Change the layout of the PowerPC E500 raw register cache to allow
the lower 32-bit halves of the GPRS to be their own raw registers, not pseudoregisters. * ppc-tdep.h (struct gdbarch_tdep): Remove ppc_gprs_pseudo_p flag; add ppc_ev0_upper_regnum flag. * rs6000-tdep.c: #include "reggroups.h". (spe_register_p): Recognize the ev upper half registers as SPE registers. (init_sim_regno_table): Build gdb->sim mappings for the upper-half registers. (e500_move_ev_register): New function. (e500_pseudo_register_read, e500_pseudo_register_write): The 'ev' vector registers are the pseudo-registers now, formed by splicing together the gprs and the upper-half registers. (e500_register_reggroup_p): New function. (P): Macro deleted. (P8, A4): New macro. (PPC_EV_REGS, PPC_GPRS_PSEUDO_REGS): Macros deleted. (PPC_SPE_GP_REGS, PPC_SPE_UPPER_GP_REGS, PPC_EV_PSEUDO_REGS): New macros. (registers_e500): Rearrange register set so that the raw register set contains 32-bit GPRs and upper-half registers, and the SPE vector registers become pseudo-registers. (rs6000_gdbarch_init): Don't initialize tdep->ppc_gprs_pseudo_p; it has been deleted. Initialize ppc_ev0_upper_regnum. Many other register numbers are now the same for the E500 as they are for other PowerPC variants. Register e500_register_reggroup_p as the register group function for the E500. * Makefile.in (rs6000-tdep.o): Update dependencies. Adapt PPC E500 native support to the new raw regcache layout. * ppc-linux-nat.c (struct gdb_evrregset_t): Doc fixes. (read_spliced_spe_reg, write_spliced_spe_reg): Deleted. (fetch_spe_register, store_spe_register): Handle fetching/storing all the SPE registers at once, if regno == -1. These now take over the job of fetch_spe_registers and store_spe_registers. (fetch_spe_registers, store_spe_registers): Deleted. (fetch_ppc_registers, store_ppc_registers): Fetch/store gprs unconditionally; they're always raw. Fetch/store SPE upper half registers, if present, instead of ev registers. (fetch_register, store_register): Remove sanity checks: gprs are never pseudo-registers now, so we never need to even mention any registers that are ever pseudoregisters.
This commit is contained in:
parent
9f64376872
commit
6ced10dd55
5 changed files with 286 additions and 334 deletions
|
@ -1,5 +1,49 @@
|
|||
2004-08-04 Jim Blandy <jimb@redhat.com>
|
||||
|
||||
Change the layout of the PowerPC E500 raw register cache to allow
|
||||
the lower 32-bit halves of the GPRS to be their own raw registers,
|
||||
not pseudoregisters.
|
||||
* ppc-tdep.h (struct gdbarch_tdep): Remove ppc_gprs_pseudo_p flag;
|
||||
add ppc_ev0_upper_regnum flag.
|
||||
* rs6000-tdep.c: #include "reggroups.h".
|
||||
(spe_register_p): Recognize the ev upper half registers as SPE
|
||||
registers.
|
||||
(init_sim_regno_table): Build gdb->sim mappings for the upper-half
|
||||
registers.
|
||||
(e500_move_ev_register): New function.
|
||||
(e500_pseudo_register_read, e500_pseudo_register_write): The 'ev'
|
||||
vector registers are the pseudo-registers now, formed by splicing
|
||||
together the gprs and the upper-half registers.
|
||||
(e500_register_reggroup_p): New function.
|
||||
(P): Macro deleted.
|
||||
(P8, A4): New macro.
|
||||
(PPC_EV_REGS, PPC_GPRS_PSEUDO_REGS): Macros deleted.
|
||||
(PPC_SPE_GP_REGS, PPC_SPE_UPPER_GP_REGS, PPC_EV_PSEUDO_REGS): New
|
||||
macros.
|
||||
(registers_e500): Rearrange register set so that the raw register
|
||||
set contains 32-bit GPRs and upper-half registers, and the SPE
|
||||
vector registers become pseudo-registers.
|
||||
(rs6000_gdbarch_init): Don't initialize tdep->ppc_gprs_pseudo_p;
|
||||
it has been deleted. Initialize ppc_ev0_upper_regnum. Many other
|
||||
register numbers are now the same for the E500 as they are for
|
||||
other PowerPC variants. Register e500_register_reggroup_p as the
|
||||
register group function for the E500.
|
||||
* Makefile.in (rs6000-tdep.o): Update dependencies.
|
||||
|
||||
Adapt PPC E500 native support to the new raw regcache layout.
|
||||
* ppc-linux-nat.c (struct gdb_evrregset_t): Doc fixes.
|
||||
(read_spliced_spe_reg, write_spliced_spe_reg): Deleted.
|
||||
(fetch_spe_register, store_spe_register): Handle fetching/storing
|
||||
all the SPE registers at once, if regno == -1. These now take
|
||||
over the job of fetch_spe_registers and store_spe_registers.
|
||||
(fetch_spe_registers, store_spe_registers): Deleted.
|
||||
(fetch_ppc_registers, store_ppc_registers): Fetch/store gprs
|
||||
unconditionally; they're always raw. Fetch/store SPE upper half
|
||||
registers, if present, instead of ev registers.
|
||||
(fetch_register, store_register): Remove sanity checks: gprs are
|
||||
never pseudo-registers now, so we never need to even mention any
|
||||
registers that are ever pseudoregisters.
|
||||
|
||||
Use a fixed register numbering when communicating with the PowerPC
|
||||
simulator.
|
||||
* ppc-tdep.h (struct gdbarch_tdep): New member: 'sim_regno'.
|
||||
|
|
|
@ -2402,7 +2402,7 @@ rs6000-tdep.o: rs6000-tdep.c $(defs_h) $(frame_h) $(inferior_h) $(symtab_h) \
|
|||
$(coff_xcoff_h) $(libxcoff_h) $(elf_bfd_h) $(solib_svr4_h) \
|
||||
$(ppc_tdep_h) $(gdb_assert_h) $(dis_asm_h) $(trad_frame_h) \
|
||||
$(frame_unwind_h) $(frame_base_h) $(infcall_h) $(sim_regno_h) \
|
||||
$(gdb_sim_ppc_h)
|
||||
$(gdb_sim_ppc_h) $(reggroups_h)
|
||||
s390-nat.o: s390-nat.c $(defs_h) $(tm_h) $(regcache_h) $(inferior_h) \
|
||||
$(s390_tdep_h)
|
||||
s390-tdep.o: s390-tdep.c $(defs_h) $(arch_utils_h) $(frame_h) $(inferior_h) \
|
||||
|
|
|
@ -123,12 +123,10 @@ typedef char gdb_vrregset_t[SIZEOF_VRREGS];
|
|||
some SPE-specific registers.
|
||||
|
||||
GDB itself continues to claim the general-purpose registers are 32
|
||||
bits long; the full 64-bit registers are called 'ev0' -- 'ev31'.
|
||||
The ev registers are raw registers, and the GPR's are pseudo-
|
||||
registers mapped onto their lower halves. This means that reading
|
||||
and writing ev registers involves a mix of regset-at-once
|
||||
PTRACE_{GET,SET}EVRREGS calls and register-at-a-time
|
||||
PTRACE_{PEEK,POKE}USR calls.
|
||||
bits long. It has unnamed raw registers that hold the upper halves
|
||||
of the gprs, and the the full 64-bit SIMD views of the registers,
|
||||
'ev0' -- 'ev31', are pseudo-registers that splice the top and
|
||||
bottom halves together.
|
||||
|
||||
This is the structure filled in by PTRACE_GETEVRREGS and written to
|
||||
the inferior's registers by PTRACE_SETEVRREGS. */
|
||||
|
@ -283,105 +281,46 @@ get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|||
memset (evrregset, 0, sizeof (*evrregset));
|
||||
}
|
||||
|
||||
/* Assuming TID refers to an SPE process, store the full 64-bit value
|
||||
of TID's ev register EV_REGNUM in DEST, getting the high bits from
|
||||
EVRREGS and the low bits from the kernel via ptrace. */
|
||||
static void
|
||||
read_spliced_spe_reg (int tid, int ev_regnum,
|
||||
struct gdb_evrregset_t *evrregs,
|
||||
char *dest)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
|
||||
/* Make sure we're trying to read an EV register; that's all we
|
||||
handle. */
|
||||
gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
|
||||
&& ev_regnum <= tdep->ppc_ev31_regnum);
|
||||
|
||||
/* Make sure the sizes for the splicing add up. */
|
||||
gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
|
||||
== register_size (current_gdbarch, ev_regnum));
|
||||
|
||||
{
|
||||
/* The index of ev_regnum in evrregs->evr[]. */
|
||||
int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
|
||||
|
||||
/* The number of the corresponding general-purpose register, which
|
||||
holds the lower 32 bits of the EV register. */
|
||||
int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
|
||||
|
||||
/* The offset of gpr_regnum in the process's uarea. */
|
||||
CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
|
||||
|
||||
/* The low word of the EV register's value. */
|
||||
PTRACE_XFER_TYPE low_word;
|
||||
|
||||
/* The PTRACE_PEEKUSR / PT_READ_U ptrace requests need to be able
|
||||
to return arbitrary register values, so they can't return -1 to
|
||||
indicate an error. So we clear errno, and then check it after
|
||||
the call. */
|
||||
errno = 0;
|
||||
low_word = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset, 0);
|
||||
|
||||
if (errno != 0)
|
||||
{
|
||||
char message[128];
|
||||
sprintf (message, "reading register %s (#%d)",
|
||||
REGISTER_NAME (ev_regnum), ev_regnum);
|
||||
perror_with_name (message);
|
||||
}
|
||||
|
||||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||||
{
|
||||
memcpy (dest, &evrregs->evr[ev_index],
|
||||
sizeof (evrregs->evr[ev_index]));
|
||||
* (PTRACE_XFER_TYPE *) (dest + sizeof (evrregs->evr[ev_index]))
|
||||
= low_word;
|
||||
}
|
||||
else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||||
{
|
||||
* (PTRACE_XFER_TYPE *) dest = low_word;
|
||||
memcpy (dest + sizeof (PTRACE_XFER_TYPE),
|
||||
&evrregs->evr[ev_index], sizeof (evrregs->evr[ev_index]));
|
||||
}
|
||||
else
|
||||
gdb_assert (0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* On SPE machines, supply the full value of the SPE register REGNO
|
||||
from TID. This handles ev0 -- ev31 and acc, which are 64 bits
|
||||
long, and spefscr, which is 32 bits long. */
|
||||
/* Supply values from TID for SPE-specific raw registers: the upper
|
||||
halves of the GPRs, the accumulator, and the spefscr. REGNO must
|
||||
be the number of an upper half register, acc, spefscr, or -1 to
|
||||
supply the values of all registers. */
|
||||
static void
|
||||
fetch_spe_register (int tid, int regno)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
struct gdb_evrregset_t evrregs;
|
||||
|
||||
gdb_assert (sizeof (evrregs.evr[0])
|
||||
== register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
|
||||
gdb_assert (sizeof (evrregs.acc)
|
||||
== register_size (current_gdbarch, tdep->ppc_acc_regnum));
|
||||
gdb_assert (sizeof (evrregs.spefscr)
|
||||
== register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
|
||||
|
||||
get_spe_registers (tid, &evrregs);
|
||||
|
||||
if (tdep->ppc_ev0_regnum <= regno
|
||||
&& regno <= tdep->ppc_ev31_regnum)
|
||||
if (regno == -1)
|
||||
{
|
||||
char buf[MAX_REGISTER_SIZE];
|
||||
read_spliced_spe_reg (tid, regno, &evrregs, buf);
|
||||
regcache_raw_supply (current_regcache, regno, buf);
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i,
|
||||
&evrregs.evr[i]);
|
||||
}
|
||||
else if (regno == tdep->ppc_acc_regnum)
|
||||
{
|
||||
gdb_assert (sizeof (evrregs.acc)
|
||||
== register_size (current_gdbarch, regno));
|
||||
regcache_raw_supply (current_regcache, regno, &evrregs.acc);
|
||||
}
|
||||
else if (regno == tdep->ppc_spefscr_regnum)
|
||||
{
|
||||
gdb_assert (sizeof (evrregs.spefscr)
|
||||
== register_size (current_gdbarch, regno));
|
||||
regcache_raw_supply (current_regcache, regno, &evrregs.spefscr);
|
||||
}
|
||||
else
|
||||
gdb_assert (0);
|
||||
else if (tdep->ppc_ev0_upper_regnum <= regno
|
||||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||||
regcache_raw_supply (current_regcache, regno,
|
||||
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
||||
|
||||
if (regno == -1
|
||||
|| regno == tdep->ppc_acc_regnum)
|
||||
regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
|
||||
|
||||
if (regno == -1
|
||||
|| regno == tdep->ppc_spefscr_regnum)
|
||||
regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
|
||||
&evrregs.spefscr);
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -394,12 +333,6 @@ fetch_register (int tid, int regno)
|
|||
unsigned int offset; /* Offset of registers within the u area. */
|
||||
char buf[MAX_REGISTER_SIZE];
|
||||
|
||||
/* Sanity check: this function should only be called to fetch raw
|
||||
registers' values, never pseudoregisters' values. */
|
||||
if (tdep->ppc_gp0_regnum <= regno
|
||||
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||||
gdb_assert (! tdep->ppc_gprs_pseudo_p);
|
||||
|
||||
if (altivec_register_p (regno))
|
||||
{
|
||||
/* If this is the first time through, or if it is not the first
|
||||
|
@ -512,42 +445,14 @@ fetch_altivec_registers (int tid)
|
|||
supply_vrregset (®s);
|
||||
}
|
||||
|
||||
/* On SPE machines, fetch the full 64 bits of all the general-purpose
|
||||
registers, as well as the SPE-specific registers 'acc' and
|
||||
'spefscr'. */
|
||||
static void
|
||||
fetch_spe_registers (int tid)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
struct gdb_evrregset_t evrregs;
|
||||
int i;
|
||||
|
||||
get_spe_registers (tid, &evrregs);
|
||||
|
||||
/* Splice and supply each of the EV registers. */
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
{
|
||||
char buf[MAX_REGISTER_SIZE];
|
||||
|
||||
read_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
|
||||
regcache_raw_supply (current_regcache, tdep->ppc_ev0_regnum + i, buf);
|
||||
}
|
||||
|
||||
/* Supply the SPE-specific registers. */
|
||||
regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
|
||||
regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
|
||||
&evrregs.spefscr);
|
||||
}
|
||||
|
||||
static void
|
||||
fetch_ppc_registers (int tid)
|
||||
{
|
||||
int i;
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
|
||||
if (! tdep->ppc_gprs_pseudo_p)
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
fetch_register (tid, tdep->ppc_gp0_regnum + i);
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
fetch_register (tid, tdep->ppc_gp0_regnum + i);
|
||||
if (tdep->ppc_fp0_regnum >= 0)
|
||||
for (i = 0; i < ppc_num_fprs; i++)
|
||||
fetch_register (tid, tdep->ppc_fp0_regnum + i);
|
||||
|
@ -569,8 +474,8 @@ fetch_ppc_registers (int tid)
|
|||
if (have_ptrace_getvrregs)
|
||||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||||
fetch_altivec_registers (tid);
|
||||
if (tdep->ppc_ev0_regnum >= 0)
|
||||
fetch_spe_registers (tid);
|
||||
if (tdep->ppc_ev0_upper_regnum >= 0)
|
||||
fetch_spe_register (tid, -1);
|
||||
}
|
||||
|
||||
/* Fetch registers from the child process. Fetch all registers if
|
||||
|
@ -655,102 +560,58 @@ set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|||
}
|
||||
}
|
||||
|
||||
/* Store the bytes at SRC as the contents of TID's EV register EV_REGNUM.
|
||||
Write the less significant word to TID using ptrace, and copy the
|
||||
more significant word to the appropriate slot in EVRREGS. */
|
||||
static void
|
||||
write_spliced_spe_reg (int tid, int ev_regnum,
|
||||
struct gdb_evrregset_t *evrregs,
|
||||
char *src)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
|
||||
/* Make sure we're trying to write an EV register; that's all we
|
||||
handle. */
|
||||
gdb_assert (tdep->ppc_ev0_regnum <= ev_regnum
|
||||
&& ev_regnum <= tdep->ppc_ev31_regnum);
|
||||
|
||||
/* Make sure the sizes for the splicing add up. */
|
||||
gdb_assert (sizeof (evrregs->evr[0]) + sizeof (PTRACE_XFER_TYPE)
|
||||
== register_size (current_gdbarch, ev_regnum));
|
||||
|
||||
{
|
||||
int ev_index = ev_regnum - tdep->ppc_ev0_regnum;
|
||||
|
||||
/* The number of the corresponding general-purpose register, which
|
||||
holds the lower 32 bits of the EV register. */
|
||||
int gpr_regnum = tdep->ppc_gp0_regnum + ev_index;
|
||||
|
||||
/* The offset of gpr_regnum in the process's uarea. */
|
||||
CORE_ADDR gpr_uoffset = ppc_register_u_addr (gpr_regnum);
|
||||
|
||||
/* The PTRACE_POKEUSR / PT_WRITE_U ptrace requests need to be able
|
||||
to return arbitrary register values, so they can't return -1 to
|
||||
indicate an error. So we clear errno, and check it again
|
||||
afterwards. */
|
||||
errno = 0;
|
||||
|
||||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||||
{
|
||||
memcpy (&evrregs->evr[ev_index], src, sizeof (evrregs->evr[ev_index]));
|
||||
ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
|
||||
* (PTRACE_XFER_TYPE *) (src + sizeof (evrregs->evr[0])));
|
||||
}
|
||||
else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||||
{
|
||||
ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) gpr_uoffset,
|
||||
* (PTRACE_XFER_TYPE *) src);
|
||||
memcpy (&evrregs->evr[ev_index], src + sizeof (PTRACE_XFER_TYPE),
|
||||
sizeof (evrregs->evr[ev_index]));
|
||||
}
|
||||
else
|
||||
gdb_assert (0);
|
||||
|
||||
if (errno != 0)
|
||||
{
|
||||
char message[128];
|
||||
sprintf (message, "writing register %s (#%d)",
|
||||
REGISTER_NAME (ev_regnum), ev_regnum);
|
||||
perror_with_name (message);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Write GDB's value for the SPE register REGNO to TID. */
|
||||
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
|
||||
If REGNO is -1, write the values of all the SPE-specific
|
||||
registers. */
|
||||
static void
|
||||
store_spe_register (int tid, int regno)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
struct gdb_evrregset_t evrregs;
|
||||
|
||||
/* We can only read and write the entire EVR register set at a time,
|
||||
so to write just a single register, we do a read-modify-write
|
||||
maneuver. */
|
||||
get_spe_registers (tid, &evrregs);
|
||||
gdb_assert (sizeof (evrregs.evr[0])
|
||||
== register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
|
||||
gdb_assert (sizeof (evrregs.acc)
|
||||
== register_size (current_gdbarch, tdep->ppc_acc_regnum));
|
||||
gdb_assert (sizeof (evrregs.spefscr)
|
||||
== register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
|
||||
|
||||
if (tdep->ppc_ev0_regnum >= 0
|
||||
&& tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
|
||||
{
|
||||
char buf[MAX_REGISTER_SIZE];
|
||||
regcache_raw_collect (current_regcache, regno, buf);
|
||||
write_spliced_spe_reg (tid, regno, &evrregs, buf);
|
||||
}
|
||||
else if (tdep->ppc_acc_regnum >= 0
|
||||
&& regno == tdep->ppc_acc_regnum)
|
||||
{
|
||||
gdb_assert (sizeof (evrregs.acc)
|
||||
== register_size (current_gdbarch, regno));
|
||||
regcache_raw_collect (current_regcache, regno, &evrregs.acc);
|
||||
}
|
||||
else if (tdep->ppc_spefscr_regnum >= 0
|
||||
&& regno == tdep->ppc_spefscr_regnum)
|
||||
{
|
||||
gdb_assert (sizeof (evrregs.spefscr)
|
||||
== register_size (current_gdbarch, regno));
|
||||
regcache_raw_collect (current_regcache, regno, &evrregs.spefscr);
|
||||
}
|
||||
if (regno == -1)
|
||||
/* Since we're going to write out every register, the code below
|
||||
should store to every field of evrregs; if that doesn't happen,
|
||||
make it obvious by initializing it with suspicious values. */
|
||||
memset (&evrregs, 42, sizeof (evrregs));
|
||||
else
|
||||
gdb_assert (0);
|
||||
/* We can only read and write the entire EVR register set at a
|
||||
time, so to write just a single register, we do a
|
||||
read-modify-write maneuver. */
|
||||
get_spe_registers (tid, &evrregs);
|
||||
|
||||
if (regno == -1)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
regcache_raw_collect (current_regcache,
|
||||
tdep->ppc_ev0_upper_regnum + i,
|
||||
&evrregs.evr[i]);
|
||||
}
|
||||
else if (tdep->ppc_ev0_upper_regnum <= regno
|
||||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||||
regcache_raw_collect (current_regcache, regno,
|
||||
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
||||
|
||||
if (regno == -1
|
||||
|| regno == tdep->ppc_acc_regnum)
|
||||
regcache_raw_collect (current_regcache,
|
||||
tdep->ppc_acc_regnum,
|
||||
&evrregs.acc);
|
||||
|
||||
if (regno == -1
|
||||
|| regno == tdep->ppc_spefscr_regnum)
|
||||
regcache_raw_collect (current_regcache,
|
||||
tdep->ppc_spefscr_regnum,
|
||||
&evrregs.spefscr);
|
||||
|
||||
/* Write back the modified register set. */
|
||||
set_spe_registers (tid, &evrregs);
|
||||
|
@ -766,12 +627,6 @@ store_register (int tid, int regno)
|
|||
size_t bytes_to_transfer;
|
||||
char buf[MAX_REGISTER_SIZE];
|
||||
|
||||
/* Sanity check: this function should only be called to store raw
|
||||
registers' values, never pseudoregisters' values. */
|
||||
if (tdep->ppc_gp0_regnum <= regno
|
||||
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||||
gdb_assert (! tdep->ppc_gprs_pseudo_p);
|
||||
|
||||
if (altivec_register_p (regno))
|
||||
{
|
||||
store_altivec_register (tid, regno);
|
||||
|
@ -874,45 +729,14 @@ store_altivec_registers (int tid)
|
|||
perror_with_name ("Couldn't write AltiVec registers");
|
||||
}
|
||||
|
||||
static void
|
||||
store_spe_registers (int tid)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
struct gdb_evrregset_t evrregs;
|
||||
int i;
|
||||
|
||||
/* The code below should store to every field of evrregs; if that
|
||||
doesn't happen, make it obvious by initializing it with
|
||||
suspicious values. */
|
||||
memset (&evrregs, 42, sizeof (evrregs));
|
||||
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
{
|
||||
char buf[MAX_REGISTER_SIZE];
|
||||
|
||||
regcache_raw_collect (current_regcache, tdep->ppc_ev0_regnum + i, buf);
|
||||
write_spliced_spe_reg (tid, tdep->ppc_ev0_regnum + i, &evrregs, buf);
|
||||
}
|
||||
|
||||
gdb_assert (sizeof (evrregs.acc)
|
||||
== register_size (current_gdbarch, tdep->ppc_acc_regnum));
|
||||
regcache_raw_collect (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);
|
||||
gdb_assert (sizeof (evrregs.spefscr)
|
||||
== register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
|
||||
regcache_raw_collect (current_regcache, tdep->ppc_acc_regnum, &evrregs.spefscr);
|
||||
|
||||
set_spe_registers (tid, &evrregs);
|
||||
}
|
||||
|
||||
static void
|
||||
store_ppc_registers (int tid)
|
||||
{
|
||||
int i;
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||||
|
||||
if (! tdep->ppc_gprs_pseudo_p)
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
store_register (tid, tdep->ppc_gp0_regnum + i);
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
store_register (tid, tdep->ppc_gp0_regnum + i);
|
||||
if (tdep->ppc_fp0_regnum >= 0)
|
||||
for (i = 0; i < ppc_num_fprs; i++)
|
||||
store_register (tid, tdep->ppc_fp0_regnum + i);
|
||||
|
@ -934,8 +758,8 @@ store_ppc_registers (int tid)
|
|||
if (have_ptrace_getvrregs)
|
||||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||||
store_altivec_registers (tid);
|
||||
if (tdep->ppc_ev0_regnum >= 0)
|
||||
store_spe_registers (tid);
|
||||
if (tdep->ppc_ev0_upper_regnum >= 0)
|
||||
store_spe_register (tid, -1);
|
||||
}
|
||||
|
||||
void
|
||||
|
|
|
@ -144,7 +144,6 @@ struct gdbarch_tdep
|
|||
int wordsize; /* size in bytes of fixed-point word */
|
||||
const struct reg *regs; /* from current variant */
|
||||
int ppc_gp0_regnum; /* GPR register 0 */
|
||||
int ppc_gprs_pseudo_p; /* non-zero if GPRs are pseudo-registers */
|
||||
int ppc_toc_regnum; /* TOC register */
|
||||
int ppc_ps_regnum; /* Processor (or machine) status (%msr) */
|
||||
int ppc_cr_regnum; /* Condition register */
|
||||
|
@ -165,6 +164,7 @@ struct gdbarch_tdep
|
|||
int ppc_mq_regnum; /* Multiply/Divide extension register */
|
||||
int ppc_vr0_regnum; /* First AltiVec register */
|
||||
int ppc_vrsave_regnum; /* Last AltiVec register */
|
||||
int ppc_ev0_upper_regnum; /* First GPR upper half register */
|
||||
int ppc_ev0_regnum; /* First ev register */
|
||||
int ppc_ev31_regnum; /* Last ev register */
|
||||
int ppc_acc_regnum; /* SPE 'acc' register */
|
||||
|
|
|
@ -39,6 +39,7 @@
|
|||
#include "infcall.h"
|
||||
#include "sim-regno.h"
|
||||
#include "gdb/sim-ppc.h"
|
||||
#include "reggroups.h"
|
||||
|
||||
#include "libbfd.h" /* for bfd_default_set_arch_mach */
|
||||
#include "coff/internal.h" /* for libcoff.h */
|
||||
|
@ -159,6 +160,12 @@ spe_register_p (int regno)
|
|||
&& tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
|
||||
return 1;
|
||||
|
||||
/* Is it a reference to one of the raw upper GPR halves? */
|
||||
if (tdep->ppc_ev0_upper_regnum >= 0
|
||||
&& tdep->ppc_ev0_upper_regnum <= regno
|
||||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||||
return 1;
|
||||
|
||||
/* Is it a reference to the 64-bit accumulator, and do we have that? */
|
||||
if (tdep->ppc_acc_regnum >= 0
|
||||
&& tdep->ppc_acc_regnum == regno)
|
||||
|
@ -254,6 +261,11 @@ init_sim_regno_table (struct gdbarch *arch)
|
|||
set_sim_regno (sim_regno,
|
||||
tdep->ppc_ev0_regnum + i,
|
||||
sim_ppc_ev0_regnum + i);
|
||||
if (tdep->ppc_ev0_upper_regnum >= 0)
|
||||
for (i = 0; i < ppc_num_gprs; i++)
|
||||
set_sim_regno (sim_regno,
|
||||
tdep->ppc_ev0_upper_regnum + i,
|
||||
sim_ppc_rh0_regnum + i);
|
||||
if (tdep->ppc_acc_regnum >= 0)
|
||||
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
|
||||
/* spefscr is a special-purpose register, so the code below handles it. */
|
||||
|
@ -1865,55 +1877,113 @@ rs6000_value_to_register (struct frame_info *frame,
|
|||
put_frame_register (frame, regnum, to);
|
||||
}
|
||||
|
||||
/* Move SPE vector register values between a 64-bit buffer and the two
|
||||
32-bit raw register halves in a regcache. This function handles
|
||||
both splitting a 64-bit value into two 32-bit halves, and joining
|
||||
two halves into a whole 64-bit value, depending on the function
|
||||
passed as the MOVE argument.
|
||||
|
||||
EV_REG must be the number of an SPE evN vector register --- a
|
||||
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
|
||||
64-bit buffer.
|
||||
|
||||
Call MOVE once for each 32-bit half of that register, passing
|
||||
REGCACHE, the number of the raw register corresponding to that
|
||||
half, and the address of the appropriate half of BUFFER.
|
||||
|
||||
For example, passing 'regcache_raw_read' as the MOVE function will
|
||||
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
|
||||
'regcache_raw_supply' will supply the contents of BUFFER to the
|
||||
appropriate pair of raw registers in REGCACHE.
|
||||
|
||||
You may need to cast away some 'const' qualifiers when passing
|
||||
MOVE, since this function can't tell at compile-time which of
|
||||
REGCACHE or BUFFER is acting as the source of the data. If C had
|
||||
co-variant type qualifiers, ... */
|
||||
static void
|
||||
e500_move_ev_register (void (*move) (struct regcache *regcache,
|
||||
int regnum, void *buf),
|
||||
struct regcache *regcache, int ev_reg,
|
||||
void *buffer)
|
||||
{
|
||||
struct gdbarch *arch = get_regcache_arch (regcache);
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||||
int reg_index;
|
||||
char *byte_buffer = buffer;
|
||||
|
||||
gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
|
||||
&& ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
|
||||
|
||||
reg_index = ev_reg - tdep->ppc_ev0_regnum;
|
||||
|
||||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||||
{
|
||||
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
|
||||
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
|
||||
}
|
||||
else
|
||||
{
|
||||
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
|
||||
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||||
int reg_nr, void *buffer)
|
||||
{
|
||||
int base_regnum;
|
||||
int offset = 0;
|
||||
char temp_buffer[MAX_REGISTER_SIZE];
|
||||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
if (reg_nr >= tdep->ppc_gp0_regnum
|
||||
&& reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||||
{
|
||||
base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
|
||||
|
||||
/* Build the value in the provided buffer. */
|
||||
/* Read the raw register of which this one is the lower portion. */
|
||||
regcache_raw_read (regcache, base_regnum, temp_buffer);
|
||||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||||
offset = 4;
|
||||
memcpy ((char *) buffer, temp_buffer + offset, 4);
|
||||
}
|
||||
gdb_assert (regcache_arch == gdbarch);
|
||||
|
||||
if (tdep->ppc_ev0_regnum <= reg_nr
|
||||
&& reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
|
||||
e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
|
||||
else
|
||||
/* We should only be called on pseudo-registers. */
|
||||
gdb_assert (0);
|
||||
}
|
||||
|
||||
static void
|
||||
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||||
int reg_nr, const void *buffer)
|
||||
{
|
||||
int base_regnum;
|
||||
int offset = 0;
|
||||
char temp_buffer[MAX_REGISTER_SIZE];
|
||||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
if (reg_nr >= tdep->ppc_gp0_regnum
|
||||
&& reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||||
{
|
||||
base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
|
||||
/* reg_nr is 32 bit here, and base_regnum is 64 bits. */
|
||||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||||
offset = 4;
|
||||
gdb_assert (regcache_arch == gdbarch);
|
||||
|
||||
if (tdep->ppc_ev0_regnum <= reg_nr
|
||||
&& reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
|
||||
e500_move_ev_register ((void (*) (struct regcache *, int, void *))
|
||||
regcache_raw_write,
|
||||
regcache, reg_nr, (void *) buffer);
|
||||
else
|
||||
/* We should only be called on pseudo-registers. */
|
||||
gdb_assert (0);
|
||||
}
|
||||
|
||||
/* Let's read the value of the base register into a temporary
|
||||
buffer, so that overwriting the last four bytes with the new
|
||||
value of the pseudo will leave the upper 4 bytes unchanged. */
|
||||
regcache_raw_read (regcache, base_regnum, temp_buffer);
|
||||
/* The E500 needs a custom reggroup function: it has anonymous raw
|
||||
registers, and default_register_reggroup_p assumes that anonymous
|
||||
registers are not members of any reggroup. */
|
||||
static int
|
||||
e500_register_reggroup_p (struct gdbarch *gdbarch,
|
||||
int regnum,
|
||||
struct reggroup *group)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
/* Write as an 8 byte quantity. */
|
||||
memcpy (temp_buffer + offset, (char *) buffer, 4);
|
||||
regcache_raw_write (regcache, base_regnum, temp_buffer);
|
||||
}
|
||||
/* The save and restore register groups need to include the
|
||||
upper-half registers, even though they're anonymous. */
|
||||
if ((group == save_reggroup
|
||||
|| group == restore_reggroup)
|
||||
&& (tdep->ppc_ev0_upper_regnum <= regnum
|
||||
&& regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
|
||||
return 1;
|
||||
|
||||
/* In all other regards, the default reggroup definition is fine. */
|
||||
return default_register_reggroup_p (gdbarch, regnum, group);
|
||||
}
|
||||
|
||||
/* Convert a DBX STABS register number to a GDB register number. */
|
||||
|
@ -2176,8 +2246,9 @@ rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
|||
/* Return a struct reg defining floating-point register NAME. */
|
||||
#define F(name) { STR(name), 8, 8, 1, 0, -1 }
|
||||
|
||||
/* Return a struct reg defining a pseudo register NAME. */
|
||||
#define P(name) { STR(name), 4, 8, 0, 1, -1 }
|
||||
/* Return a struct reg defining a pseudo register NAME that is 64 bits
|
||||
long on all systems. */
|
||||
#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
|
||||
|
||||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
|
||||
systems and that doesn't exist on 64-bit systems. */
|
||||
|
@ -2190,6 +2261,10 @@ rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
|||
/* Return a struct reg placeholder for a register that doesn't exist. */
|
||||
#define R0 { 0, 0, 0, 0, 0, -1 }
|
||||
|
||||
/* Return a struct reg defining an anonymous raw register that's 32
|
||||
bits on all systems. */
|
||||
#define A4 { 0, 4, 4, 0, 0, -1 }
|
||||
|
||||
/* Return a struct reg defining an SPR named NAME that is 32 bits on
|
||||
32-bit systems and 64 bits on 64-bit systems. */
|
||||
#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
|
||||
|
@ -2254,19 +2329,38 @@ rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
|||
/*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
|
||||
/*151*/R4(vscr), R4(vrsave)
|
||||
|
||||
/* Vectors of hi-lo general purpose registers. */
|
||||
#define PPC_EV_REGS \
|
||||
/* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
|
||||
/* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
|
||||
/*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
|
||||
/*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
|
||||
|
||||
/* Lower half of the EV registers. */
|
||||
#define PPC_GPRS_PSEUDO_REGS \
|
||||
/* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
|
||||
/* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
|
||||
/* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
|
||||
/* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
|
||||
/* On machines supporting the SPE APU, the general-purpose registers
|
||||
are 64 bits long. There are SIMD vector instructions to treat them
|
||||
as pairs of floats, but the rest of the instruction set treats them
|
||||
as 32-bit registers, and only operates on their lower halves.
|
||||
|
||||
In the GDB regcache, we treat their high and low halves as separate
|
||||
registers. The low halves we present as the general-purpose
|
||||
registers, and then we have pseudo-registers that stitch together
|
||||
the upper and lower halves and present them as pseudo-registers. */
|
||||
|
||||
/* SPE GPR lower halves --- raw registers. */
|
||||
#define PPC_SPE_GP_REGS \
|
||||
/* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
|
||||
/* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
|
||||
/* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
|
||||
/* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
|
||||
|
||||
/* SPE GPR upper halves --- anonymous raw registers. */
|
||||
#define PPC_SPE_UPPER_GP_REGS \
|
||||
/* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
|
||||
/* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
|
||||
/* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
|
||||
/* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
|
||||
|
||||
/* SPE GPR vector registers --- pseudo registers based on underlying
|
||||
gprs and the anonymous upper half raw registers. */
|
||||
#define PPC_EV_PSEUDO_REGS \
|
||||
/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
|
||||
/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
|
||||
/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
|
||||
/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
|
||||
|
||||
/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
|
||||
user-level SPR's. */
|
||||
|
@ -2446,16 +2540,14 @@ static const struct reg registers_7400[] =
|
|||
/* Motorola e500. */
|
||||
static const struct reg registers_e500[] =
|
||||
{
|
||||
R(pc), R(ps),
|
||||
/* cr, lr, ctr, xer, "" */
|
||||
PPC_UISA_NOFP_SPRS,
|
||||
/* 7...38 */
|
||||
PPC_EV_REGS,
|
||||
R8(acc), S4(spefscr),
|
||||
/* 0 .. 31 */ PPC_SPE_GP_REGS,
|
||||
/* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
|
||||
/* 64 .. 65 */ R(pc), R(ps),
|
||||
/* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
|
||||
/* 71 .. 72 */ R8(acc), S4(spefscr),
|
||||
/* NOTE: Add new registers here the end of the raw register
|
||||
list and just before the first pseudo register. */
|
||||
/* 41...72 */
|
||||
PPC_GPRS_PSEUDO_REGS
|
||||
/* 73 .. 104 */ PPC_EV_PSEUDO_REGS
|
||||
};
|
||||
|
||||
/* Information about a particular processor variant. */
|
||||
|
@ -2987,7 +3079,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|||
tdep->regs = v->regs;
|
||||
|
||||
tdep->ppc_gp0_regnum = 0;
|
||||
tdep->ppc_gprs_pseudo_p = 0;
|
||||
tdep->ppc_toc_regnum = 2;
|
||||
tdep->ppc_ps_regnum = 65;
|
||||
tdep->ppc_cr_regnum = 66;
|
||||
|
@ -3005,6 +3096,7 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|||
tdep->ppc_sr0_regnum = 71;
|
||||
tdep->ppc_vr0_regnum = -1;
|
||||
tdep->ppc_vrsave_regnum = -1;
|
||||
tdep->ppc_ev0_upper_regnum = -1;
|
||||
tdep->ppc_ev0_regnum = -1;
|
||||
tdep->ppc_ev31_regnum = -1;
|
||||
tdep->ppc_acc_regnum = -1;
|
||||
|
@ -3047,26 +3139,18 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|||
tdep->ppc_vrsave_regnum = 152;
|
||||
break;
|
||||
case bfd_mach_ppc_e500:
|
||||
tdep->ppc_gp0_regnum = 41;
|
||||
tdep->ppc_gprs_pseudo_p = 1;
|
||||
tdep->ppc_toc_regnum = -1;
|
||||
tdep->ppc_ps_regnum = 1;
|
||||
tdep->ppc_cr_regnum = 2;
|
||||
tdep->ppc_lr_regnum = 3;
|
||||
tdep->ppc_ctr_regnum = 4;
|
||||
tdep->ppc_xer_regnum = 5;
|
||||
tdep->ppc_ev0_regnum = 7;
|
||||
tdep->ppc_ev31_regnum = 38;
|
||||
tdep->ppc_ev0_upper_regnum = 32;
|
||||
tdep->ppc_ev0_regnum = 73;
|
||||
tdep->ppc_ev31_regnum = 104;
|
||||
tdep->ppc_acc_regnum = 71;
|
||||
tdep->ppc_spefscr_regnum = 72;
|
||||
tdep->ppc_fp0_regnum = -1;
|
||||
tdep->ppc_fpscr_regnum = -1;
|
||||
tdep->ppc_sr0_regnum = -1;
|
||||
tdep->ppc_acc_regnum = 39;
|
||||
tdep->ppc_spefscr_regnum = 40;
|
||||
set_gdbarch_pc_regnum (gdbarch, 0);
|
||||
set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
|
||||
set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
|
||||
set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
|
||||
set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
|
||||
set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
|
||||
break;
|
||||
|
||||
case bfd_mach_ppc64:
|
||||
|
|
Loading…
Reference in a new issue