_reloc_status {
/* No errors detected
*/
bfd_reloc_ok,
/*
The relocation was performed, but there was an overflow.
*/
bfd_reloc_overflow,
/*
The address to relocate was not within the section supplied
*/
bfd_reloc_outofrange,
/*
Used by special functions
*/
bfd_reloc_continue,
/*
Unused
*/
bfd_reloc_notsupported,
/*
Unsupported relocation size requested.
*/
bfd_reloc_other,
/*
The symbol to relocate against was undefined.
*/
bfd_reloc_undefined,
/*
The relocation was performed, but may not be ok - presently generated
only when linking i960 coff files with i960 b.out symbols.
*/
bfd_reloc_dangerous
}
bfd_reloc_status_enum_type;
/*
*/
typedef struct reloc_cache_entry
{
/*
A pointer into the canonical table of pointers
*/
struct symbol_cache_entry **sym_ptr_ptr;
/*
offset in section
*/
rawdata_offset address;
/*
addend for relocation value
*/
bfd_vma addend;
/*
if sym is null this is the section
*/
struct sec *section;
/*
Pointer to how to perform the required relocation
*/
CONST struct reloc_howto_struct *howto;
} arelent;
/*
reloc_howto_type
The @code{reloc_howto_type} is a structure which contains all the
information that BFD needs to know to tie up a back end's data.
*/
typedef CONST struct reloc_howto_struct
{
/* The type field has mainly a documetary use - the back end can to what
it wants with it, though the normally the back end's external idea of
what a reloc number would be would be stored in this field. For
example, the a PC relative word relocation in a coff environment would
have the type 023 - because that's what the outside world calls a
R_PCRWORD reloc.
*/
unsigned int type;
/*
The value the final relocation is shifted right by. This drops
unwanted data from the relocation.
*/
unsigned int rightshift;
/*
The size of the item to be relocated - 0, is one byte, 1 is 2 bytes, 3
is four bytes.
*/
unsigned int size;
/*
Now obsolete
*/
unsigned int bitsize;
/*
Notes that the relocation is relative to the location in the data
section of the addend. The relocation function will subtract from the
relocation value the address of the location being relocated.
*/
boolean pc_relative;
/*
Now obsolete
*/
unsigned int bitpos;
/*
Now obsolete
*/
boolean absolute;
/*
Causes the relocation routine to return an error if overflow is
detected when relocating.
*/
boolean complain_on_overflow;
/*
If this field is non null, then the supplied function is called rather
than the normal function. This allows really strange relocation
methods to be accomodated (eg, i960 callj instructions).
*/
bfd_reloc_status_enum_type (*special_function)();
/*
The textual name of the relocation type.
*/
char *name;
/*
When performing a partial link, some formats must modify the
relocations rather than the data - this flag signals this.
*/
boolean partial_inplace;
/*
The src_mask is used to select what parts of the read in data are to
be used in the relocation sum. Eg, if this was an 8 bit bit of data
which we read and relocated, this would be 0x000000ff. When we have
relocs which have an addend, such as sun4 extended relocs, the value
in the offset part of a relocating field is garbage so we never use
it. In this case the mask would be 0x00000000.
*/
bfd_word src_mask;
/* The dst_mask is what parts of the instruction are replaced into the
instruction. In most cases src_mask == dst_mask, except in the above
special case, where dst_mask would be 0x000000ff, and src_mask would
be 0x00000000.
*/
bfd_word dst_mask;
/*
When some formats create PC relative instructions, they leave the
value of the pc of the place being relocated in the offset slot of the
instruction, so that a PC relative relocation can be made just by
adding in an ordinary offset (eg sun3 a.out). Some formats leave the
displacement part of an instruction empty (eg m88k bcs), this flag
signals the fact.
*/
boolean pcrel_offset;
} reloc_howto_type;
/*
HOWTO
The HOWTO define is horrible and will go away.
*/
#define HOWTO(C, R,S,B, P, BI, ABS, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
{(unsigned)C,R,S,B, P, BI, ABS,O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
/*
And will be replaced with the totally magic way. But for the moment,
we are compatible, so do it this way..
*/
#define NEWHOWTO( FUNCTION, NAME,SIZE,REL) HOWTO(0,0,SIZE,0,REL,0,false,false,FUNCTION, NAME,false,0,0,false)
/*
Helper routine to turn a symbol into a relocation value.
*/
#define HOWTO_PREPARE(relocation, symbol) \
{ \
if (symbol != (asymbol *)NULL) { \
if (symbol->flags & BSF_FORT_COMM) { \
relocation = 0; \
} \
else { \
relocation = symbol->value; \
} \
} \
if (symbol->section != (asection *)NULL) { \
relocation += symbol->section->output_section->vma + \
symbol->section->output_offset; \
} \
}
/*
reloc_chain
*/
typedef unsigned char bfd_byte;
typedef struct relent_chain {
arelent relent;
struct relent_chain *next;
} arelent_chain;
/*
If an output_bfd is supplied to this function the generated image
will be relocatable, the relocations are copied to the output file
after they have been changed to reflect the new state of the world.
There are two ways of reflecting the results of partial linkage in an
output file; by modifying the output data in place, and by modifying
the relocation record. Some native formats (eg basic a.out and basic
coff) have no way of specifying an addend in the relocation type, so
the addend has to go in the output data. This is no big deal since in
these formats the output data slot will always be big enough for the
addend. Complex reloc types with addends were invented to solve just
this problem.
*/
PROTO(bfd_reloc_status_enum_type,
bfd_perform_relocation,
(bfd * abfd,
arelent *reloc_entry,
PTR data,
asection *input_section,
bfd *output_bfd));
/*
*/
/*:syms.c*/
/* @subsection typedef asymbol
An @code{asymbol} has the form:
@ -1289,16 +1722,10 @@ The start address.
struct symbol_cache_entry **outsymbols;
/*
Architecture of object machine, eg m68k
Pointer to structure which contains architecture information
*/
enum bfd_architecture obj_arch;
/*
Particular machine within arch, e.g. 68010
*/
unsigned long obj_machine;
struct bfd_arch_info_struct *arch_info;
/*
Stuff only useful for archives:
@ -1383,6 +1810,9 @@ before); else determine modify time, cache it, and return it.
#define bfd_coff_swap_lineno_in(a,e,i) \
BFD_SEND ( a, _bfd_coff_swap_lineno_in, (a,e,i))
#define bfd_set_arch_mach(abfd, arch, mach)\
BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
/*
*/
@ -1457,260 +1887,6 @@ or else @code{false}.
/*
*/
/*:reloc.c*/
/* bfd_perform_relocation
The relocation routine returns as a status an enumerated type:
*/
typedef enum bfd_reloc_status {
/* No errors detected
*/
bfd_reloc_ok,
/*
The relocation was performed, but there was an overflow.
*/
bfd_reloc_overflow,
/*
The address to relocate was not within the section supplied
*/
bfd_reloc_outofrange,
/*
Used by special functions
*/
bfd_reloc_continue,
/*
Unused
*/
bfd_reloc_notsupported,
/*
Unsupported relocation size requested.
*/
bfd_reloc_other,
/*
The symbol to relocate against was undefined.
*/
bfd_reloc_undefined,
/*
The relocation was performed, but may not be ok - presently generated
only when linking i960 coff files with i960 b.out symbols.
*/
bfd_reloc_dangerous
}
bfd_reloc_status_enum_type;
/*
*/
typedef struct reloc_cache_entry
{
/*
A pointer into the canonical table of pointers
*/
struct symbol_cache_entry **sym_ptr_ptr;
/*
offset in section
*/
rawdata_offset address;
/*
addend for relocation value
*/
bfd_vma addend;
/*
if sym is null this is the section
*/
struct sec *section;
/*
Pointer to how to perform the required relocation
*/
CONST struct reloc_howto_struct *howto;
} arelent;
/*
reloc_howto_type
The @code{reloc_howto_type} is a structure which contains all the
information that BFD needs to know to tie up a back end's data.
*/
typedef CONST struct reloc_howto_struct
{
/* The type field has mainly a documetary use - the back end can to what
it wants with it, though the normally the back end's external idea of
what a reloc number would be would be stored in this field. For
example, the a PC relative word relocation in a coff environment would
have the type 023 - because that's what the outside world calls a
R_PCRWORD reloc.
*/
unsigned int type;
/*
The value the final relocation is shifted right by. This drops
unwanted data from the relocation.
*/
unsigned int rightshift;
/*
The size of the item to be relocated - 0, is one byte, 1 is 2 bytes, 3
is four bytes.
*/
unsigned int size;
/*
Now obsolete
*/
unsigned int bitsize;
/*
Notes that the relocation is relative to the location in the data
section of the addend. The relocation function will subtract from the
relocation value the address of the location being relocated.
*/
boolean pc_relative;
/*
Now obsolete
*/
unsigned int bitpos;
/*
Now obsolete
*/
boolean absolute;
/*
Causes the relocation routine to return an error if overflow is
detected when relocating.
*/
boolean complain_on_overflow;
/*
If this field is non null, then the supplied function is called rather
than the normal function. This allows really strange relocation
methods to be accomodated (eg, i960 callj instructions).
*/
bfd_reloc_status_enum_type (*special_function)();
/*
The textual name of the relocation type.
*/
char *name;
/*
When performing a partial link, some formats must modify the
relocations rather than the data - this flag signals this.
*/
boolean partial_inplace;
/*
The src_mask is used to select what parts of the read in data are to
be used in the relocation sum. Eg, if this was an 8 bit bit of data
which we read and relocated, this would be 0x000000ff. When we have
relocs which have an addend, such as sun4 extended relocs, the value
in the offset part of a relocating field is garbage so we never use
it. In this case the mask would be 0x00000000.
*/
bfd_word src_mask;
/* The dst_mask is what parts of the instruction are replaced into the
instruction. In most cases src_mask == dst_mask, except in the above
special case, where dst_mask would be 0x000000ff, and src_mask would
be 0x00000000.
*/
bfd_word dst_mask;
/*
When some formats create PC relative instructions, they leave the
value of the pc of the place being relocated in the offset slot of the
instruction, so that a PC relative relocation can be made just by
adding in an ordinary offset (eg sun3 a.out). Some formats leave the
displacement part of an instruction empty (eg m88k bcs), this flag
signals the fact.
*/
boolean pcrel_offset;
} reloc_howto_type;
/*
HOWTO
The HOWTO define is horrible and will go away.
*/
#define HOWTO(C, R,S,B, P, BI, ABS, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
{(unsigned)C,R,S,B, P, BI, ABS,O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
/*
reloc_chain
*/
typedef unsigned char bfd_byte;
typedef struct relent_chain {
arelent relent;
struct relent_chain *next;
} arelent_chain;
/*
If an output_bfd is supplied to this function the generated image
will be relocatable, the relocations are copied to the output file
after they have been changed to reflect the new state of the world.
There are two ways of reflecting the results of partial linkage in an
output file; by modifying the output data in place, and by modifying
the relocation record. Some native formats (eg basic a.out and basic
coff) have no way of specifying an addend in the relocation type, so
the addend has to go in the output data. This is no big deal since in
these formats the output data slot will always be big enough for the
addend. Complex reloc types with addends were invented to solve just
this problem.
*/
PROTO(bfd_reloc_status_enum_type,
bfd_perform_relocation,
(bfd * abfd,
arelent *reloc_entry,
PTR data,
asection *input_section,
bfd *output_bfd));
/*
*/
/*:targets.c*/
/* bfd_target
@node bfd_target
@ -2041,3 +2217,8 @@ returns a pointer to a const string "invalid", "object", "archive",
*/
#endif

View file

@ -58,24 +58,6 @@ Hex1,Hex2,Hex3,Hex4,Hex5,Hex6,Hex7,Hex8,Hex9,HexA,HexB,HexC,HexD,HexE,HexF,
struct code {
op_enum_type nib[9];
} ;
@ -104,7 +86,7 @@ struct h8_opcode h8_opcodes[]
BITOP(n, RS8, name, op00, op01, op10,op11, op20,op21)
#define BRANCH(name, op) \
{ 2, 1, 1,name,{DISP8,E}, { 0x4, op, DISP8,IGNORE,E }}
{ 2, 1, 1,name,{DISP8,E}, { Hex4, op, DISP8,IGNORE,E }}
#define TWOOP(name, op1, op2,op3) \
{ 2, 2, 2, name, {IMM8, RD8,E}, { op1, RD8, IMM8,IGNORE,E}},\
@ -114,135 +96,135 @@ struct h8_opcode h8_opcodes[]
{ 2, 1, 1, name, {RS8, E}, { op1, op2, 0, RS8, E}}
#define UNOP3(name, op1, op2, op3) \
{ 2, 1, 1, name , {RS8, E}, {op1, op2, op3, RS8, E}}
{2, 1, 1, name , {RS8, E}, {op1, op2, op3, RS8, E}}
#define WTWOP(name, op1, op2) \
{2, 2, 1, name, {RS16, RD16, E}, { op1, op2, RS16, RD16, E}}
=
{
TWOOP("add.b", 0x8, 0x0,0x8),
WTWOP("add.w", 0x0, 0x9),
{ 2, 2, 1, "adds", {KBIT,RD16|B30, E},{0x0, 0xb, KBIT, RD16|B30, E}},
TWOOP("addx", 0x9,0x0,0xe),
TWOOP("and", 0xe,0x1,0x6),
{ 2, 2, 1, "andc", {IMM8, CCR, E}, { 0x0, 0x6, IMM8,IGNORE, E}},
BITOP(3,IMM3|B30, "band", 0x7, 0x6, 0x7, 0xc, 0x7, 0xe),
BRANCH("bra", 0x0),
BRANCH("bt", 0x0),
BRANCH("brn", 0x1),
BRANCH("bf", 0x1),
BRANCH("bhi", 0x2),
BRANCH("bls", 0x3),
BRANCH("bcc", 0x4),
BRANCH("bhs", 0x4),
BRANCH("bcs", 0x5),
BRANCH("blo", 0x5),
BRANCH("bne", 0x6),
BRANCH("beq", 0x7),
BRANCH("bvc", 0x8),
BRANCH("bvs", 0x9),
BRANCH("bpl", 0xa),
BRANCH("bmi", 0xb),
BRANCH("bge", 0xc),
BRANCH("blt", 0xd),
BRANCH("bgt", 0xe),
BRANCH("ble", 0xf),
EBITOP(6,IMM3|B30,"bclr", 0x6, 0x2, 0x7, 0xd, 0x7, 0xf),
BITOP(3,IMM3|B31,"biand", 0x7, 0x6, 0x7, 0xc, 0x7, 0xe),
BITOP(3,IMM3|B31, "bild", 0x7, 0x7,0x7, 0xc, 0x7, 0xe),
BITOP(3,IMM3|B31, "bior", 0x7, 0x4,0x7, 0xc, 0x7, 0xe),
BITOP(3,IMM3|B31, "bist", 0x6, 0x7,0x7, 0xd, 0x7, 0xe),
BITOP(3,IMM3|B31, "bixor", 0x7, 0x5,0x7, 0xc, 0x7, 0xe),
BITOP(3,IMM3|B30, "bld", 0x7, 0x7,0x7, 0xc, 0x7, 0xe),
EBITOP(6,IMM3|B30,"bnot", 0x6, 0x1, 0x7, 0xd, 0x7, 0xf),
BITOP(3,IMM3|B30,"bor", 0x7, 0x4,0x7, 0xc, 0x7, 0xe),
EBITOP(6,IMM3|B30,"bset", 0x6, 0x0,0x7, 0xd, 0x7, 0xf),
{ 2, 1, 1, "bsr",{DISP8, E},{ 0x5, 0x5, DISP8,IGNORE, E}},
BITOP(3,IMM3|B30, "bst", 0x6, 0x7,0x7, 0xd, 0x7, 0xf),
EBITOP(6,IMM3|B30, "btst", 0x6, 0x3,0x7, 0xc, 0x7, 0xe),
BITOP(3,IMM3|B30, "bxor", 0x7,0x5,0x7, 0xc, 0x7, 0xe),
TWOOP( "cmp.b",0xa, 0x1, 0xc),
WTWOP( "cmp.w",0x1,0xd),
UNOP( "daa",0x0, 0xf),
UNOP( "das",0x1, 0xf),
UNOP( "dec",0x1, 0xa),
{ 2, 2, 1, "divxu",{RS8, RD16|B30, E}, { 0x5, 0x1, RS8, RD16|B30, E}},
{ 4, 0, 1, "eepmov",{ E}, {0x7, 0xb, 0x5, 0xc, 0x5, 0x9, 0x8, 0xf,E}},
UNOP( "inc", 0x0, 0xa),
{ 2, 1, 3, "jmp",{RSIND|B30, E}, {0x5, 0x9, RSIND|B30, 0x0, E}},
{ 4, 1, 3, "jmp",{ABS16SRC, E}, {0x5, 0xa, 0x0, 0x0, ABS16SRC, IGNORE,IGNORE,IGNORE,E}},
{ 2, 1, 3, "jmp",{MEMIND, E}, {0x5, 0xb, MEMIND,IGNORE, E}},
{ 2, 1, 3, "jsr",{RSIND|B30, E}, {0x5, 0xd, RSIND|B30, 0x0, E}},
{ 4, 1, 3, "jsr",{ABS16SRC, E}, {0x5, 0xe, 0x0, 0x0, ABS16SRC,IGNORE,IGNORE,IGNORE, E}},
{ 2, 1, 3, "jsr",{MEMIND, E}, {0x5, 0xf, MEMIND, IGNORE,E}},
{ 2, 2, 2, "ldc", {IMM8, CCR, E}, { 0x0, 0x7, IMM8,IGNORE, E}},
{ 2, 2, 2, "ldc", {RS8, CCR, E}, { 0x0, 0x3, 0x0, RS8, E}},
TWOOP("add.b", Hex8, Hex0,Hex8),
WTWOP("add.w", Hex0, Hex9),
{ 2, 2, 1, "adds", {KBIT,RD16|B30, E},{Hex0, HexB, KBIT, RD16|B30, E}},
TWOOP("addx", Hex9,Hex0,HexE),
TWOOP("and", HexE,Hex1,Hex6),
{ 2, 2, 1, "andc", {IMM8, CCR, E}, { Hex0, Hex6, IMM8,IGNORE, E}},
BITOP(3,IMM3|B30, "band", Hex7, Hex6, Hex7, HexC, Hex7, HexE),
BRANCH("bra", Hex0),
BRANCH("bt", Hex0),
BRANCH("brn", Hex1),
BRANCH("bf", Hex1),
BRANCH("bhi", Hex2),
BRANCH("bls", Hex3),
BRANCH("bcc", Hex4),
BRANCH("bhs", Hex4),
BRANCH("bcs", Hex5),
BRANCH("blo", Hex5),
BRANCH("bne", Hex6),
BRANCH("beq", Hex7),
BRANCH("bvc", Hex8),
BRANCH("bvs", Hex9),
BRANCH("bpl", HexA),
BRANCH("bmi", HexB),
BRANCH("bge", HexC),
BRANCH("blt", HexD),
BRANCH("bgt", HexE),
BRANCH("ble", HexF),
EBITOP(6,IMM3|B30,"bclr", Hex6, Hex2, Hex7, HexD, Hex7, HexF),
BITOP(3,IMM3|B31,"biand", Hex7, Hex6, Hex7, HexC, Hex7, HexE),
BITOP(3,IMM3|B31, "bild", Hex7, Hex7,Hex7, HexC, Hex7, HexE),
BITOP(3,IMM3|B31, "bior", Hex7, Hex4,Hex7, HexC, Hex7, HexE),
BITOP(3,IMM3|B31, "bist", Hex6, Hex7,Hex7, HexD, Hex7, HexE),
BITOP(3,IMM3|B31, "bixor", Hex7, Hex5,Hex7, HexC, Hex7, HexE),
BITOP(3,IMM3|B30, "bld", Hex7, Hex7,Hex7, HexC, Hex7, HexE),
EBITOP(6,IMM3|B30,"bnot", Hex6, Hex1, Hex7, HexD, Hex7, HexF),
BITOP(3,IMM3|B30,"bor", Hex7, Hex4,Hex7, HexC, Hex7, HexE),
EBITOP(6,IMM3|B30,"bset", Hex6, Hex0,Hex7, HexD, Hex7, HexF),
{ 2, 1, 1, "bsr",{DISP8, E},{ Hex5, Hex5, DISP8,IGNORE, E}},
BITOP(3,IMM3|B30, "bst", Hex6, Hex7,Hex7, HexD, Hex7, HexF),
EBITOP(6,IMM3|B30, "btst", Hex6, Hex3,Hex7, HexC, Hex7, HexE),
BITOP(3,IMM3|B30, "bxor", Hex7,Hex5,Hex7, HexC, Hex7, HexE),
TWOOP( "cmp.b",HexA, Hex1, HexC),
WTWOP( "cmp.w",Hex1,HexD),
UNOP( "daa",Hex0, HexF),
UNOP( "das",Hex1, HexF),
UNOP( "dec",Hex1, HexA),
{ 2, 2, 1, "divxu",{RS8, RD16|B30, E}, { Hex5, Hex1, RS8, RD16|B30, E}},
{ 4, 0, 1, "eepmov",{ E}, {Hex7, HexB, Hex5, HexC, Hex5, Hex9, Hex8, HexF,E}},
UNOP( "inc", Hex0, HexA),
{ 2, 1, 3, "jmp",{RSIND|B30, E}, {Hex5, Hex9, RSIND|B30, Hex0, E}},
{ 4, 1, 3, "jmp",{ABS16SRC, E}, {Hex5, HexA, Hex0, Hex0, ABS16SRC, IGNORE,IGNORE,IGNORE,E}},
{ 2, 1, 3, "jmp",{MEMIND, E}, {Hex5, HexB, MEMIND,IGNORE, E}},
{ 2, 1, 3, "jsr",{RSIND|B30, E}, {Hex5, HexD, RSIND|B30, Hex0, E}},
{ 4, 1, 3, "jsr",{ABS16SRC, E}, {Hex5, HexE, Hex0, Hex0, ABS16SRC,IGNORE,IGNORE,IGNORE, E}},
{ 2, 1, 3, "jsr",{MEMIND, E}, {Hex5, HexF, MEMIND, IGNORE,E}},
{ 2, 2, 2, "ldc", {IMM8, CCR, E}, { Hex0, Hex7, IMM8,IGNORE, E}},
{ 2, 2, 2, "ldc", {RS8, CCR, E}, { Hex0, Hex3, Hex0, RS8, E}},
{ 2, 2,13, "mov.b", {RS8, RD8, E}, { 0x0, 0xc, RS8, RD8, E}},
{ 2, 2,13, "mov.b", {IMM8, RD8, E}, { 0xf, RD8, IMM8,IGNORE, E}},
{ 2, 2,13, "mov.b", {RSIND|B30,RD8, E}, { 0x6, 0x8, RSIND|B30, RD8, E}},
{ 4, 2,13, "mov.b", {DISPSRC,RD8, E}, { 0x6, 0xe, DISPREG|B30, RD8, DISPSRC, IGNORE, IGNORE, IGNORE, E}} ,
{ 2, 2,13, "mov.b", {RSINC|B30, RD8, E}, { 0x6, 0xc, RSINC|B30, RD8, E}},
{ 2, 2,13, "mov.b", {RS8, RD8, E}, { Hex0, HexC, RS8, RD8, E}},
{ 2, 2,13, "mov.b", {IMM8, RD8, E}, { HexF, RD8, IMM8,IGNORE, E}},
{ 2, 2,13, "mov.b", {RSIND|B30,RD8, E}, { Hex6, Hex8, RSIND|B30, RD8, E}},
{ 4, 2,13, "mov.b", {DISPSRC,RD8, E}, { Hex6, HexE, DISPREG|B30, RD8, DISPSRC, IGNORE, IGNORE, IGNORE, E}} ,
{ 2, 2,13, "mov.b", {RSINC|B30, RD8, E}, { Hex6, HexC, RSINC|B30, RD8, E}},
{ 4, 2,13, "mov.b", {ABS16SRC, RD8, E}, { 0x6, 0xa, 0x0, RD8,ABS16SRC, IGNORE,IGNORE,IGNORE,E}},
{ 2, 2,13, "mov.b", {ABS8SRC, RD8, E}, { 0x2, RD8, ABS8SRC,IGNORE, E}},
{ 2, 2,13, "mov.b", {RS8, RDIND|B30, E}, { 0x6, 0x8, RDIND|B31, RS8, E}},
{ 4, 2,13, "mov.b", {RS8, DISPDST, E}, { 0x6, 0xe, DISPREG|B31, RS8,DISPDST, IGNORE, IGNORE, IGNORE, E}},
{ 2, 2,13, "mov.b", {RS8, RDDEC|B30, E}, { 0x6, 0xc, RDDEC|B30, RS8, E}},
{ 4, 2,13, "mov.b", {ABS16SRC, RD8, E}, { Hex6, HexA, Hex0, RD8,ABS16SRC, IGNORE,IGNORE,IGNORE,E}},
{ 2, 2,13, "mov.b", {ABS8SRC, RD8, E}, { Hex2, RD8, ABS8SRC,IGNORE, E}},
{ 2, 2,13, "mov.b", {RS8, RDIND|B30, E}, { Hex6, Hex8, RDIND|B31, RS8, E}},
{ 4, 2,13, "mov.b", {RS8, DISPDST, E}, { Hex6, HexE, DISPREG|B31, RS8,DISPDST, IGNORE, IGNORE, IGNORE, E}},
{ 2, 2,13, "mov.b", {RS8, RDDEC|B30, E}, { Hex6, HexC, RDDEC|B30, RS8, E}},
/* Put the 16 bit one in first so it matches first */
{ 4, 2,13, "mov.b", {RS8, ABS16DST, E}, { 0x6, 0xa, 0x8, RS8, ABS16DST,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,13, "mov.b", {RS8, ABS8DST, E}, { 0x3, RS8, ABS8DST,IGNORE, E}},
{ 2, 2,11, "mov.w", {RS16|B30, RD16|B30, E},{ 0x0, 0xd, RS16|B30, RD16|B30, E}},
{ 4, 2,11, "mov.w", {IMM16, RD16|B30, E}, { 0x7, 0x9, 0x0, RD16|B30, IMM16,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,11, "mov.w", {RSIND|B30,RD16|B30, E},{ 0x6, 0x9, RSIND|B30, RD16|B30, E}},
{ 4, 2,11, "mov.w", {DISPSRC,RD16|B30, E}, { 0x6, 0xf, DISPREG|B30, RD16|B30, DISPSRC, IGNORE, IGNORE, IGNORE,E}} ,
{ 2, 2,11, "mov.w", {RSINC|B30, RD16|B30, E}, { 0x6, 0xd, RSINC|B30, RD16|B30, E}},
{ 4, 2,11, "mov.w", {ABS16SRC, RD16|B30, E}, { 0x6, 0xb, 0x0, RD16|B30,ABS16SRC,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,11, "mov.w", {RS16|B30, RDIND|B30, E},{ 0x6, 0x9, RDIND|B31, RS16|B30, E}},
{ 4, 2,11, "mov.w", {RS16|B30, DISPDST, E}, { 0x6, 0xf, DISPREG|B31, RS16|B30,DISPDST, IGNORE,IGNORE,IGNORE,E}},
{ 2, 2,11, "mov.w", {RS16|B30, RDDEC|B30, E},{ 0x6, 0xd, RDDEC|B31, RS16|B30, E}},
{ 4, 2,11, "mov.w", {RS16|B30, ABS16DST, E}, { 0x6, 0xb, 0x8, RS16|B30, ABS16DST, IGNORE, IGNORE, IGNORE, E}},
{ 4, 2,13, "mov.b", {RS8, ABS16DST, E}, { Hex6, HexA, Hex8, RS8, ABS16DST,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,13, "mov.b", {RS8, ABS8DST, E}, { Hex3, RS8, ABS8DST,IGNORE, E}},
{ 2, 2,11, "mov.w", {RS16|B30, RD16|B30, E},{ Hex0, HexD, RS16|B30, RD16|B30, E}},
{ 4, 2,11, "mov.w", {IMM16, RD16|B30, E}, { Hex7, Hex9, Hex0, RD16|B30, IMM16,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,11, "mov.w", {RSIND|B30,RD16|B30, E},{ Hex6, Hex9, RSIND|B30, RD16|B30, E}},
{ 4, 2,11, "mov.w", {DISPSRC,RD16|B30, E}, { Hex6, HexF, DISPREG|B30, RD16|B30, DISPSRC, IGNORE, IGNORE, IGNORE,E}} ,
{ 2, 2,11, "mov.w", {RSINC|B30, RD16|B30, E}, { Hex6, HexD, RSINC|B30, RD16|B30, E}},
{ 4, 2,11, "mov.w", {ABS16SRC, RD16|B30, E}, { Hex6, HexB, Hex0, RD16|B30,ABS16SRC,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,11, "mov.w", {RS16|B30, RDIND|B30, E},{ Hex6, Hex9, RDIND|B31, RS16|B30, E}},
{ 4, 2,11, "mov.w", {RS16|B30, DISPDST, E}, { Hex6, HexF, DISPREG|B31, RS16|B30,DISPDST, IGNORE,IGNORE,IGNORE,E}},
{ 2, 2,11, "mov.w", {RS16|B30, RDDEC|B30, E},{ Hex6, HexD, RDDEC|B31, RS16|B30, E}},
{ 4, 2,11, "mov.w", {RS16|B30, ABS16DST, E}, { Hex6, HexB, Hex8, RS16|B30, ABS16DST, IGNORE, IGNORE, IGNORE, E}},
{ 4, 2,1, "movfpe", {ABS16SRC, RD8, E}, { 0x6, 0xa, 0x4, RD8, ABS16SRC,IGNORE,IGNORE,IGNORE, E}},
{ 4, 2,1, "movtpe", {RS8, ABS16DST, E}, { 0x6, 0xa, 0xc, RS8, ABS16DST,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,1, "mulxu", {RS8, RD16|B30, E}, { 0x5, 0x0, RS8, RD16|B30, E}},
{ 2, 1,1, "neg", {RS8, E}, { 0x1, 0x7, 0x8, RS8, E}},
{ 2, 0,1, "nop", {E}, { 0x0, 0x0, 0x0, 0x0,E}},
{ 2, 1,1, "not", {RS8,E}, { 0x1, 0x7, 0x0, RS8,E}},
TWOOP("or", 0xc, 0x1, 0x4),
{ 2, 2,1, "orc", {IMM8, CCR,E}, { 0x0, 0x4, IMM8,IGNORE,E}},
{ 2, 1,1, "pop", {RS16|B30,E}, { 0x6, 0xd, 0x7, RS16|B30,E}},
{ 2, 1,1, "push", {RS16|B30,E}, { 0x6, 0xd, 0xf, RS16|B30,E}},
UNOP3( "rotl",0x1, 0x2,0x8),
UNOP3( "rotr",0x1, 0x3, 0x8),
UNOP3( "rotxl",0x1, 0x2, 0x0),
UNOP3( "rotxr",0x1, 0x3, 0x0),
{ 2, 0, 1, "rte", {E}, { 0x5, 0x6, 0x7, 0x0,E}},
{ 2, 0, 1, "rts", {E}, { 0x5, 0x4, 0x7, 0x0,E}},
UNOP3( "shal", 0x1, 0x00, 0x08),
UNOP3( "shar", 0x1, 0x1, 0x8),
UNOP3( "shll", 0x1, 0x0, 0x0),
UNOP3( "shlr", 0x1, 0x1, 0x0),
{ 2, 0, 1, "sleep", {E}, { 0x0, 0x1, 0x8, 0x0,E}},
{ 2, 2, 1, "stc", {CCR, RD8,E}, { 0x0, 0x2, 0x0, RD8,E}},
{ 2, 2, 1, "sub.b", {RS8,RD8,E}, { 0x1, 0x8, RS8, RD8,E}},
{ 2, 2, 1, "sub.w", {RS16|B30, RD16|B30,E}, {0x1, 0x9, RS16|B30, RD16|B30,E}},
{ 2, 2, 1, "subs", {KBIT,RD16|B30,E}, { 0x1, 0xb, KBIT, RD16|B30,E}},
TWOOP("subx",0xb, 0x1, 0xe),
TWOOP("xor", 0xd, 0x1, 0x5),
{ 2, 2, 1,"xorc", {IMM8, CCR,E}, { 0x0, 0x5, IMM8,IGNORE,E}},
{ 2, 0,1, "bad 52", {E, IMM8}, { 0x5, 0x2, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 53", {E, IMM8}, { 0x5, 0x3, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 57", {E, IMM8}, { 0x5, 0x7, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 58", {E, IMM8}, { 0x5, 0x8, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 64", {E, IMM8}, { 0x6, 0x4, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 65", {E, IMM8}, { 0x6, 0x5, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 66", {E, IMM8}, { 0x6, 0x6, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 78", {E, IMM8}, { 0x7, 0x8, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 7a", {E, IMM8}, { 0x7, 0xa, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 5c", {E, IMM8}, { 0x5, 0xc, IMM8, IGNORE,E}},
{ 4, 2,1, "movfpe", {ABS16SRC, RD8, E}, { Hex6, HexA, Hex4, RD8, ABS16SRC,IGNORE,IGNORE,IGNORE, E}},
{ 4, 2,1, "movtpe", {RS8, ABS16DST, E}, { Hex6, HexA, HexC, RS8, ABS16DST,IGNORE,IGNORE,IGNORE, E}},
{ 2, 2,1, "mulxu", {RS8, RD16|B30, E}, { Hex5, Hex0, RS8, RD16|B30, E}},
{ 2, 1,1, "neg", {RS8, E}, { Hex1, Hex7, Hex8, RS8, E}},
{ 2, 0,1, "nop", {E}, { Hex0, Hex0, Hex0, Hex0,E}},
{ 2, 1,1, "not", {RS8,E}, { Hex1, Hex7, Hex0, RS8,E}},
TWOOP("or", HexC, Hex1, Hex4),
{ 2, 2,1, "orc", {IMM8, CCR,E}, { Hex0, Hex4, IMM8,IGNORE,E}},
{ 2, 1,1, "pop", {RS16|B30,E}, { Hex6, HexD, Hex7, RS16|B30,E}},
{ 2, 1,1, "push", {RS16|B30,E}, { Hex6, HexD, HexF, RS16|B30,E}},
UNOP3( "rotl",Hex1, Hex2,Hex8),
UNOP3( "rotr",Hex1, Hex3, Hex8),
UNOP3( "rotxl",Hex1, Hex2, Hex0),
UNOP3( "rotxr",Hex1, Hex3, Hex0),
{ 2, 0, 1, "rte", {E}, { Hex5, Hex6, Hex7, Hex0,E}},
{ 2, 0, 1, "rts", {E}, { Hex5, Hex4, Hex7, Hex0,E}},
UNOP3( "shal", Hex1, Hex0, Hex8),
UNOP3( "shar", Hex1, Hex1, Hex8),
UNOP3( "shll", Hex1, Hex0, Hex0),
UNOP3( "shlr", Hex1, Hex1, Hex0),
{ 2, 0, 1, "sleep", {E}, { Hex0, Hex1, Hex8, Hex0,E}},
{ 2, 2, 1, "stc", {CCR, RD8,E}, { Hex0, Hex2, Hex0, RD8,E}},
{ 2, 2, 1, "sub.b", {RS8,RD8,E}, { Hex1, Hex8, RS8, RD8,E}},
{ 2, 2, 1, "sub.w", {RS16|B30, RD16|B30,E}, {Hex1, Hex9, RS16|B30, RD16|B30,E}},
{ 2, 2, 1, "subs", {KBIT,RD16|B30,E}, { Hex1, HexB, KBIT, RD16|B30,E}},
TWOOP("subx",HexB, Hex1, HexE),
TWOOP("xor", HexD, Hex1, Hex5),
{ 2, 2, 1,"xorc", {IMM8, CCR,E}, { Hex0, Hex5, IMM8,IGNORE,E}},
{ 2, 0,1, "bad 52", {E, IMM8}, { Hex5, Hex2, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 53", {E, IMM8}, { Hex5, Hex3, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 57", {E, IMM8}, { Hex5, Hex7, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 58", {E, IMM8}, { Hex5, Hex8, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 64", {E, IMM8}, { Hex6, Hex4, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 65", {E, IMM8}, { Hex6, Hex5, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 66", {E, IMM8}, { Hex6, Hex6, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 78", {E, IMM8}, { Hex7, Hex8, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 7a", {E, IMM8}, { Hex7, HexA, IMM8, IGNORE,E}},
{ 2, 0,1, "bad 5c", {E, IMM8}, { Hex5, HexC, IMM8, IGNORE,E}},
0
}