Initial revision

This commit is contained in:
David Henkel-Wallace 1991-04-04 02:12:28 +00:00
parent 8922ff76e3
commit 87f86b4ec6
6 changed files with 3815 additions and 0 deletions

1919
bfd/ieee.c Normal file

File diff suppressed because it is too large Load diff

90
bfd/libieee.h Normal file
View file

@ -0,0 +1,90 @@
typedef struct {
unsigned int index:24;
char letter;
} ieee_symbol_index_type;
typedef struct ieee_symbol_struct {
asymbol symbol;
struct ieee_symbol_struct *next;
unsigned int index;
} ieee_symbol_type;
typedef struct ieee_reloc_struct {
arelent relent;
struct ieee_reloc_struct *next;
ieee_symbol_index_type symbol;
} ieee_reloc_type;
#define ieee_symbol(x) ((ieee_symbol_type *)(x))
typedef struct ieee_per_section_struct
{
asection *section;
bfd_byte *data;
bfd_vma offset;
struct obstack reloc_obstack;
ieee_reloc_type **reloc_tail_ptr;
bfd_vma pc;
/* For output */
file_ptr current_pos;
unsigned int current_byte;
boolean initialized;
} ieee_per_section_type;
#define ieee_per_section(x) ((ieee_per_section_type *)((x)->used_by_bfd))
#define NSECTIONS 10
typedef struct {
boolean read_symbols;
boolean read_data;
file_ptr output_cursor;
/* Map of section indexes to section ptrs */
asection * section_table[NSECTIONS];
ieee_address_descriptor_type ad;
ieee_module_begin_type mb;
ieee_w_variable_type w;
unsigned int section_count;
unsigned int map_idx;
/* List of GLOBAL EXPORT symbols */
ieee_symbol_type *external_symbols;
/* List of UNDEFINED symbols */
ieee_symbol_type *external_reference;
/* When the symbols have been canonicalized, they are in a
* special order, we remember various bases here.. */
unsigned int external_symbol_max_index;
unsigned int external_symbol_min_index;
unsigned int external_symbol_count;
int external_symbol_base_offset;
unsigned int external_reference_max_index;
unsigned int external_reference_min_index;
unsigned int external_reference_count;
int external_reference_base_offset;
boolean symbol_table_full;
} ieee_data_type;
typedef struct {
file_ptr file_offset;
bfd *abfd;
} ieee_ar_obstack_type;
typedef struct {
ieee_ar_obstack_type *elements;
struct obstack element_obstack;
unsigned int element_index ;
unsigned int element_count;
} ieee_ar_data_type;
#define ieee_data(abfd) ((ieee_data_type *)((abfd)->tdata))
#define ieee_ar_data(abfd) ((ieee_ar_data_type *)((abfd)->tdata))

70
bfd/liboasys.h Normal file
View file

@ -0,0 +1,70 @@
typedef struct {
asymbol symbol;
} oasys_symbol_type;
typedef struct oasys_reloc_struct {
arelent relent;
struct oasys_reloc_struct *next;
unsigned int symbol;
} oasys_reloc_type;
#define oasys_symbol(x) ((oasys_symbol_type *)(x))
#define oasys_per_section(x) ((oasys_per_section_type *)(x->used_by_bfd))
typedef struct oasys_per_section_struct
{
asection *section;
bfd_byte *data;
bfd_vma offset;
oasys_reloc_type **reloc_tail_ptr;
bfd_vma pc;
/* For output */
struct obstack reloc_obstack;
file_ptr current_pos;
unsigned int current_byte;
boolean initialized;
} oasys_per_section_type;
#define NSECTIONS 10
typedef struct {
file_ptr file_offset;
bfd *abfd;
} oasys_ar_obstack_type;
typedef struct {
file_ptr pos;
unsigned int size;
bfd *abfd;
char *name;
} oasys_module_info_type;
typedef struct {
oasys_module_info_type *module;
unsigned int module_count;
unsigned int module_index;
} oasys_ar_data_type;
typedef struct {
char *strings;
asymbol *symbols;
unsigned int symbol_string_length;
asection *sections[OASYS_MAX_SEC_COUNT];
file_ptr first_data_record;
} oasys_data_type;
#define oasys_data(abfd) ((oasys_data_type *)((abfd)->tdata))
#define oasys_ar_data(abfd) ((oasys_ar_data_type *)((abfd)->tdata))

985
bfd/oasys.c Normal file
View file

@ -0,0 +1,985 @@
/*
bfd backend for oasys objects.
Object files contain records in order:
optional header
symbol records
section records
data records
debugging records
end record
Written by Steve Chamberlain
steve@cygnus.com
*/
#include <ansidecl.h>
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "obstack.h"
#include "oasys.h"
#include "liboasys.h"
#define obstack_chunk_alloc malloc
#define obstack_chunk_free free
typedef void generic_symbol_type;
void DEFUN(oasys_read_record,(abfd, record),
bfd *abfd AND
oasys_record_union_type *record)
{
bfd_read(record, 1, sizeof(record->header), abfd);
bfd_read(((char *)record )+ sizeof(record->header),
1, record->header.length - sizeof(record->header),
abfd);
}
static size_t
oasys_string_length(record)
oasys_record_union_type *record;
{
return record->header.length
- ((char *)record->symbol.name - (char *)record);
}
/*****************************************************************************/
/*
Slurp the symbol table by reading in all the records at the start file
till we get to the first section record.
We'll sort the symbols into two lists, defined and undefined. The
undefined symbols will also be sorted by refno. We do this by placing
all undefined symbols at the front of the table moving in, and the
defined symbols at the end of the table moving back.
*/
static boolean
oasys_slurp_symbol_table(abfd)
bfd *abfd;
{
oasys_record_union_type record;
oasys_data_type *data = oasys_data(abfd);
boolean loop = true;
asymbol *dest_undefined;
asymbol *dest_defined;
asymbol *dest;
char *string_ptr;
if (data->symbols != (asymbol *)NULL) {
return true;
}
/* Buy enough memory for all the symbols and all the names */
data->symbols =
(asymbol *)malloc(sizeof(asymbol) * abfd->symcount);
data->strings = malloc(data->symbol_string_length);
dest_undefined = data->symbols;
dest_defined = data->symbols + abfd->symcount -1;
string_ptr = data->strings;
bfd_seek(abfd, (file_ptr)0, SEEK_SET);
while (loop) {
oasys_read_record(abfd, &record);
switch (record.header.type) {
case oasys_record_is_header_enum:
break;
case oasys_record_is_local_enum:
case oasys_record_is_symbol_enum:
{
size_t length = oasys_string_length(&record);
switch (record.symbol.relb[0] & RELOCATION_TYPE_BITS) {
case RELOCATION_TYPE_ABS:
dest = dest_defined--;
dest->section = 0;
dest->flags = BSF_ABSOLUTE | BSF_EXPORT | BSF_GLOBAL;
dest_defined--;
break;
case RELOCATION_TYPE_REL:
dest = dest_defined--;
dest->section =
oasys_data(abfd)->sections[record.symbol.relb[0] &
RELOCATION_SECT_BITS];
if (record.header.type == oasys_record_is_local_enum)
{
dest->flags = BSF_LOCAL;
}
else {
dest->flags = BSF_EXPORT | BSF_GLOBAL;
}
break;
case RELOCATION_TYPE_UND:
dest = dest_undefined++;
dest->section = (asection *)NULL;
dest->flags = BSF_UNDEFINED;
break;
case RELOCATION_TYPE_COM:
dest = dest_defined--;
dest->name = string_ptr;
dest->the_bfd = abfd;
dest->section = (asection *)NULL;
dest->flags = BSF_FORT_COMM;
break;
}
dest->name = string_ptr;
dest->the_bfd = abfd;
dest->value = bfd_h_getlong(abfd, &record.symbol.value);
memcpy(string_ptr, record.symbol.name, length);
string_ptr[length] =0;
string_ptr += length +1;
}
break;
default:
loop = false;
}
}
return true;
}
size_t
oasys_get_symtab_upper_bound (abfd)
bfd *abfd;
{
oasys_slurp_symbol_table (abfd);
return (abfd->symcount != 0) ?
(abfd->symcount+1) * (sizeof (oasys_symbol_type *)) : 0;
}
/*
*/
extern bfd_target oasys_vec;
unsigned int
oasys_get_symtab (abfd, location)
bfd *abfd;
asymbol **location;
{
asymbol *symbase ;
unsigned int counter ;
if (oasys_slurp_symbol_table(abfd) == false) {
return 0;
}
symbase = oasys_data(abfd)->symbols;
for (counter = 0; counter < abfd->symcount; counter++) {
*(location++) = symbase++;
}
*location = 0;
return abfd->symcount;
}
/***********************************************************************
* archive stuff
*/
#define swap(x) x = bfd_h_get_x(abfd, &x);
bfd_target *
oasys_archive_p(abfd)
bfd *abfd;
{
oasys_archive_header_type header;
unsigned int i;
bfd_seek(abfd, (file_ptr) 0, false);
bfd_read(&header, 1, sizeof(header), abfd);
swap(header.version);
swap(header.mod_count);
swap(header.mod_tbl_offset);
swap(header.sym_tbl_size);
swap(header.sym_count);
swap(header.sym_tbl_offset);
swap(header.xref_count);
swap(header.xref_lst_offset);
/*
There isn't a magic number in an Oasys archive, so the best we
can do to verify reasnableness is to make sure that the values in
the header are too weird
*/
if (header.version>10000 ||
header.mod_count>10000 ||
header.sym_count>100000 ||
header.xref_count > 100000) return (bfd_target *)NULL;
/*
That all worked, lets buy the space for the header and read in
the headers.
*/
{
oasys_ar_data_type *ar =
(oasys_ar_data_type*) malloc(sizeof(oasys_ar_data_type));
oasys_module_info_type *module =
(oasys_module_info_type*)
malloc(sizeof(oasys_module_info_type) * header.mod_count);
oasys_module_table_type record;
oasys_ar_data(abfd) =ar;
ar->module = module;
ar->module_count = header.mod_count;
bfd_seek(abfd , header.mod_tbl_offset, SEEK_SET);
for (i = 0; i < header.mod_count; i++) {
bfd_read(&record, 1, sizeof(record), abfd);
swap(record.mod_size);
swap(record.file_offset);
swap(record.mod_name_length);
module[i].name = malloc(record.mod_name_length+1);
bfd_read(module[i].name, 1, record.mod_name_length +1, abfd);
/* SKip some stuff */
bfd_seek(abfd, record.dep_count * sizeof(int32_type),
SEEK_CUR);
module[i].size = record.mod_size;
module[i].pos = record.file_offset;
}
}
return abfd->xvec;
}
#define MAX_SECS 16
bfd_target *
oasys_object_p (abfd)
bfd *abfd;
{
oasys_data_type *oasys;
oasys_data_type static_data;
boolean loop = true;
boolean had_usefull = false;
memset((PTR)static_data.sections, 0xff, sizeof(static_data.sections));
/* Point to the start of the file */
bfd_seek(abfd, (file_ptr)0, SEEK_SET);
static_data.symbol_string_length = 0;
/* Inspect the records, but only keep the section info -
remember the size of the symbols
*/
while (loop) {
oasys_record_union_type record;
oasys_read_record(abfd, &record);
switch ((oasys_record_enum_type)(record.header.type)) {
case oasys_record_is_header_enum:
had_usefull = true;
break;
case oasys_record_is_symbol_enum:
case oasys_record_is_local_enum:
/* Count symbols and remember their size for a future malloc */
abfd->symcount++;
static_data.symbol_string_length += 1 + oasys_string_length(&record);
had_usefull = true;
break;
case oasys_record_is_section_enum:
{
asection *s;
char *buffer;
unsigned int section_number;
if (record.section.header.length != sizeof(record.section))
{
return (bfd_target *)NULL;
}
buffer = malloc(3);
section_number= record.section.relb & RELOCATION_SECT_BITS;
sprintf(buffer,"%u", section_number);
s = bfd_make_section(abfd,buffer);
static_data.sections[section_number] = s;
switch (record.section.relb & RELOCATION_TYPE_BITS) {
case RELOCATION_TYPE_ABS:
case RELOCATION_TYPE_REL:
break;
case RELOCATION_TYPE_UND:
case RELOCATION_TYPE_COM:
BFD_FAIL();
}
s->size = bfd_h_getlong(abfd, & record.section.value) ;
s->vma = bfd_h_getlong(abfd, &record.section.vma);
s->flags |= SEC_LOAD | SEC_HAS_CONTENTS;
had_usefull = true;
}
break;
case oasys_record_is_data_enum:
static_data.first_data_record = bfd_tell(abfd) - record.header.length;
case oasys_record_is_debug_enum:
case oasys_record_is_module_enum:
case oasys_record_is_named_section_enum:
case oasys_record_is_end_enum:
if (had_usefull == false) return (bfd_target *)NULL;
loop = false;
break;
default:
return (bfd_target *)NULL;
}
}
oasys_data(abfd) = (oasys_data_type
*)malloc(sizeof(oasys_data_type));
oasys = oasys_data(abfd);
* oasys = static_data;
oasys->symbols = (asymbol *)NULL;
/*
Oasys support several architectures, but I can't see a simple way
to discover which one is in a particular file - we'll guess
*/
abfd->obj_arch = bfd_arch_m68k;
abfd->obj_machine =0;
if (abfd->symcount != 0) {
abfd->flags |= HAS_SYMS;
}
return abfd->xvec;
}
void
oasys_print_symbol(ignore_abfd, file, symbol, how)
bfd *ignore_abfd;
FILE *file;
asymbol *symbol;
bfd_print_symbol_enum_type how;
{
switch (how) {
case bfd_print_symbol_name_enum:
case bfd_print_symbol_type_enum:
fprintf(file,"%s", symbol->name);
break;
case bfd_print_symbol_all_enum:
{
char *section_name = symbol->section == (asection *)NULL ?
"*abs" : symbol->section->name;
bfd_print_symbol_vandf((void *)file,symbol);
fprintf(file," %-5s %s",
section_name,
symbol->name);
}
break;
}
}
/*
The howto table is build using the top two bits of a reloc byte to
index into it. The bits are PCREL,WORD/LONG
*/
static reloc_howto_type howto_table[]=
{
/* T rs size bsz pcrel bitpos abs ovr sf name partial inplace mask */
{ 0, 0, 1, 16, false,0, true,true,0,"abs16",true,0x0000ffff},
{ 0, 0, 2, 32, false,0, true,true,0,"abs32",true,0xffffffff},
{ 0, 0, 1, 16, true,0, true,true,0,"pcrel16",true,0x0000ffff},
{ 0, 0, 2, 32, true,0, true,true,0,"pcrel32",true,0xffffffff}
};
/* Read in all the section data and relocation stuff too */
static boolean oasys_slurp_section_data(abfd)
bfd *abfd;
{
oasys_record_union_type record;
oasys_data_type *data = oasys_data(abfd);
boolean loop = true;
oasys_per_section_type *per ;
asection *s;
/* Buy enough memory for all the section data and relocations */
for (s = abfd->sections; s != (asection *)NULL; s= s->next) {
per = oasys_per_section(s);
if (per->data != (bfd_byte*)NULL) return true;
per->data = (bfd_byte *) malloc(s->size);
obstack_init(&per->reloc_obstack);
per->reloc_tail_ptr = (oasys_reloc_type **)&(s->relocation);
}
bfd_seek(abfd, data->first_data_record, SEEK_SET);
while (loop) {
oasys_read_record(abfd, &record);
switch (record.header.type) {
case oasys_record_is_header_enum:
break;
case oasys_record_is_data_enum:
{
uint8e_type *src = record.data.data;
uint8e_type *end_src = ((uint8e_type *)&record) + record.header.length;
unsigned int relbit;
bfd_byte *dst_ptr ;
bfd_byte *dst_base_ptr ;
asection *section;
unsigned int count;
bfd_vma dst_offset = bfd_h_getlong(abfd, record.data.addr);
section = data->sections[record.data.relb & RELOCATION_SECT_BITS];
per = oasys_per_section(section);
dst_base_ptr = dst_ptr = oasys_per_section(section)->data + dst_offset;
while (src < end_src) {
uint8e_type mod_byte = *src++;
count = 8;
for (relbit = 1; count-- != 0; relbit <<=1)
{
if (relbit & mod_byte)
{
uint8e_type reloc = *src;
/* This item needs to be relocated */
switch (reloc & RELOCATION_TYPE_BITS) {
case RELOCATION_TYPE_ABS:
break;
case RELOCATION_TYPE_REL:
{
/* Relocate the item relative to the section */
oasys_reloc_type *r =
(oasys_reloc_type *)
obstack_alloc(&per->reloc_obstack,
sizeof(oasys_reloc_type));
*(per->reloc_tail_ptr) = r;
per->reloc_tail_ptr = &r->next;
r->next= (oasys_reloc_type *)NULL;
/* Reference to undefined symbol */
src++;
/* There is no symbol */
r->symbol = 0;
/* Work out the howto */
r->relent.section =
data->sections[reloc & RELOCATION_SECT_BITS];
r->relent.addend = 0;
r->relent.address = dst_ptr - dst_base_ptr;
r->relent.howto = &howto_table[reloc>>6];
section->reloc_count++;
}
break;
case RELOCATION_TYPE_UND:
{
oasys_reloc_type *r =
(oasys_reloc_type *)
obstack_alloc(&per->reloc_obstack,
sizeof(oasys_reloc_type));
*(per->reloc_tail_ptr) = r;
per->reloc_tail_ptr = &r->next;
r->next= (oasys_reloc_type *)NULL;
/* Reference to undefined symbol */
src++;
/* Get symbol number */
r->symbol = (src[0]<<8) | src[1];
/* Work out the howto */
r->relent.section = (asection *)NULL;
r->relent.addend = 0;
r->relent.address = dst_ptr - dst_base_ptr;
r->relent.howto = &howto_table[reloc>>6];
section->reloc_count++;
src+=2;
}
break;
case RELOCATION_TYPE_COM:
BFD_FAIL();
}
}
*dst_ptr++ = *src++;
}
}
}
break;
case oasys_record_is_local_enum:
case oasys_record_is_symbol_enum:
case oasys_record_is_section_enum:
break;
default:
loop = false;
}
}
return true;
}
boolean
oasys_new_section_hook (abfd, newsect)
bfd *abfd;
asection *newsect;
{
newsect->used_by_bfd = (oasys_per_section_type *)
malloc(sizeof(oasys_per_section_type));
oasys_per_section( newsect)->data = (bfd_byte *)NULL;
oasys_per_section(newsect)->section = newsect;
oasys_per_section(newsect)->offset = 0;
return true;
}
unsigned int
oasys_get_reloc_upper_bound (abfd, asect)
bfd *abfd;
sec_ptr asect;
{
oasys_slurp_section_data(abfd);
return (asect->reloc_count+1) * sizeof(arelent *);
}
static boolean
oasys_get_section_contents (abfd, section, location, offset, count)
bfd *abfd;
sec_ptr section;
void *location;
file_ptr offset;
unsigned int count;
{
oasys_per_section_type *p = section->used_by_bfd;
oasys_slurp_section_data(abfd);
(void) memcpy(location, p->data + offset, count);
return true;
}
unsigned int
oasys_canonicalize_reloc (abfd, section, relptr, symbols)
bfd *abfd;
sec_ptr section;
arelent **relptr;
asymbol **symbols;
{
oasys_reloc_type *src = (oasys_reloc_type *)(section->relocation);
while (src != (oasys_reloc_type *)NULL) {
if (src->relent.section == (asection *)NULL) {
src->relent.sym_ptr_ptr = symbols + src->symbol;
}
*relptr ++ = &src->relent;
src = src->next;
}
*relptr = (arelent *)NULL;
return section->reloc_count;
}
boolean
oasys_set_arch_mach (abfd, arch, machine)
bfd *abfd;
enum bfd_architecture arch;
unsigned long machine;
{
abfd->obj_arch = arch;
abfd->obj_machine = machine;
return true;
}
boolean
oasys_mkobject(abfd)
bfd *abfd;
{
oasys_data_type *oasys =
(oasys_data_type *) malloc(sizeof(oasys_data_type));
oasys_data(abfd) = oasys;
if (oasys == (oasys_data_type *)NULL) {
bfd_error = no_memory;
return false;
}
return true;
}
static void
init_for_output(abfd)
bfd *abfd;
{
asection *s;
for (s = abfd->sections; s != (asection *)NULL; s = s->next) {
if (s->size != 0) {
oasys_per_section(s)->data = (bfd_byte *)(malloc(s->size));
}
}
}
/** exec and core file sections */
/* set section contents is complicated with OASYS since the format is
* not a byte image, but a record stream.
*/
boolean
oasys_set_section_contents (abfd, section, location, offset, count)
bfd *abfd;
sec_ptr section;
unsigned char *location;
file_ptr offset;
int count;
{
if (oasys_per_section(section)->data == (bfd_byte *)NULL) {
init_for_output(abfd);
}
(void) memcpy(oasys_per_section(section)->data + offset, location, count);
return true;
}
/* Native-level interface to symbols. */
/* We read the symbols into a buffer, which is discarded when this
function exits. We read the strings into a buffer large enough to
hold them all plus all the cached symbol entries. */
asymbol *
oasys_make_empty_symbol (abfd)
bfd *abfd;
{
oasys_symbol_type *new =
(oasys_symbol_type *)zalloc (sizeof (oasys_symbol_type));
new->symbol.the_bfd = abfd;
return &new->symbol;
}
void
oasys_reclaim_symbol_table (abfd)
bfd *abfd;
{
#if 0
asection *section;
if (!bfd_get_symcount (abfd)) return;
for (section = abfd->sections; section != NULL; section = section->next)
if (section->relocation) {
free ((void *)section->relocation);
section->relocation = NULL;
section->reloc_count = 0;
}
bfd_get_symcount (abfd) = 0;
free ((void *)obj_aout_symbols (abfd));
obj_aout_symbols (abfd) = (aout_symbol_type *)NULL;
#endif
}
/* Obsbolete procedural interface; better to look at the cache directly */
/* User should have checked the file flags; perhaps we should return
BFD_NO_MORE_SYMBOLS if there are none? */
int
oasys_get_symcount_upper_bound (abfd)
bfd *abfd;
{
#if 0
/* In case we're doing an output file or something...? */
if (bfd_get_symcount (abfd)) return bfd_get_symcount (abfd);
return (exec_hdr (abfd)->a_syms) / (sizeof (struct nlist));
#endif
}
symindex
oasys_get_first_symbol (ignore_abfd)
bfd * ignore_abfd;
{
return 0;
}
symindex
oasys_get_next_symbol (abfd, oidx)
bfd *abfd;
symindex oidx;
{
#if 0
if (oidx == BFD_NO_MORE_SYMBOLS) return BFD_NO_MORE_SYMBOLS;
return ++oidx >= bfd_get_symcount (abfd) ? BFD_NO_MORE_SYMBOLS :
oidx;
#endif
}
char *
oasys_symbol_name (abfd, idx)
bfd *abfd;
symindex idx;
{
#if 0
return (obj_aout_symbols (abfd) + idx)->symbol.name;
#endif
}
long
oasys_symbol_value (abfd, idx)
bfd *abfd;
symindex idx;
{
#if 0
return (obj_aout_symbols (abfd) + idx)->symbol.value;
#endif
}
symclass
oasys_classify_symbol (abfd, idx)
bfd *abfd;
symindex idx;
{
#if 0
aout_symbol_type *sym = obj_aout_symbols (abfd) + idx;
if ((sym->symbol.flags & BSF_FORT_COMM) != 0) return bfd_symclass_fcommon;
if ((sym->symbol.flags & BSF_GLOBAL) != 0) return bfd_symclass_global;
if ((sym->symbol.flags & BSF_DEBUGGING) != 0) return bfd_symclass_debugger;
if ((sym->symbol.flags & BSF_UNDEFINED) != 0) return bfd_symclass_undefined;
#endif
return bfd_symclass_unknown;
}
boolean
oasys_symbol_hasclass (abfd, idx, class)
bfd *abfd;
symindex idx;
symclass class;
{
#if 0
aout_symbol_type *sym = obj_aout_symbols (abfd) + idx;
switch (class) {
case bfd_symclass_fcommon:
return (sym->symbol.flags & BSF_FORT_COMM) ? true :false;
case bfd_symclass_global:
return (sym->symbol.flags & BSF_GLOBAL) ? true:false;
case bfd_symclass_debugger:
return (sym->symbol.flags & BSF_DEBUGGING) ? true:false;;
case bfd_symclass_undefined:
return (sym->symbol.flags & BSF_UNDEFINED) ? true:false;;
default: return false;
}
#endif
}
void
oasys_reclaim_reloc (ignore_abfd, section)
bfd *ignore_abfd;
sec_ptr section;
{
#if 0
if (section->relocation) {
free (section->relocation);
section->relocation = NULL;
section->reloc_count = 0;
}
#endif
}
boolean
oasys_close_and_cleanup (abfd)
bfd *abfd;
{
if (bfd_read_p (abfd) == false)
switch (abfd->format) {
case bfd_archive:
if (!_bfd_write_archive_contents (abfd)) {
return false;
}
break;
case bfd_object:
/* if (!oasys_write_object_contents (abfd)) */{
return false;
}
break;
default:
bfd_error = invalid_operation;
return false;
}
if (oasys_data(abfd) != (oasys_data_type *)NULL) {
/* FIXME MORE LEAKS */
}
return true;
}
static bfd *
oasys_openr_next_archived_file(arch, prev)
bfd *arch;
bfd *prev;
{
oasys_ar_data_type *ar = oasys_ar_data(arch);
oasys_module_info_type *p;
/* take the next one from the arch state, or reset */
if (prev == (bfd *)NULL) {
/* Reset the index - the first two entries are bogus*/
ar->module_index = 0;
}
p = ar->module + ar->module_index;
ar->module_index++;
if (ar->module_index <= ar->module_count) {
if (p->abfd == (bfd *)NULL) {
p->abfd = _bfd_create_empty_archive_element_shell(arch);
p->abfd->origin = p->pos;
p->abfd->filename = p->name;
/* Fixup a pointer to this element for the member */
p->abfd->arelt_data = (void *)p;
}
return p->abfd;
}
else {
bfd_error = no_more_archived_files;
return (bfd *)NULL;
}
}
static boolean
oasys_find_nearest_line(abfd,
section,
symbols,
offset,
filename_ptr,
functionname_ptr,
line_ptr)
bfd *abfd;
asection *section;
asymbol **symbols;
bfd_vma offset;
char **filename_ptr;
char **functionname_ptr;
unsigned int *line_ptr;
{
return false;
}
static int
oasys_stat_arch_elt(abfd, buf)
bfd *abfd;
struct stat *buf;
{
oasys_module_info_type *mod = abfd->arelt_data;
if (mod == (oasys_module_info_type *)NULL) {
bfd_error = invalid_operation;
return -1;
}
else {
buf->st_size = mod->size;
buf->st_mode = 0666;
return 0;
}
}
/*SUPPRESS 460 */
bfd_target oasys_vec =
{
"oasys", /* name */
bfd_target_oasys_flavour_enum,
true, /* target byte order */
true, /* target headers byte order */
(HAS_RELOC | EXEC_P | /* object flags */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
(SEC_CODE|SEC_DATA|SEC_ROM|SEC_HAS_CONTENTS
|SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
0, /* valid reloc types */
' ', /* ar_pad_char */
16, /* ar_max_namelen */
oasys_close_and_cleanup, /* _close_and_cleanup */
oasys_set_section_contents, /* bfd_set_section_contents */
oasys_get_section_contents,
oasys_new_section_hook, /* new_section_hook */
0, /* _core_file_failing_command */
0, /* _core_file_failing_signal */
0, /* _core_file_matches_ex...p */
0, /* bfd_slurp_bsd_armap, bfd_slurp_armap */
bfd_true, /* bfd_slurp_extended_name_table */
bfd_bsd_truncate_arname, /* bfd_truncate_arname */
oasys_get_symtab_upper_bound, /* get_symtab_upper_bound */
oasys_get_symtab, /* canonicalize_symtab */
0, /* oasys_reclaim_symbol_table, bfd_reclaim_symbol_table */
oasys_get_reloc_upper_bound, /* get_reloc_upper_bound */
oasys_canonicalize_reloc, /* bfd_canonicalize_reloc */
0, /* oasys_reclaim_reloc, bfd_reclaim_reloc */
0, /* oasys_get_symcount_upper_bound, bfd_get_symcount_upper_bound */
0, /* oasys_get_first_symbol, bfd_get_first_symbol */
0, /* oasys_get_next_symbol, bfd_get_next_symbol */
0, /* oasys_classify_symbol, bfd_classify_symbol */
0, /* oasys_symbol_hasclass, bfd_symbol_hasclass */
0, /* oasys_symbol_name, bfd_symbol_name */
0, /* oasys_symbol_value, bfd_symbol_value */
_do_getblong, _do_putblong, _do_getbshort, _do_putbshort, /* data */
_do_getblong, _do_putblong, _do_getbshort, _do_putbshort, /* hdrs */
{_bfd_dummy_target,
oasys_object_p, /* bfd_check_format */
oasys_archive_p,
bfd_false
},
{
bfd_false,
oasys_mkobject,
_bfd_generic_mkarchive,
bfd_false
},
oasys_make_empty_symbol,
oasys_print_symbol,
bfd_false, /* oasys_get_lineno,*/
oasys_set_arch_mach, /* bfd_set_arch_mach,*/
bfd_false,
oasys_openr_next_archived_file,
oasys_find_nearest_line, /* bfd_find_nearest_line */
oasys_stat_arch_elt, /* bfd_stat_arch_elt */
};

335
bfd/obstack.c Executable file
View file

@ -0,0 +1,335 @@
/* obstack.c - subroutines used implicitly by object stack macros
Copyright (C) 1988 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 1, or (at your option) any
later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "obstack.h"
#ifdef __STDC__
#define POINTER void *
#else
#define POINTER char *
#endif
/* Determine default alignment. */
struct fooalign {char x; double d;};
#define DEFAULT_ALIGNMENT ((char *)&((struct fooalign *) 0)->d - (char *)0)
/* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT.
But in fact it might be less smart and round addresses to as much as
DEFAULT_ROUNDING. So we prepare for it to do that. */
union fooround {long x; double d;};
#define DEFAULT_ROUNDING (sizeof (union fooround))
/* When we copy a long block of data, this is the unit to do it with.
On some machines, copying successive ints does not work;
in such a case, redefine COPYING_UNIT to `long' (if that works)
or `char' as a last resort. */
#ifndef COPYING_UNIT
#define COPYING_UNIT int
#endif
/* The non-GNU-C macros copy the obstack into this global variable
to avoid multiple evaluation. */
struct obstack *_obstack;
/* Initialize an obstack H for use. Specify chunk size SIZE (0 means default).
Objects start on multiples of ALIGNMENT (0 means use default).
CHUNKFUN is the function to use to allocate chunks,
and FREEFUN the function to free them. */
void
_obstack_begin (h, size, alignment, chunkfun, freefun)
struct obstack *h;
int size;
int alignment;
POINTER (*chunkfun) ();
void (*freefun) ();
{
register struct _obstack_chunk* chunk; /* points to new chunk */
if (alignment == 0)
alignment = DEFAULT_ALIGNMENT;
if (size == 0)
/* Default size is what GNU malloc can fit in a 4096-byte block. */
{
/* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
Use the values for range checking, because if range checking is off,
the extra bytes won't be missed terribly, but if range checking is on
and we used a larger request, a whole extra 4096 bytes would be
allocated.
These number are irrelevant to the new GNU malloc. I suspect it is
less sensitive to the size of the request. */
int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1))
+ 4 + DEFAULT_ROUNDING - 1)
& ~(DEFAULT_ROUNDING - 1));
size = 4096 - extra;
}
h->chunkfun = chunkfun;
h->freefun = freefun;
h->chunk_size = size;
h->alignment_mask = alignment - 1;
chunk = h->chunk = (struct _obstack_chunk *)(*h->chunkfun) (h->chunk_size);
h->next_free = h->object_base = chunk->contents;
h->chunk_limit = chunk->limit
= (char *) chunk + h->chunk_size;
chunk->prev = 0;
}
/* Allocate a new current chunk for the obstack *H
on the assumption that LENGTH bytes need to be added
to the current object, or a new object of length LENGTH allocated.
Copies any partial object from the end of the old chunk
to the beginning of the new one.
The function must be "int" so it can be used in non-ANSI C
compilers in a : expression. */
int
_obstack_newchunk (h, length)
struct obstack *h;
int length;
{
register struct _obstack_chunk* old_chunk = h->chunk;
register struct _obstack_chunk* new_chunk;
register long new_size;
register int obj_size = h->next_free - h->object_base;
register int i;
int already;
/* Compute size for new chunk. */
new_size = (obj_size + length) + (obj_size >> 3) + 100;
if (new_size < h->chunk_size)
new_size = h->chunk_size;
/* Allocate and initialize the new chunk. */
new_chunk = h->chunk = (struct _obstack_chunk *)(*h->chunkfun) (new_size);
new_chunk->prev = old_chunk;
new_chunk->limit = h->chunk_limit = (char *) new_chunk + new_size;
/* Move the existing object to the new chunk.
Word at a time is fast and is safe if the object
is sufficiently aligned. */
if (h->alignment_mask + 1 >= DEFAULT_ALIGNMENT)
{
for (i = obj_size / sizeof (COPYING_UNIT) - 1;
i >= 0; i--)
((COPYING_UNIT *)new_chunk->contents)[i]
= ((COPYING_UNIT *)h->object_base)[i];
/* We used to copy the odd few remaining bytes as one extra COPYING_UNIT,
but that can cross a page boundary on a machine
which does not do strict alignment for COPYING_UNITS. */
already = obj_size / sizeof (COPYING_UNIT) * sizeof (COPYING_UNIT);
}
else
already = 0;
/* Copy remaining bytes one by one. */
for (i = already; i < obj_size; i++)
new_chunk->contents[i] = h->object_base[i];
h->object_base = new_chunk->contents;
h->next_free = h->object_base + obj_size;
return 0;
}
/* Return nonzero if object OBJ has been allocated from obstack H.
This is here for debugging.
If you use it in a program, you are probably losing. */
int
_obstack_allocated_p (h, obj)
struct obstack *h;
POINTER obj;
{
register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */
register struct _obstack_chunk* plp; /* point to previous chunk if any */
lp = (h)->chunk;
while (lp != 0 && ((POINTER)lp > obj || (POINTER)(lp)->limit < obj))
{
plp = lp -> prev;
lp = plp;
}
return lp != 0;
}
/* Free objects in obstack H, including OBJ and everything allocate
more recently than OBJ. If OBJ is zero, free everything in H. */
#ifdef __STDC__
#undef obstack_free
void
obstack_free (struct obstack *h, POINTER obj)
#else
int
_obstack_free (h, obj)
struct obstack *h;
POINTER obj;
#endif
{
register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */
register struct _obstack_chunk* plp; /* point to previous chunk if any */
lp = (h)->chunk;
/* We use >= because there cannot be an object at the beginning of a chunk.
But there can be an empty object at that address
at the end of another chunk. */
while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj))
{
plp = lp -> prev;
(*h->freefun) ((POINTER) lp);
lp = plp;
}
if (lp)
{
(h)->object_base = (h)->next_free = (char *)(obj);
(h)->chunk_limit = lp->limit;
(h)->chunk = lp;
}
else if (obj != 0)
/* obj is not in any of the chunks! */
abort ();
}
/* Let same .o link with output of gcc and other compilers. */
#ifdef __STDC__
int
_obstack_free (h, obj)
struct obstack *h;
POINTER obj;
{
obstack_free (h, obj);
return 0;
}
#endif
/* #if 0 */
/* These are now turned off because the applications do not use it
and it uses bcopy via obstack_grow, which causes trouble on sysV. */
/* Now define the functional versions of the obstack macros.
Define them to simply use the corresponding macros to do the job. */
#ifdef __STDC__
/* These function definitions do not work with non-ANSI preprocessors;
they won't pass through the macro names in parentheses. */
/* The function names appear in parentheses in order to prevent
the macro-definitions of the names from being expanded there. */
POINTER (obstack_base) (obstack)
struct obstack *obstack;
{
return obstack_base (obstack);
}
POINTER (obstack_next_free) (obstack)
struct obstack *obstack;
{
return obstack_next_free (obstack);
}
int (obstack_object_size) (obstack)
struct obstack *obstack;
{
return obstack_object_size (obstack);
}
int (obstack_room) (obstack)
struct obstack *obstack;
{
return obstack_room (obstack);
}
void (obstack_grow) (obstack, pointer, length)
struct obstack *obstack;
POINTER pointer;
int length;
{
obstack_grow (obstack, pointer, length);
}
void (obstack_grow0) (obstack, pointer, length)
struct obstack *obstack;
POINTER pointer;
int length;
{
obstack_grow0 (obstack, pointer, length);
}
void (obstack_1grow) (obstack, character)
struct obstack *obstack;
int character;
{
obstack_1grow (obstack, character);
}
void (obstack_blank) (obstack, length)
struct obstack *obstack;
int length;
{
obstack_blank (obstack, length);
}
void (obstack_1grow_fast) (obstack, character)
struct obstack *obstack;
int character;
{
obstack_1grow_fast (obstack, character);
}
void (obstack_blank_fast) (obstack, length)
struct obstack *obstack;
int length;
{
obstack_blank_fast (obstack, length);
}
POINTER (obstack_finish) (obstack)
struct obstack *obstack;
{
return obstack_finish (obstack);
}
POINTER (obstack_alloc) (obstack, length)
struct obstack *obstack;
int length;
{
return obstack_alloc (obstack, length);
}
POINTER (obstack_copy) (obstack, pointer, length)
struct obstack *obstack;
POINTER pointer;
int length;
{
return obstack_copy (obstack, pointer, length);
}
POINTER (obstack_copy0) (obstack, pointer, length)
struct obstack *obstack;
POINTER pointer;
int length;
{
return obstack_copy0 (obstack, pointer, length);
}
#endif /* __STDC__ */

416
bfd/obstack.h Executable file
View file

@ -0,0 +1,416 @@
/* obstack.h - object stack macros
Copyright (C) 1988 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 1, or (at your option) any
later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Summary:
All the apparent functions defined here are macros. The idea
is that you would use these pre-tested macros to solve a
very specific set of problems, and they would run fast.
Caution: no side-effects in arguments please!! They may be
evaluated MANY times!!
These macros operate a stack of objects. Each object starts life
small, and may grow to maturity. (Consider building a word syllable
by syllable.) An object can move while it is growing. Once it has
been "finished" it never changes address again. So the "top of the
stack" is typically an immature growing object, while the rest of the
stack is of mature, fixed size and fixed address objects.
These routines grab large chunks of memory, using a function you
supply, called `obstack_chunk_alloc'. On occasion, they free chunks,
by calling `obstack_chunk_free'. You must define them and declare
them before using any obstack macros.
Each independent stack is represented by a `struct obstack'.
Each of the obstack macros expects a pointer to such a structure
as the first argument.
One motivation for this package is the problem of growing char strings
in symbol tables. Unless you are "fascist pig with a read-only mind"
[Gosper's immortal quote from HAKMEM item 154, out of context] you
would not like to put any arbitrary upper limit on the length of your
symbols.
In practice this often means you will build many short symbols and a
few long symbols. At the time you are reading a symbol you don't know
how long it is. One traditional method is to read a symbol into a
buffer, realloc()ating the buffer every time you try to read a symbol
that is longer than the buffer. This is beaut, but you still will
want to copy the symbol from the buffer to a more permanent
symbol-table entry say about half the time.
With obstacks, you can work differently. Use one obstack for all symbol
names. As you read a symbol, grow the name in the obstack gradually.
When the name is complete, finalize it. Then, if the symbol exists already,
free the newly read name.
The way we do this is to take a large chunk, allocating memory from
low addresses. When you want to build a symbol in the chunk you just
add chars above the current "high water mark" in the chunk. When you
have finished adding chars, because you got to the end of the symbol,
you know how long the chars are, and you can create a new object.
Mostly the chars will not burst over the highest address of the chunk,
because you would typically expect a chunk to be (say) 100 times as
long as an average object.
In case that isn't clear, when we have enough chars to make up
the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
so we just point to it where it lies. No moving of chars is
needed and this is the second win: potentially long strings need
never be explicitly shuffled. Once an object is formed, it does not
change its address during its lifetime.
When the chars burst over a chunk boundary, we allocate a larger
chunk, and then copy the partly formed object from the end of the old
chunk to the beginning of the new larger chunk. We then carry on
accreting characters to the end of the object as we normally would.
A special macro is provided to add a single char at a time to a
growing object. This allows the use of register variables, which
break the ordinary 'growth' macro.
Summary:
We allocate large chunks.
We carve out one object at a time from the current chunk.
Once carved, an object never moves.
We are free to append data of any size to the currently
growing object.
Exactly one object is growing in an obstack at any one time.
You can run one obstack per control block.
You may have as many control blocks as you dare.
Because of the way we do it, you can `unwind' a obstack
back to a previous state. (You may remove objects much
as you would with a stack.)
*/
/* Don't do the contents of this file more than once. */
#ifndef __OBSTACKS__
#define __OBSTACKS__
/* We use subtraction of (char *)0 instead of casting to int
because on word-addressable machines a simple cast to int
may ignore the byte-within-word field of the pointer. */
#ifndef __PTR_TO_INT
#define __PTR_TO_INT(P) ((P) - (char *)0)
#endif
#ifndef __INT_TO_PTR
#define __INT_TO_PTR(P) ((P) + (char *)0)
#endif
struct _obstack_chunk /* Lives at front of each chunk. */
{
char *limit; /* 1 past end of this chunk */
struct _obstack_chunk *prev; /* address of prior chunk or NULL */
char contents[4]; /* objects begin here */
};
struct obstack /* control current object in current chunk */
{
long chunk_size; /* preferred size to allocate chunks in */
struct _obstack_chunk* chunk; /* address of current struct obstack_chunk */
char *object_base; /* address of object we are building */
char *next_free; /* where to add next char to current object */
char *chunk_limit; /* address of char after current chunk */
int temp; /* Temporary for some macros. */
int alignment_mask; /* Mask of alignment for each object. */
#ifdef __STDC__
void *(*chunkfun) (); /* User's fcn to allocate a chunk. */
#else
char *(*chunkfun) (); /* User's fcn to allocate a chunk. */
#endif
void (*freefun) (); /* User's function to free a chunk. */
};
#ifdef __STDC__
/* Do the function-declarations after the structs
but before defining the macros. */
void obstack_init (struct obstack *obstack);
void * obstack_alloc (struct obstack *obstack, int size);
void * obstack_copy (struct obstack *obstack, void *address, int size);
void * obstack_copy0 (struct obstack *obstack, void *address, int size);
void obstack_free (struct obstack *obstack, void *block);
void obstack_blank (struct obstack *obstack, int size);
void obstack_grow (struct obstack *obstack, void *data, int size);
void obstack_grow0 (struct obstack *obstack, void *data, int size);
void obstack_1grow (struct obstack *obstack, int data_char);
void obstack_ptr_grow (struct obstack *obstack, void *data);
void obstack_int_grow (struct obstack *obstack, int data);
void * obstack_finish (struct obstack *obstack);
int obstack_object_size (struct obstack *obstack);
int obstack_room (struct obstack *obstack);
void obstack_1grow_fast (struct obstack *obstack, int data_char);
void obstack_ptr_grow_fast (struct obstack *obstack, void *data);
void obstack_int_grow_fast (struct obstack *obstack, int data);
void obstack_blank_fast (struct obstack *obstack, int size);
void * obstack_base (struct obstack *obstack);
void * obstack_next_free (struct obstack *obstack);
int obstack_alignment_mask (struct obstack *obstack);
int obstack_chunk_size (struct obstack *obstack);
#endif /* __STDC__ */
/* Non-ANSI C cannot really support alternative functions for these macros,
so we do not declare them. */
/* Pointer to beginning of object being allocated or to be allocated next.
Note that this might not be the final address of the object
because a new chunk might be needed to hold the final size. */
#define obstack_base(h) ((h)->object_base)
/* Size for allocating ordinary chunks. */
#define obstack_chunk_size(h) ((h)->chunk_size)
/* Pointer to next byte not yet allocated in current chunk. */
#define obstack_next_free(h) ((h)->next_free)
/* Mask specifying low bits that should be clear in address of an object. */
#define obstack_alignment_mask(h) ((h)->alignment_mask)
#define obstack_init(h) \
_obstack_begin ((h), 0, 0, obstack_chunk_alloc, obstack_chunk_free)
#define obstack_begin(h, size) \
_obstack_begin ((h), (size), 0, obstack_chunk_alloc, obstack_chunk_free)
#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = achar)
#define obstack_blank_fast(h,n) ((h)->next_free += (n))
#if defined (__GNUC__) && defined (__STDC__)
/* For GNU C, if not -traditional,
we can define these macros to compute all args only once
without using a global variable.
Also, we can avoid using the `temp' slot, to make faster code. */
#define obstack_object_size(OBSTACK) \
({ struct obstack *__o = (OBSTACK); \
(unsigned) (__o->next_free - __o->object_base); })
#define obstack_room(OBSTACK) \
({ struct obstack *__o = (OBSTACK); \
(unsigned) (__o->chunk_limit - __o->next_free); })
#define obstack_grow(OBSTACK,where,length) \
({ struct obstack *__o = (OBSTACK); \
int __len = (length); \
((__o->next_free + __len > __o->chunk_limit) \
? _obstack_newchunk (__o, __len) : 0); \
bcopy (where, __o->next_free, __len); \
__o->next_free += __len; \
(void) 0; })
#define obstack_grow0(OBSTACK,where,length) \
({ struct obstack *__o = (OBSTACK); \
int __len = (length); \
((__o->next_free + __len + 1 > __o->chunk_limit) \
? _obstack_newchunk (__o, __len + 1) : 0), \
bcopy (where, __o->next_free, __len), \
__o->next_free += __len, \
*(__o->next_free)++ = 0; \
(void) 0; })
#define obstack_1grow(OBSTACK,datum) \
({ struct obstack *__o = (OBSTACK); \
((__o->next_free + 1 > __o->chunk_limit) \
? _obstack_newchunk (__o, 1) : 0), \
*(__o->next_free)++ = (datum); \
(void) 0; })
/* These assume that the obstack alignment is good enough for pointers or ints,
and that the data added so far to the current object
shares that much alignment. */
#define obstack_ptr_grow(OBSTACK,datum) \
({ struct obstack *__o = (OBSTACK); \
((__o->next_free + sizeof (void *) > __o->chunk_limit) \
? _obstack_newchunk (__o, sizeof (void *)) : 0), \
*((void **)__o->next_free)++ = ((void *)datum); \
(void) 0; })
#define obstack_int_grow(OBSTACK,datum) \
({ struct obstack *__o = (OBSTACK); \
((__o->next_free + sizeof (int) > __o->chunk_limit) \
? _obstack_newchunk (__o, sizeof (int)) : 0), \
*((int *)__o->next_free)++ = ((int)datum); \
(void) 0; })
#define obstack_ptr_grow_fast(h,aptr) (*((void **)(h)->next_free)++ = (void *)aptr)
#define obstack_int_grow_fast(h,aint) (*((int *)(h)->next_free)++ = (int)aint)
#define obstack_blank(OBSTACK,length) \
({ struct obstack *__o = (OBSTACK); \
int __len = (length); \
((__o->chunk_limit - __o->next_free < __len) \
? _obstack_newchunk (__o, __len) : 0); \
__o->next_free += __len; \
(void) 0; })
#define obstack_alloc(OBSTACK,length) \
({ struct obstack *__h = (OBSTACK); \
obstack_blank (__h, (length)); \
obstack_finish (__h); })
#define obstack_copy(OBSTACK,where,length) \
({ struct obstack *__h = (OBSTACK); \
obstack_grow (__h, (where), (length)); \
obstack_finish (__h); })
#define obstack_copy0(OBSTACK,where,length) \
({ struct obstack *__h = (OBSTACK); \
obstack_grow0 (__h, (where), (length)); \
obstack_finish (__h); })
#define obstack_finish(OBSTACK) \
({ struct obstack *__o = (OBSTACK); \
void *value = (void *) __o->object_base; \
__o->next_free \
= __INT_TO_PTR ((__PTR_TO_INT (__o->next_free)+__o->alignment_mask)\
& ~ (__o->alignment_mask)); \
((__o->next_free - (char *)__o->chunk \
> __o->chunk_limit - (char *)__o->chunk) \
? (__o->next_free = __o->chunk_limit) : 0); \
__o->object_base = __o->next_free; \
value; })
#define obstack_free(OBSTACK, OBJ) \
({ struct obstack *__o = (OBSTACK); \
void *__obj = (OBJ); \
if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit) \
__o->next_free = __o->object_base = __obj; \
else (obstack_free) (__o, __obj); })
#else /* not __GNUC__ or not __STDC__ */
#define obstack_object_size(h) \
(unsigned) ((h)->next_free - (h)->object_base)
#define obstack_room(h) \
(unsigned) ((h)->chunk_limit - (h)->next_free)
#define obstack_grow(h,where,length) \
( (h)->temp = (length), \
(((h)->next_free + (h)->temp > (h)->chunk_limit) \
? _obstack_newchunk ((h), (h)->temp) : 0), \
bcopy (where, (h)->next_free, (h)->temp), \
(h)->next_free += (h)->temp)
#define obstack_grow0(h,where,length) \
( (h)->temp = (length), \
(((h)->next_free + (h)->temp + 1 > (h)->chunk_limit) \
? _obstack_newchunk ((h), (h)->temp + 1) : 0), \
bcopy (where, (h)->next_free, (h)->temp), \
(h)->next_free += (h)->temp, \
*((h)->next_free)++ = 0)
#define obstack_1grow(h,datum) \
( (((h)->next_free + 1 > (h)->chunk_limit) \
? _obstack_newchunk ((h), 1) : 0), \
*((h)->next_free)++ = (datum))
#define obstack_ptr_grow(h,datum) \
( (((h)->next_free + sizeof (char *) > (h)->chunk_limit) \
? _obstack_newchunk ((h), sizeof (char *)) : 0), \
*((char **)(h)->next_free)++ = ((char *)datum))
#define obstack_int_grow(h,datum) \
( (((h)->next_free + sizeof (int) > (h)->chunk_limit) \
? _obstack_newchunk ((h), sizeof (int)) : 0), \
*((int *)(h)->next_free)++ = ((int)datum))
#define obstack_ptr_grow_fast(h,aptr) (*((char **)(h)->next_free)++ = (char *)aptr)
#define obstack_int_grow_fast(h,aint) (*((int *)(h)->next_free)++ = (int)aint)
#define obstack_blank(h,length) \
( (h)->temp = (length), \
(((h)->chunk_limit - (h)->next_free < (h)->temp) \
? _obstack_newchunk ((h), (h)->temp) : 0), \
(h)->next_free += (h)->temp)
#define obstack_alloc(h,length) \
(obstack_blank ((h), (length)), obstack_finish ((h)))
#define obstack_copy(h,where,length) \
(obstack_grow ((h), (where), (length)), obstack_finish ((h)))
#define obstack_copy0(h,where,length) \
(obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
#define obstack_finish(h) \
( (h)->temp = __PTR_TO_INT ((h)->object_base), \
(h)->next_free \
= __INT_TO_PTR ((__PTR_TO_INT ((h)->next_free)+(h)->alignment_mask) \
& ~ ((h)->alignment_mask)), \
(((h)->next_free - (char *)(h)->chunk \
> (h)->chunk_limit - (char *)(h)->chunk) \
? ((h)->next_free = (h)->chunk_limit) : 0), \
(h)->object_base = (h)->next_free, \
__INT_TO_PTR ((h)->temp))
#ifdef __STDC__
#define obstack_free(h,obj) \
( (h)->temp = (char *)(obj) - (char *) (h)->chunk, \
(((h)->temp >= 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
? (int) ((h)->next_free = (h)->object_base \
= (h)->temp + (char *) (h)->chunk) \
: ((obstack_free) ((h), (h)->temp + (char *) (h)->chunk), 0)))
#else
#define obstack_free(h,obj) \
( (h)->temp = (char *)(obj) - (char *) (h)->chunk, \
(((h)->temp >= 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
? (int) ((h)->next_free = (h)->object_base \
= (h)->temp + (char *) (h)->chunk) \
: (int) _obstack_free ((h), (h)->temp + (char *) (h)->chunk)))
#endif
#endif /* not __GNUC__ or not __STDC__ */
/* Declare the external functions we use; they are in obstack.c. */
#ifdef __STDC__
extern int _obstack_newchunk (struct obstack *h, int length);
extern int _obstack_free (struct obstack *h, void *obj);
extern void _obstack_begin (struct obstack *h, int size, int alignment,
void *(*chunkfun) (), void (*freefun) ());
#else
extern int _obstack_newchunk ();
extern int _obstack_free ();
extern void _obstack_begin ();
#endif
#endif /* not __OBSTACKS__ */