2000-07-10 Elena Zannoni <ezannoni@kwikemart.cygnus.com>

* config/sh/tm-sh.h (STORE_RETURN_VALUE): Redefine as
 	sh_store_return_value().
	* sh-tdep.c (sh_store_return_value): New function. Store the
 	value returned by a function into the appropriate register.

2000-07-10  Elena Zannoni  <ezannoni@kwikemart.cygnus.com>

        * sh-tdep.c (sh_skip_prologue): Before looking at the actual
 	instructions, try to see if the symbol table can be of help, by
 	calling after_prologue(). If this doesn't work, call
 	skip_prologue_hard_way().
	(skip_prologue_hard_way): Renamed from sh_skip_prologue. Add some
 	more instruction pattern matching for pushing of arguments, and
 	manipulation of r14.
	(after_prologue): New function. Use symbol table info to determine
 	the end of the prologue, if possible.
This commit is contained in:
Elena Zannoni 2000-07-10 14:43:37 +00:00
parent 32178cabe9
commit 8db62801bd
3 changed files with 169 additions and 15 deletions

View file

@ -1,3 +1,22 @@
2000-07-10 Elena Zannoni <ezannoni@kwikemart.cygnus.com>
* config/sh/tm-sh.h (STORE_RETURN_VALUE): Redefine as
sh_store_return_value().
* sh-tdep.c (sh_store_return_value): New function. Store the
value returned by a function into the appropriate register.
2000-07-10 Elena Zannoni <ezannoni@kwikemart.cygnus.com>
* sh-tdep.c (sh_skip_prologue): Before looking at the actual
instructions, try to see if the symbol table can be of help, by
calling after_prologue(). If this doesn't work, call
skip_prologue_hard_way().
(skip_prologue_hard_way): Renamed from sh_skip_prologue. Add some
more instruction pattern matching for pushing of arguments, and
manipulation of r14.
(after_prologue): New function. Use symbol table info to determine
the end of the prologue, if possible.
2000-07-07 Michael Snyder <msnyder@cleaver.cygnus.com>
* findvar.c (_initialize_findvar, build_findvar, write_fp, read_fp,

View file

@ -181,12 +181,11 @@ extern void sh_extract_return_value (struct type *, void *, void *);
sh_extract_return_value (TYPE, REGBUF, VALBUF)
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format.
Things always get returned in R0/R1 */
of type TYPE, given in virtual format. */
extern void sh_store_return_value (struct type *, void *);
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
write_register_bytes (REGISTER_BYTE(0), VALBUF, TYPE_LENGTH (TYPE))
sh_store_return_value (TYPE, VALBUF)
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,

View file

@ -161,19 +161,74 @@ sh_processor_type_table[] =
[sts.l pr,@-r15]
[mov.l r14,@-r15]
[mov r15,r14]
Actually it can be more complicated than this. For instance, with
newer gcc's:
mov.l r14,@-r15
add #-12,r15
mov r15,r14
mov r4,r1
mov r5,r2
mov.l r6,@(4,r14)
mov.l r7,@(8,r14)
mov.b r1,@r14
mov r14,r1
mov r14,r1
add #2,r1
mov.w r2,@r1
*/
/* STS.L PR,@-r15 0100111100100010
r15-4-->r15, PR-->(r15) */
#define IS_STS(x) ((x) == 0x4f22)
/* MOV.L Rm,@-r15 00101111mmmm0110
r15-4-->r15, Rm-->(R15) */
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
#define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
/* MOV r15,r14 0110111011110011
r15-->r14 */
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
/* ADD #imm,r15 01111111iiiiiiii
r15+imm-->r15 */
#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
#define IS_SHLL_R3(x) ((x) == 0x4300)
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
#define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
#define FPSCR_SZ (1 << 20)
/* ADD r3,r15 0011111100111100
r15+r3-->r15 */
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
or
FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
or
FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
#define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
or
MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
or
MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
where Rm is one of r4,r5,r6,r7 which are the argument registers. */
#define IS_ARG_MOV(x) \
(((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|| ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|| ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
/* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
#define IS_MOV_R14(x) \
((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
#define FPSCR_SZ (1 << 20)
/* Should call_function allocate stack space for a struct return? */
int
@ -184,14 +239,46 @@ sh_use_struct_convention (gcc_p, type)
return (TYPE_LENGTH (type) > 1);
}
/* Skip any prologue before the guts of a function */
CORE_ADDR
sh_skip_prologue (start_pc)
/* Skip the prologue using the debug information. If this fails we'll
fall back on the 'guess' method below. */
static CORE_ADDR
after_prologue (pc)
CORE_ADDR pc;
{
struct symtab_and_line sal;
CORE_ADDR func_addr, func_end;
/* If we can not find the symbol in the partial symbol table, then
there is no hope we can determine the function's start address
with this code. */
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
return 0;
/* Get the line associated with FUNC_ADDR. */
sal = find_pc_line (func_addr, 0);
/* There are only two cases to consider. First, the end of the source line
is within the function bounds. In that case we return the end of the
source line. Second is the end of the source line extends beyond the
bounds of the current function. We need to use the slow code to
examine instructions in that case. */
if (sal.end < func_end)
return sal.end;
else
return 0;
}
/* Here we look at each instruction in the function, and try to guess
where the prologue ends. Unfortunately this is not always
accurate. */
static CORE_ADDR
skip_prologue_hard_way (start_pc)
CORE_ADDR start_pc;
{
CORE_ADDR here, end;
int updated_fp = 0;
if (!start_pc)
return 0;
@ -201,19 +288,45 @@ sh_skip_prologue (start_pc)
int w = read_memory_integer (here, 2);
here += 2;
if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
|| IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w))
start_pc = here;
if (IS_MOV_SP_FP (w))
|| IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
|| IS_ARG_MOV (w) || IS_MOV_R14 (w))
{
start_pc = here;
break;
}
else if (IS_MOV_SP_FP (w))
{
start_pc = here;
updated_fp = 1;
}
else
/* Don't bail out yet, if we are before the copy of sp. */
if (updated_fp)
break;
}
return start_pc;
}
CORE_ADDR
sh_skip_prologue (pc)
CORE_ADDR pc;
{
CORE_ADDR post_prologue_pc;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
post_prologue_pc = after_prologue (pc);
/* If after_prologue returned a useful address, then use it. Else
fall back on the instruction skipping code. */
if (post_prologue_pc != 0)
return max (pc, post_prologue_pc);
else
return (skip_prologue_hard_way (pc));
}
/* Disassemble an instruction. */
int
@ -786,6 +899,29 @@ sh_extract_return_value (type, regbuf, valbuf)
error ("bad size for return value");
}
/* If the architecture is sh4 or sh3e, store a function's return value
in the R0 general register or in the FP0 floating point register,
depending on the type of the return value. In all the other cases
the result is stored in r0. */
void
sh_store_return_value (struct type *type, void *valbuf)
{
int cpu;
if (TARGET_ARCHITECTURE->arch == bfd_arch_sh)
cpu = TARGET_ARCHITECTURE->mach;
else
cpu = 0;
if (cpu == bfd_mach_sh3e || cpu == bfd_mach_sh4)
{
if (TYPE_CODE (type) == TYPE_CODE_FLT)
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf, TYPE_LENGTH (type));
else
write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
}
else
write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
}
void
_initialize_sh_tdep ()
{