2002-04-07 Elena Zannoni <ezannoni@redhat.com>

* mi-cmd-disas.c (dump_insns): New function.
        (do_mixed_source_and_assembly): New function.
        (do_assembly_only): New function.
        (do_disassembly): New function.
        (mi_cmd_disassemble): Rewrite using smaller, more modular
        functions.
This commit is contained in:
Elena Zannoni 2002-04-08 00:38:10 +00:00
parent 024531e2e5
commit 8f0eea0e54
2 changed files with 305 additions and 291 deletions

View file

@ -1,3 +1,12 @@
2002-04-07 Elena Zannoni <ezannoni@redhat.com>
* mi-cmd-disas.c (dump_insns): New function.
(do_mixed_source_and_assembly): New function.
(do_assembly_only): New function.
(do_disassembly): New function.
(mi_cmd_disassemble): Rewrite using smaller, more modular
functions.
2002-04-05 Jim Blandy <jimb@redhat.com>
* mi-cmd-stack.c (list_args_or_locals): Pass new arg to

View file

@ -26,10 +26,6 @@
#include "mi-getopt.h"
#include "ui-out.h"
static int gdb_dis_asm_read_memory (bfd_vma memaddr, bfd_byte * myaddr, unsigned int len,
disassemble_info * info);
static int compare_lines (const PTR mle1p, const PTR mle2p);
/* Disassemble functions. FIXME: these do not really belong here. We
should get rid of all the duplicate code in gdb that does the same
thing: disassemble_command() and the gdbtk variation. */
@ -86,6 +82,293 @@ compare_lines (const PTR mle1p, const PTR mle2p)
return mle1->start_pc - mle2->start_pc;
}
static int
dump_insns (disassemble_info *di, CORE_ADDR low, CORE_ADDR high,
int how_many, struct ui_stream *stb)
{
int num_displayed = 0;
CORE_ADDR pc;
/* parts of the symbolic representation of the address */
int unmapped;
char *filename = NULL;
char *name = NULL;
int offset;
int line;
for (pc = low; pc < high;)
{
QUIT;
if (how_many >= 0)
{
if (num_displayed >= how_many)
break;
else
num_displayed++;
}
ui_out_tuple_begin (uiout, NULL);
ui_out_field_core_addr (uiout, "address", pc);
if (!build_address_symbolic (pc, 0, &name, &offset, &filename,
&line, &unmapped))
{
/* We don't care now about line, filename and
unmapped. But we might in the future. */
ui_out_field_string (uiout, "func-name", name);
ui_out_field_int (uiout, "offset", offset);
}
if (filename != NULL)
xfree (filename);
if (name != NULL)
xfree (name);
ui_file_rewind (stb->stream);
pc += (*tm_print_insn) (pc, di);
ui_out_field_stream (uiout, "inst", stb);
ui_file_rewind (stb->stream);
ui_out_tuple_end (uiout);
}
return num_displayed;
}
/* The idea here is to present a source-O-centric view of a
function to the user. This means that things are presented
in source order, with (possibly) out of order assembly
immediately following. */
static void
do_mixed_source_and_assembly (struct disassemble_info *di, int nlines,
struct linetable_entry *le,
CORE_ADDR low, CORE_ADDR high,
struct symtab *symtab,
int how_many, struct ui_stream *stb)
{
int newlines = 0;
struct dis_line_entry *mle;
struct symtab_and_line sal;
int i;
int out_of_order = 0;
int next_line = 0;
CORE_ADDR pc;
int num_displayed = 0;
mle = (struct dis_line_entry *) alloca (nlines
* sizeof (struct dis_line_entry));
/* Copy linetable entries for this function into our data
structure, creating end_pc's and setting out_of_order as
appropriate. */
/* First, skip all the preceding functions. */
for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
/* Now, copy all entries before the end of this function. */
for (; i < nlines - 1 && le[i].pc < high; i++)
{
if (le[i].line == le[i + 1].line
&& le[i].pc == le[i + 1].pc)
continue; /* Ignore duplicates */
/* Skip any end-of-function markers. */
if (le[i].line == 0)
continue;
mle[newlines].line = le[i].line;
if (le[i].line > le[i + 1].line)
out_of_order = 1;
mle[newlines].start_pc = le[i].pc;
mle[newlines].end_pc = le[i + 1].pc;
newlines++;
}
/* If we're on the last line, and it's part of the function,
then we need to get the end pc in a special way. */
if (i == nlines - 1
&& le[i].pc < high)
{
mle[newlines].line = le[i].line;
mle[newlines].start_pc = le[i].pc;
sal = find_pc_line (le[i].pc, 0);
mle[newlines].end_pc = sal.end;
newlines++;
}
/* Now, sort mle by line #s (and, then by addresses within
lines). */
if (out_of_order)
qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
/* Now, for each line entry, emit the specified lines (unless
they have been emitted before), followed by the assembly code
for that line. */
ui_out_list_begin (uiout, "asm_insns");
for (i = 0; i < newlines; i++)
{
int close_list = 1;
/* Print out everything from next_line to the current line. */
if (mle[i].line >= next_line)
{
if (next_line != 0)
{
/* Just one line to print. */
if (next_line == mle[i].line)
{
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, 0);
}
else
{
/* Several source lines w/o asm instructions associated. */
for (; next_line < mle[i].line; next_line++)
{
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, next_line, next_line + 1, 0);
ui_out_list_begin (uiout, "line_asm_insn");
ui_out_list_end (uiout);
ui_out_tuple_end (uiout);
}
/* Print the last line and leave list open for
asm instructions to be added. */
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, 0);
}
}
else
{
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
}
next_line = mle[i].line + 1;
ui_out_list_begin (uiout, "line_asm_insn");
/* Don't close the list if the lines are not in order. */
if (i < (newlines - 1) && mle[i + 1].line <= mle[i].line)
close_list = 0;
}
num_displayed += dump_insns (di, mle[i].start_pc, mle[i].end_pc,
how_many, stb);
if (close_list)
{
ui_out_list_end (uiout);
ui_out_tuple_end (uiout);
close_list = 0;
}
if (how_many >= 0)
if (num_displayed >= how_many)
break;
}
ui_out_list_end (uiout);
}
static void
do_assembly_only (disassemble_info *di, CORE_ADDR low,
CORE_ADDR high, int how_many, struct ui_stream *stb)
{
int num_displayed = 0;
ui_out_list_begin (uiout, "asm_insns");
num_displayed = dump_insns (di, low, high, how_many, stb);
ui_out_list_end (uiout);
}
enum mi_cmd_result
do_disassembly (char *file_string,
int line_num,
int mixed_source_and_assembly,
int how_many,
CORE_ADDR low,
CORE_ADDR high)
{
static disassemble_info di;
static int di_initialized;
/* To collect the instruction outputted from opcodes. */
static struct ui_stream *stb = NULL;
struct symtab *symtab = NULL;
struct linetable_entry *le = NULL;
int nlines = -1;
if (!di_initialized)
{
/* We don't add a cleanup for this, because the allocation of
the stream is done once only for each gdb run, and we need to
keep it around until the end. Hopefully there won't be any
errors in the init code below, that make this function bail
out. */
stb = ui_out_stream_new (uiout);
INIT_DISASSEMBLE_INFO_NO_ARCH (di, stb->stream,
(fprintf_ftype) fprintf_unfiltered);
di.flavour = bfd_target_unknown_flavour;
di.memory_error_func = dis_asm_memory_error;
di.print_address_func = dis_asm_print_address;
di_initialized = 1;
}
di.mach = TARGET_PRINT_INSN_INFO->mach;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
di.endian = BFD_ENDIAN_BIG;
else
di.endian = BFD_ENDIAN_LITTLE;
/* If gdb_disassemble_from_exec == -1, then we use the following heuristic to
determine whether or not to do disassembly from target memory or from the
exec file:
If we're debugging a local process, read target memory, instead of the
exec file. This makes disassembly of functions in shared libs work
correctly. Also, read target memory if we are debugging native threads.
Else, we're debugging a remote process, and should disassemble from the
exec file for speed. However, this is no good if the target modifies its
code (for relocation, or whatever). */
if (gdb_disassemble_from_exec == -1)
{
if (strcmp (target_shortname, "child") == 0
|| strcmp (target_shortname, "procfs") == 0
|| strcmp (target_shortname, "vxprocess") == 0
|| strstr (target_shortname, "-threads") != NULL)
gdb_disassemble_from_exec = 0; /* It's a child process, read inferior mem */
else
gdb_disassemble_from_exec = 1; /* It's remote, read the exec file */
}
if (gdb_disassemble_from_exec)
di.read_memory_func = gdb_dis_asm_read_memory;
else
di.read_memory_func = dis_asm_read_memory;
/* Assume symtab is valid for whole PC range */
symtab = find_pc_symtab (low);
if (symtab != NULL && symtab->linetable != NULL)
{
/* Convert the linetable to a bunch of my_line_entry's. */
le = symtab->linetable->item;
nlines = symtab->linetable->nitems;
}
if (!mixed_source_and_assembly || nlines <= 0
|| symtab == NULL || symtab->linetable == NULL)
do_assembly_only (&di, low, high, how_many, stb);
else if (mixed_source_and_assembly)
do_mixed_source_and_assembly (&di, nlines, le, low,
high, symtab, how_many, stb);
gdb_flush (gdb_stdout);
return MI_CMD_DONE;
}
/* The arguments to be passed on the command line and parsed here are:
either:
@ -106,30 +389,15 @@ compare_lines (const PTR mle1p, const PTR mle2p)
MODE: 0 or 1 for disassembly only, or mixed source and disassembly,
respectively. */
enum mi_cmd_result
mi_cmd_disassemble (char *command, char **argv, int argc)
{
CORE_ADDR pc;
enum mi_cmd_result retval;
CORE_ADDR start;
int mixed_source_and_assembly;
int num_displayed;
static disassemble_info di;
static int di_initialized;
struct symtab *s;
/* To collect the instruction outputted from opcodes. */
static struct ui_stream *stb = NULL;
/* parts of the symbolic representation of the address */
int line;
int offset;
int unmapped;
char *filename = NULL;
char *name = NULL;
/* Which options have we processed ... */
int file_seen = 0;
int line_seen = 0;
@ -211,6 +479,7 @@ mi_cmd_disassemble (char *command, char **argv, int argc)
if ((mixed_source_and_assembly != 0) && (mixed_source_and_assembly != 1))
error ("mi_cmd_disassemble: Mixed_mode argument must be 0 or 1.");
/* We must get the function beginning and end where line_num is
contained. */
@ -225,275 +494,11 @@ mi_cmd_disassemble (char *command, char **argv, int argc)
error ("mi_cmd_disassemble: No function contains specified address");
}
if (!di_initialized)
{
/* We don't add a cleanup for this, because the allocation of
the stream is done once only for each gdb run, and we need to
keep it around until the end. Hopefully there won't be any
errors in the init code below, that make this function bail
out. */
stb = ui_out_stream_new (uiout);
INIT_DISASSEMBLE_INFO_NO_ARCH (di, stb->stream,
(fprintf_ftype) fprintf_unfiltered);
di.flavour = bfd_target_unknown_flavour;
di.memory_error_func = dis_asm_memory_error;
di.print_address_func = dis_asm_print_address;
di_initialized = 1;
}
di.mach = TARGET_PRINT_INSN_INFO->mach;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
di.endian = BFD_ENDIAN_BIG;
else
di.endian = BFD_ENDIAN_LITTLE;
/* If gdb_disassemble_from_exec == -1, then we use the following heuristic to
determine whether or not to do disassembly from target memory or from the
exec file:
If we're debugging a local process, read target memory, instead of the
exec file. This makes disassembly of functions in shared libs work
correctly. Also, read target memory if we are debugging native threads.
Else, we're debugging a remote process, and should disassemble from the
exec file for speed. However, this is no good if the target modifies its
code (for relocation, or whatever).
*/
if (gdb_disassemble_from_exec == -1)
{
if (strcmp (target_shortname, "child") == 0
|| strcmp (target_shortname, "procfs") == 0
|| strcmp (target_shortname, "vxprocess") == 0
|| strstr (target_shortname, "-threads") != NULL)
gdb_disassemble_from_exec = 0; /* It's a child process, read inferior mem */
else
gdb_disassemble_from_exec = 1; /* It's remote, read the exec file */
}
if (gdb_disassemble_from_exec)
di.read_memory_func = gdb_dis_asm_read_memory;
else
di.read_memory_func = dis_asm_read_memory;
/* If just doing straight assembly, all we need to do is disassemble
everything between low and high. If doing mixed source/assembly,
we've got a totally different path to follow. */
if (mixed_source_and_assembly)
{
/* Come here for mixed source/assembly */
/* The idea here is to present a source-O-centric view of a
function to the user. This means that things are presented
in source order, with (possibly) out of order assembly
immediately following. */
struct symtab *symtab;
struct linetable_entry *le;
int nlines;
int newlines;
struct dis_line_entry *mle;
struct symtab_and_line sal;
int i;
int out_of_order;
int next_line;
/* Assume symtab is valid for whole PC range */
symtab = find_pc_symtab (low);
if (!symtab || !symtab->linetable)
goto assembly_only;
/* First, convert the linetable to a bunch of my_line_entry's. */
le = symtab->linetable->item;
nlines = symtab->linetable->nitems;
if (nlines <= 0)
goto assembly_only;
mle = (struct dis_line_entry *) alloca (nlines * sizeof (struct dis_line_entry));
out_of_order = 0;
/* Copy linetable entries for this function into our data
structure, creating end_pc's and setting out_of_order as
appropriate. */
/* First, skip all the preceding functions. */
for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
/* Now, copy all entries before the end of this function. */
newlines = 0;
for (; i < nlines - 1 && le[i].pc < high; i++)
{
if (le[i].line == le[i + 1].line
&& le[i].pc == le[i + 1].pc)
continue; /* Ignore duplicates */
/* Skip any end-of-function markers. */
if (le[i].line == 0)
continue;
mle[newlines].line = le[i].line;
if (le[i].line > le[i + 1].line)
out_of_order = 1;
mle[newlines].start_pc = le[i].pc;
mle[newlines].end_pc = le[i + 1].pc;
newlines++;
}
/* If we're on the last line, and it's part of the function,
then we need to get the end pc in a special way. */
if (i == nlines - 1
&& le[i].pc < high)
{
mle[newlines].line = le[i].line;
mle[newlines].start_pc = le[i].pc;
sal = find_pc_line (le[i].pc, 0);
mle[newlines].end_pc = sal.end;
newlines++;
}
/* Now, sort mle by line #s (and, then by addresses within
lines). */
if (out_of_order)
qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
/* Now, for each line entry, emit the specified lines (unless
they have been emitted before), followed by the assembly code
for that line. */
next_line = 0; /* Force out first line */
ui_out_list_begin (uiout, "asm_insns");
num_displayed = 0;
for (i = 0; i < newlines; i++)
{
int close_list = 1;
/* Print out everything from next_line to the current line. */
if (mle[i].line >= next_line)
{
if (next_line != 0)
{
/* Just one line to print. */
if (next_line == mle[i].line)
{
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, 0);
}
else
{
/* Several source lines w/o asm instructions associated. */
for (; next_line < mle[i].line; next_line++)
{
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, 0);
ui_out_list_begin (uiout, "line_asm_insn");
ui_out_list_end (uiout);
ui_out_tuple_end (uiout);
}
/* Print the last line and leave list open for
asm instructions to be added. */
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, 0);
}
}
else
{
ui_out_tuple_begin (uiout, "src_and_asm_line");
print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
}
next_line = mle[i].line + 1;
ui_out_list_begin (uiout, "line_asm_insn");
if (i + 1 < newlines && mle[i + 1].line <= mle[i].line)
close_list = 0;
}
for (pc = mle[i].start_pc; pc < mle[i].end_pc;)
{
QUIT;
if (how_many >= 0)
{
if (num_displayed >= how_many)
break;
else
num_displayed++;
}
ui_out_tuple_begin (uiout, NULL);
ui_out_field_core_addr (uiout, "address", pc);
if (!build_address_symbolic (pc, 0, &name, &offset, &filename, &line, &unmapped))
{
/* We don't care now about line, filename and
unmapped, but we might in the future. */
ui_out_field_string (uiout, "func-name", name);
ui_out_field_int (uiout, "offset", offset);
}
if (filename != NULL)
xfree (filename);
if (name != NULL)
xfree (name);
ui_file_rewind (stb->stream);
pc += TARGET_PRINT_INSN (pc, &di);
ui_out_field_stream (uiout, "inst", stb);
ui_file_rewind (stb->stream);
ui_out_tuple_end (uiout);
}
if (close_list)
{
ui_out_list_end (uiout);
ui_out_tuple_end (uiout);
close_list = 0;
}
if (how_many >= 0)
if (num_displayed >= how_many)
break;
}
ui_out_list_end (uiout);
}
else
{
assembly_only:
ui_out_list_begin (uiout, "asm_insns");
num_displayed = 0;
for (pc = low; pc < high;)
{
QUIT;
if (how_many >= 0)
{
if (num_displayed >= how_many)
break;
else
num_displayed++;
}
ui_out_tuple_begin (uiout, NULL);
ui_out_field_core_addr (uiout, "address", pc);
if (!build_address_symbolic (pc, 0, &name, &offset, &filename, &line, &unmapped))
{
/* We don't care now about line, filename and
unmapped. But we might in the future. */
ui_out_field_string (uiout, "func-name", name);
ui_out_field_int (uiout, "offset", offset);
}
if (filename != NULL)
xfree (filename);
if (name != NULL)
xfree (name);
ui_file_rewind (stb->stream);
pc += TARGET_PRINT_INSN (pc, &di);
ui_out_field_stream (uiout, "inst", stb);
ui_file_rewind (stb->stream);
ui_out_tuple_end (uiout);
}
ui_out_list_end (uiout);
}
gdb_flush (gdb_stdout);
return MI_CMD_DONE;
retval = do_disassembly (file_string,
line_num,
mixed_source_and_assembly,
how_many,
low,
high);
return retval;
}