D10v memory map changed. Update.

Initialize IMAP/DMAP registers to hardware reset value.
This commit is contained in:
Andrew Cagney 1998-02-10 07:26:55 +00:00
parent f6826586c5
commit 8904ad6940

View file

@ -36,7 +36,6 @@ static void do_long PARAMS ((uint32 ins));
static void do_2_short PARAMS ((uint16 ins1, uint16 ins2, enum _leftright leftright));
static void do_parallel PARAMS ((uint16 ins1, uint16 ins2));
static char *add_commas PARAMS ((char *buf, int sizeof_buf, unsigned long value));
static void init_system PARAMS ((void));
extern void sim_set_profile PARAMS ((int n));
extern void sim_set_profile_size PARAMS ((int n));
@ -114,7 +113,7 @@ bfd_vma
decode_pc ()
{
asection *s;
if (!init_text_p)
if (!init_text_p && prog_bfd != NULL)
{
init_text_p = 1;
for (s = prog_bfd->sections; s; s = s->next)
@ -315,10 +314,6 @@ sim_size (power)
exit(1);
}
SET_IMAP0(0x1000);
SET_IMAP1(0x1000);
SET_DMAP(0);
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMSIZE) != 0)
{
@ -333,13 +328,6 @@ sim_size (power)
#endif
}
static void
init_system ()
{
if (!State.imem)
sim_size(1);
}
/* Transfer data to/from simulated memory. Since a bug in either the
simulated program or in gdb or the simulator itself may cause a
bogus address to be passed in, we need to do some sanity checking
@ -348,138 +336,159 @@ init_system ()
than aborting the entire run. */
static int
xfer_mem (addr, buffer, size, write)
SIM_ADDR addr;
unsigned char *buffer;
int size;
int write;
xfer_mem (SIM_ADDR addr,
unsigned char *buffer,
int size,
int write_p)
{
if (!State.imem)
init_system ();
unsigned char *memory;
int segment = ((addr >> 24) & 0xff);
addr = (addr & 0x00ffffff);
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
{
if (write)
if (write_p)
{
(*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%x\n", size, addr);
(*d10v_callback->printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%02x:%06x\n", size, segment, addr);
}
else
{
(*d10v_callback->printf_filtered) (d10v_callback, "sim_read %d bytes from 0x%x\n", size, addr);
(*d10v_callback->printf_filtered) (d10v_callback, "sim_read %d bytes from 0x%2x:%6x\n", size, segment, addr);
}
}
#endif
/* to access data, we use the following mapping
0x00000000 - 0x00ffffff : 16 Mb of external unified memory in segments of 128 Kb each
0x01000000 - 0x0103ffff : 256 Kb of external instruction memory
0x02000000 - 0x0200ffff : 32 Kb of on chip data memory + 16 Kb DMAP memory + 16 Kb I/O space */
/* to access data, we use the following mapping
0x00xxxxxx: Logical data address segment (DMAP translated memory)
0x01xxxxxx: Logical instruction address segment (IMAP translated memory)
0x10xxxxxx: Physical data memory segment (On-chip data memory)
0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)
0x12xxxxxx: Phisical unified memory segment (Unified memory)
*/
if ((addr | 0x00ffffff) == 0x00ffffff)
switch (segment)
{
/* UNIFIED MEMORY (0x00000000 - 0x00ffffff) */
int startsegment, startoffset; /* Segment and offset within segment where xfer starts */
int endsegment, endoffset; /* Segment and offset within segment where xfer ends */
case 0x00: /* DMAP translated memory */
{
int byte;
for (byte = 0; byte < size; byte++)
{
uint8 *mem = dmem_addr (addr + byte);
if (mem == NULL)
return byte;
else if (write_p)
*mem = buffer[byte];
else
buffer[byte] = *mem;
}
return byte;
}
startsegment = addr >> UMEM_SIZE;
startoffset = addr & ((1 << UMEM_SIZE) - 1);
endsegment = (addr + size) >> UMEM_SIZE;
endoffset = (addr + size) & ((1 << UMEM_SIZE) - 1);
case 0x01: /* IMAP translated memory */
{
int byte;
for (byte = 0; byte < size; byte++)
{
uint8 *mem = imem_addr (addr + byte);
if (mem == NULL)
return byte;
else if (write_p)
*mem = buffer[byte];
else
buffer[byte] = *mem;
}
return byte;
}
/* FIXME: We do not currently implement xfers across segments, so detect this case and fail gracefully. */
case 0x10: /* On-chip data memory */
{
addr &= ((1 << DMEM_SIZE) - 1);
if ((addr + size) > (1 << DMEM_SIZE))
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: data address 0x%x is outside range 0-0x%x.\n",
addr + size - 1, (1 << DMEM_SIZE) - 1);
return (0);
}
memory = State.dmem + addr;
break;
}
if ((startsegment != endsegment) && !((endsegment == (startsegment + 1)) && endoffset == 0))
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Unimplemented support for transfers across unified memory segment boundaries\n");
return (0);
}
if (!State.umem[startsegment])
{
case 0x11: /* On-chip insn memory */
{
addr &= ((1 << IMEM_SIZE) - 1);
if ((addr + size) > (1 << IMEM_SIZE))
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: instruction address 0x%x is outside range 0-0x%x.\n",
addr + size - 1, (1 << IMEM_SIZE) - 1);
return (0);
}
memory = State.imem + addr;
}
case 0x12: /* Unified memory */
{
int startsegment, startoffset; /* Segment and offset within segment where xfer starts */
int endsegment, endoffset; /* Segment and offset within segment where xfer ends */
startsegment = addr >> UMEM_SIZE;
startoffset = addr & ((1 << UMEM_SIZE) - 1);
endsegment = (addr + size) >> UMEM_SIZE;
endoffset = (addr + size) & ((1 << UMEM_SIZE) - 1);
/* FIXME: We do not currently implement xfers across segments,
so detect this case and fail gracefully. */
if ((startsegment != endsegment) && !((endsegment == (startsegment + 1)) && endoffset == 0))
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Unimplemented support for transfers across unified memory segment boundaries\n");
return (0);
}
if (!State.umem[startsegment])
{
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMSIZE) != 0)
{
(*d10v_callback->printf_filtered) (d10v_callback,"Allocating %s bytes unified memory to region %d\n",
add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)), startsegment);
}
if ((d10v_debug & DEBUG_MEMSIZE) != 0)
{
(*d10v_callback->printf_filtered) (d10v_callback,"Allocating %s bytes unified memory to region %d\n",
add_commas (buffer, sizeof (buffer), (1UL<<IMEM_SIZE)), startsegment);
}
#endif
State.umem[startsegment] = (uint8 *)calloc(1,1<<UMEM_SIZE);
}
if (!State.umem[startsegment])
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Memory allocation of 0x%x bytes failed.\n", 1<<UMEM_SIZE);
return (0);
}
if (write)
{
memcpy (State.umem[startsegment]+startoffset, buffer, size);
}
else
{
memcpy (buffer, State.umem[startsegment]+startoffset, size);
}
State.umem[startsegment] = (uint8 *)calloc(1,1<<UMEM_SIZE);
}
if (!State.umem[startsegment])
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: Memory allocation of 0x%x bytes failed.\n", 1<<UMEM_SIZE);
return (0);
}
memory = State.umem[startsegment] + startoffset;
break;
}
default:
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: address 0x%lx is not in valid range\n", (long) addr);
(*d10v_callback->printf_filtered) (d10v_callback, "0x00xxxxxx: Logical data address segment (DMAP translated memory)\n");
(*d10v_callback->printf_filtered) (d10v_callback, "0x01xxxxxx: Logical instruction address segment (IMAP translated memory)\n");
(*d10v_callback->printf_filtered) (d10v_callback, "0x10xxxxxx: Physical data memory segment (On-chip data memory)\n");
(*d10v_callback->printf_filtered) (d10v_callback, "0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)\n");
(*d10v_callback->printf_filtered) (d10v_callback, "0x12xxxxxx: Phisical unified memory segment (Unified memory)\n");
return (0);
}
}
else if ((addr | 0x0003ffff) == 0x0103ffff)
if (write_p)
{
/* INSTRUCTION MEMORY (0x01000000 - 0x0103ffff) */
addr &= ((1 << IMEM_SIZE) - 1);
if ((addr + size) > (1 << IMEM_SIZE))
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: instruction address 0x%x is outside range 0-0x%x.\n",
addr + size - 1, (1 << IMEM_SIZE) - 1);
return (0);
}
if (write)
{
memcpy (State.imem+addr, buffer, size);
}
else
{
memcpy (buffer, State.imem+addr, size);
}
}
else if ((addr | 0x0000ffff) == 0x0200ffff)
{
/* DATA MEMORY (0x02000000 - 0x0200ffff) */
addr &= ((1 << DMEM_SIZE) - 1);
if ((addr + size) > (1 << DMEM_SIZE))
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: data address 0x%x is outside range 0-0x%x.\n",
addr + size - 1, (1 << DMEM_SIZE) - 1);
return (0);
}
if (write)
{
memcpy (State.dmem+addr, buffer, size);
}
else
{
memcpy (buffer, State.dmem+addr, size);
}
memcpy (memory, buffer, size);
}
else
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: address 0x%x is not in valid range\n",addr);
(*d10v_callback->printf_filtered) (d10v_callback, "Unified memory addresses are 0x00000000 - 0x00ffffff\n");
(*d10v_callback->printf_filtered) (d10v_callback, "Instruction addresses are 0x01000000 - 0x0103ffff\n");
(*d10v_callback->printf_filtered) (d10v_callback, "Data addresses are 0x02000000 - 0x0200ffff\n");
return (0);
memcpy (buffer, memory, size);
}
return size;
}
static int
sim_write_phys (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
return xfer_mem( addr, buffer, size, 1);
}
int
sim_write (sd, addr, buffer, size)
SIM_DESC sd;
@ -555,6 +564,11 @@ sim_open (kind, callback, abfd, argv)
}
}
/* reset the processor state */
if (!State.imem)
sim_size(1);
sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL);
/* Fudge our descriptor. */
return (SIM_DESC) 1;
}
@ -632,10 +646,9 @@ dmem_addr( addr )
}
static uint8 *
pc_addr()
uint8 *
imem_addr (uint32 pc)
{
uint32 pc = ((uint32)PC) << 2;
uint16 imap;
if (pc & 0x20000)
@ -647,12 +660,7 @@ pc_addr()
return State.imem + pc;
if (State.umem[imap & 0xff] == NULL)
{
(*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unified memory region %d unmapped, pc = 0x%lx\n",
imap & 0xff, (long)PC);
State.exception = SIGBUS;
return 0;
}
return 0;
/* Discard upper bit(s) of PC in case IMAP1 selects unified memory. */
pc &= (1 << UMEM_SIZE) - 1;
@ -680,6 +688,7 @@ sim_resume (sd, step, siggnal)
{
uint32 inst;
int do_iba;
uint8 *iaddr;
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */
State.exception = 0;
@ -688,7 +697,15 @@ sim_resume (sd, step, siggnal)
do
{
inst = get_longword( pc_addr() );
iaddr = imem_addr ((uint32)PC << 2);
if (iaddr == NULL)
{
State.exception = SIGBUS;
break;
}
inst = get_longword( iaddr );
State.pc_changed = 0;
ins_type_counters[ (int)INS_CYCLES ]++;
@ -882,6 +899,24 @@ sim_create_inferior (sd, abfd, argv, env)
/* reset all state information */
memset (&State.regs, 0, (int)&State.imem - (int)&State.regs[0]);
if (argv)
{
/* a hack to set r0/r1 with argc/argv */
/* some high memory that won't be overwritten by the stack soon */
addr = State.regs[0] = 0x7C00;
p = 20;
i = 0;
while (argv[i])
{
SW (addr + 2*i, addr + p);
size = strlen (argv[i]) + 1;
sim_write (sd, addr + 0, argv[i], size);
p += size;
i++;
}
State.regs[1] = i;
}
/* set PC */
if (abfd != NULL)
start_address = bfd_get_start_address (abfd);
@ -895,10 +930,18 @@ sim_create_inferior (sd, abfd, argv, env)
/* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board */
/* resets imap0 and imap1 to 0x1000. */
SET_IMAP0(0x1000);
SET_IMAP1(0x1000);
SET_DMAP(0);
if (1)
{
SET_IMAP0 (0x0000);
SET_IMAP1 (0x007f);
SET_DMAP (0x0000);
}
else
{
SET_IMAP0(0x1000);
SET_IMAP1(0x1000);
SET_DMAP(0);
}
return SIM_RC_OK;
}
@ -928,7 +971,7 @@ sim_stop_reason (sd, reason, sigrc)
case SIG_D10V_EXIT: /* exit trap */
*reason = sim_exited;
*sigrc = State.regs[2];
*sigrc = State.regs[0];
break;
default: /* some signal */
@ -949,9 +992,6 @@ sim_fetch_register (sd, rn, memory)
int rn;
unsigned char *memory;
{
if (!State.imem)
init_system();
if (rn > 34)
WRITE_64 (memory, State.a[rn-35]);
else if (rn == 32)
@ -972,9 +1012,6 @@ sim_store_register (sd, rn, memory)
int rn;
unsigned char *memory;
{
if (!State.imem)
init_system();
if (rn > 34)
State.a[rn-35] = READ_64 (memory) & MASK40;
else if (rn == 34)
@ -1014,7 +1051,7 @@ sim_load (sd, prog, abfd, from_tty)
}
prog_bfd = sim_load_file (sd, myname, d10v_callback, prog, abfd,
sim_kind == SIM_OPEN_DEBUG,
0, sim_write_phys);
1/*LMA*/, sim_write);
if (prog_bfd == NULL)
return SIM_RC_FAIL;
prog_bfd_was_opened_p = abfd == NULL;