* mn10300-tdep.c (set_movm_offsets): New helper function

for mn10300_analyze_prologue.
	(mn10300_analyze_prologue): Simplify by factoring out common code.
	Fix bugs in setting frame address for optimized code.
	Use read_memory_nobpt instead of target_read_memory.
This commit is contained in:
Mark Alexander 1998-07-24 14:48:41 +00:00
parent 6e77819495
commit 52e4073c5f
2 changed files with 470 additions and 163 deletions

View file

@ -1,3 +1,11 @@
Fri Jul 24 07:41:12 1998 Mark Alexander <marka@cygnus.com>
* mn10300-tdep.c (set_movm_offsets): New helper function
for mn10300_analyze_prologue.
(mn10300_analyze_prologue): Simplify by factoring out common code.
Fix bugs in setting frame address for optimized code.
Use read_memory_nobpt instead of target_read_memory.
Thu Jul 23 17:01:17 1998 Michael Snyder <msnyder@cleaver.cygnus.com>
* tracepoint.c (collect_symbol): handle LOC_ARG case.

View file

@ -28,153 +28,406 @@ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "gdbcore.h"
#include "symfile.h"
/* Info gleaned from scanning a function's prologue. */
char *mn10300_generic_register_names[] = REGISTER_NAMES;
struct pifsr /* Info about one saved reg */
/* start-sanitize-am33 */
char *am33_register_names [] =
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
"sp", "pc", "mdr", "psw", "lir", "lar", "",
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""};
/* end-sanitize-am33 */
/* Set offsets of registers saved by movm instruction.
This is a helper function for mn10300_analyze_prologue. */
static void
set_movm_offsets (fi, found_movm)
struct frame_info *fi;
int found_movm;
{
int framereg; /* Frame reg (SP or FP) */
int offset; /* Offset from framereg */
int reg; /* Saved register number */
};
if (fi == NULL || found_movm == 0)
return;
fi->fsr.regs[7] = fi->frame;
fi->fsr.regs[6] = fi->frame + 4;
fi->fsr.regs[3] = fi->frame + 8;
fi->fsr.regs[2] = fi->frame + 12;
/* start-sanitize-am33 */
fi->fsr.regs[E0_REGNUM+5] = fi->frame + 16;
fi->fsr.regs[E0_REGNUM+4] = fi->frame + 20;
fi->fsr.regs[E0_REGNUM+3] = fi->frame + 24;
fi->fsr.regs[E0_REGNUM+2] = fi->frame + 28;
/* end-sanitize-am33 */
}
struct prologue_info
/* The main purpose of this file is dealing with prologues to extract
information about stack frames and saved registers.
For reference here's how prologues look on the mn10300:
With frame pointer:
movm [d2,d3,a2,a3],sp
mov sp,a3
add <size>,sp
Without frame pointer:
movm [d2,d3,a2,a3],sp (if needed)
add <size>,sp
One day we might keep the stack pointer constant, that won't
change the code for prologues, but it will make the frame
pointerless case much more common. */
/* Analyze the prologue to determine where registers are saved,
the end of the prologue, etc etc. Return the end of the prologue
scanned.
We store into FI (if non-null) several tidbits of information:
* stack_size -- size of this stack frame. Note that if we stop in
certain parts of the prologue/epilogue we may claim the size of the
current frame is zero. This happens when the current frame has
not been allocated yet or has already been deallocated.
* fsr -- Addresses of registers saved in the stack by this frame.
* status -- A (relatively) generic status indicator. It's a bitmask
with the following bits:
MY_FRAME_IN_SP: The base of the current frame is actually in
the stack pointer. This can happen for frame pointerless
functions, or cases where we're stopped in the prologue/epilogue
itself. For these cases mn10300_analyze_prologue will need up
update fi->frame before returning or analyzing the register
save instructions.
MY_FRAME_IN_FP: The base of the current frame is in the
frame pointer register ($a2).
NO_MORE_FRAMES: Set this if the current frame is "start" or
if the first instruction looks like mov <imm>,sp. This tells
frame chain to not bother trying to unwind past this frame. */
#define MY_FRAME_IN_SP 0x1
#define MY_FRAME_IN_FP 0x2
#define NO_MORE_FRAMES 0x4
static CORE_ADDR
mn10300_analyze_prologue (fi, pc)
struct frame_info *fi;
CORE_ADDR pc;
{
int framereg;
int frameoffset;
int start_function;
struct pifsr *pifsrs;
};
CORE_ADDR func_addr, func_end, addr, stop;
CORE_ADDR stack_size;
int imm_size;
unsigned char buf[4];
int status, found_movm = 0;
char *name;
/* Use the PC in the frame if it's provided to look up the
start of this function. */
pc = (fi ? fi->pc : pc);
/* Find the start of this function. */
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
/* Do nothing if we couldn't find the start of this function or if we're
stopped at the first instruction in the prologue. */
if (status == 0)
return pc;
/* If we're in start, then give up. */
if (strcmp (name, "start") == 0)
{
fi->status = NO_MORE_FRAMES;
return pc;
}
/* At the start of a function our frame is in the stack pointer. */
if (fi)
fi->status = MY_FRAME_IN_SP;
/* Get the next two bytes into buf, we need two because rets is a two
byte insn and the first isn't enough to uniquely identify it. */
status = read_memory_nobpt (pc, buf, 2);
if (status != 0)
return pc;
/* If we're physically on an "rets" instruction, then our frame has
already been deallocated. Note this can also be true for retf
and ret if they specify a size of zero.
In this case fi->frame is bogus, we need to fix it. */
if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
/* Similarly if we're stopped on the first insn of a prologue as our
frame hasn't been allocated yet. */
if (fi && fi->pc == func_addr)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
/* Figure out where to stop scanning. */
stop = fi ? fi->pc : func_end;
/* Don't walk off the end of the function. */
stop = stop > func_end ? func_end : stop;
/* Start scanning on the first instruction of this function. */
addr = func_addr;
/* Suck in two bytes. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
if (fi && fi->next == NULL && fi->status & MY_FRAME_IN_SP)
fi->frame = read_sp ();
return addr;
}
/* First see if this insn sets the stack pointer; if so, it's something
we won't understand, so quit now. */
if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
{
if (fi)
fi->status = NO_MORE_FRAMES;
return addr;
}
/* Now look for movm [regs],sp, which saves the callee saved registers.
At this time we don't know if fi->frame is valid, so we only note
that we encountered a movm instruction. Later, we'll set the entries
in fsr.regs as needed. */
if (buf[0] == 0xcf)
{
found_movm = 1;
addr += 2;
/* Quit now if we're beyond the stop point. */
if (addr >= stop)
{
/* Fix fi->frame since it's bogus at this point. */
if (fi && fi->next == NULL)
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
/* Get the next two bytes so the prologue scan can continue. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
/* Fix fi->frame since it's bogus at this point. */
if (fi && fi->next == NULL)
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
}
/* Now see if we set up a frame pointer via "mov sp,a3" */
if (buf[0] == 0x3f)
{
addr += 1;
/* The frame pointer is now valid. */
if (fi)
{
fi->status |= MY_FRAME_IN_FP;
fi->status &= ~MY_FRAME_IN_SP;
}
/* Quit now if we're beyond the stop point. */
if (addr >= stop)
{
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
/* Get two more bytes so scanning can continue. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
}
/* Next we should allocate the local frame. No more prologue insns
are found after allocating the local frame.
Search for add imm8,sp (0xf8feXX)
or add imm16,sp (0xfafeXXXX)
or add imm32,sp (0xfcfeXXXXXXXX).
If none of the above was found, then this prologue has no
additional stack. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
/* Fix fi->frame if it's bogus at this point. */
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
imm_size = 0;
if (buf[0] == 0xf8 && buf[1] == 0xfe)
imm_size = 1;
else if (buf[0] == 0xfa && buf[1] == 0xfe)
imm_size = 2;
else if (buf[0] == 0xfc && buf[1] == 0xfe)
imm_size = 4;
if (imm_size != 0)
{
/* Suck in imm_size more bytes, they'll hold the size of the
current frame. */
status = read_memory_nobpt (addr + 2, buf, imm_size);
if (status != 0)
{
/* Fix fi->frame if it's bogus at this point. */
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
/* Note the size of the stack in the frame info structure. */
stack_size = extract_signed_integer (buf, imm_size);
if (fi)
fi->stack_size = stack_size;
/* We just consumed 2 + imm_size bytes. */
addr += 2 + imm_size;
/* No more prologue insns follow, so begin preparation to return. */
/* Fix fi->frame if it's bogus at this point. */
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
/* We never found an insn which allocates local stack space, regardless
this is the end of the prologue. */
/* Fix fi->frame if it's bogus at this point. */
if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, found_movm);
return addr;
}
/* Function: frame_chain
Figure out and return the caller's frame pointer given current
frame_info struct.
We start out knowing the current pc, current sp, current fp.
We want to determine the caller's fp and caller's pc. To do this
correctly, we have to be able to handle the case where we are in the
middle of the prologue which involves scanning the prologue.
We don't handle dummy frames yet but we would probably just return the
stack pointer that was in use at the time the function call was made?
*/
stack pointer that was in use at the time the function call was made? */
CORE_ADDR
mn10300_frame_chain (fi)
struct frame_info *fi;
{
struct prologue_info pi;
CORE_ADDR callers_pc, callers_fp, curr_sp;
CORE_ADDR past_prologue_addr;
int past_prologue = 1; /* default to being past prologue */
int n_movm_args = 4;
struct frame_info dummy_frame;
struct pifsr *pifsr, *pifsr_tmp;
/* Walk through the prologue to determine the stack size,
location of saved registers, end of the prologue, etc. */
if (fi->status == 0)
mn10300_analyze_prologue (fi, (CORE_ADDR)0);
/* current pc is fi->pc */
/* current fp is fi->frame */
/* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
if (fi->status & NO_MORE_FRAMES)
return 0;
/* current sp is: */
curr_sp = read_register (SP_REGNUM);
/* Now that we've analyzed our prologue, determine the frame
pointer for our caller.
/*
printf("curr pc = 0x%x ; curr fp = 0x%x ; curr sp = 0x%x\n",
fi->pc, fi->frame, curr_sp);
*/
If our caller has a frame pointer, then we need to
find the entry value of $a3 to our function.
/* first inst after prologue is: */
past_prologue_addr = mn10300_skip_prologue (fi->pc);
If fsr.regs[7] is nonzero, then it's at the memory
location pointed to by fsr.regs[7].
/* Are we in the prologue? */
/* Yes if mn10300_skip_prologue returns an address after the
current pc in which case we have to scan prologue */
if (fi->pc < mn10300_skip_prologue (fi->pc))
past_prologue = 0;
Else it's still in $a3.
/* scan prologue if we're not past it */
if (!past_prologue)
If our caller does not have a frame pointer, then his
frame base is fi->frame + -caller's stack size. */
/* The easiest way to get that info is to analyze our caller's frame.
So we set up a dummy frame and call mn10300_analyze_prologue to
find stuff for us. */
dummy_frame.pc = FRAME_SAVED_PC (fi);
dummy_frame.frame = fi->frame;
memset (dummy_frame.fsr.regs, '\000', sizeof dummy_frame.fsr.regs);
dummy_frame.status = 0;
dummy_frame.stack_size = 0;
mn10300_analyze_prologue (&dummy_frame);
if (dummy_frame.status & MY_FRAME_IN_FP)
{
/* printf("scanning prologue\n"); */
/* FIXME -- fill out this case later */
return 0x0; /* bogus value */
/* Our caller has a frame pointer. So find the frame in $a3 or
in the stack. */
if (fi->fsr.regs[7])
return (read_memory_integer (fi->fsr.regs[FP_REGNUM], REGISTER_SIZE));
else
return read_register (FP_REGNUM);
}
if (past_prologue) /* if we don't need to scan the prologue */
else
{
/* printf("we're past the prologue\n"); */
callers_pc = fi->frame - REGISTER_SIZE;
callers_fp = fi->frame - ((n_movm_args + 1) * REGISTER_SIZE);
/*
printf("callers_pc = 0x%x ; callers_fp = 0x%x\n",
callers_pc, callers_fp);
int adjust = 0;
printf("*callers_pc = 0x%x ; *callers_fp = 0x%x\n",
read_memory_integer(callers_pc, REGISTER_SIZE),
read_memory_integer(callers_fp, REGISTER_SIZE));
*/
return read_memory_integer(callers_fp, REGISTER_SIZE);
adjust += (fi->fsr.regs[2] ? 4 : 0);
adjust += (fi->fsr.regs[3] ? 4 : 0);
adjust += (fi->fsr.regs[6] ? 4 : 0);
adjust += (fi->fsr.regs[7] ? 4 : 0);
/* Our caller does not have a frame pointer. So his frame starts
at the base of our frame (fi->frame) + register save space. */
return fi->frame + adjust;
}
/* we don't get here */
}
/* Function: find_callers_reg
Find REGNUM on the stack. Otherwise, it's in an active register.
One thing we might want to do here is to check REGNUM against the
clobber mask, and somehow flag it as invalid if it isn't saved on
the stack somewhere. This would provide a graceful failure mode
when trying to get the value of caller-saves registers for an inner
frame. */
CORE_ADDR
mn10300_find_callers_reg (fi, regnum)
struct frame_info *fi;
int regnum;
{
/* printf("mn10300_find_callers_reg\n"); */
for (; fi; fi = fi->next)
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->fsr.regs[regnum] != 0)
return read_memory_unsigned_integer (fi->fsr.regs[regnum],
REGISTER_RAW_SIZE(regnum));
return read_register (regnum);
}
/* Function: skip_prologue
Return the address of the first inst past the prologue of the function.
*/
Return the address of the first inst past the prologue of the function. */
CORE_ADDR
mn10300_skip_prologue (pc)
CORE_ADDR pc;
{
CORE_ADDR func_addr, func_end;
/* printf("mn10300_skip_prologue\n"); */
/* See what the symbol table says */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (sal.line != 0 && sal.end < func_end)
return sal.end;
else
/* Either there's no line info, or the line after the prologue is after
the end of the function. In this case, there probably isn't a
prologue. */
return pc;
}
/* We can't find the start of this function, so there's nothing we can do. */
return pc;
/* We used to check the debug symbols, but that can lose if
we have a null prologue. */
return mn10300_analyze_prologue (NULL, pc);
}
/* Function: pop_frame
This routine gets called when either the user uses the `return'
command, or the call dummy breakpoint gets hit. */
@ -185,32 +438,36 @@ mn10300_pop_frame (frame)
{
int regnum;
/* printf("mn10300_pop_frame start\n"); */
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
{
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
/* Restore any saved registers. */
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->fsr.regs[regnum] != 0)
write_register (regnum,
read_memory_unsigned_integer (frame->fsr.regs[regnum],
REGISTER_RAW_SIZE(regnum)));
{
ULONGEST value;
value = read_memory_unsigned_integer (frame->fsr.regs[regnum],
REGISTER_RAW_SIZE (regnum));
write_register (regnum, value);
}
/* Actually cut back the stack. */
write_register (SP_REGNUM, FRAME_FP (frame));
/* Don't we need to set the PC?!? XXX FIXME. */
}
/* Throw away any cached frame information. */
flush_cached_frames ();
/* printf("mn10300_pop_frame end\n"); */
}
/* Function: push_arguments
Setup arguments for a call to the target. Arguments go in
order on the stack.
*/
order on the stack. */
CORE_ADDR
mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
@ -222,29 +479,44 @@ mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
{
int argnum = 0;
int len = 0;
int stack_offset = 0; /* copy args to this offset onto stack */
int stack_offset = 0;
int regsused = struct_return ? 1 : 0;
/* printf("mn10300_push_arguments start\n"); */
/* First, just for safety, make sure stack is aligned */
/* This should be a nop, but align the stack just in case something
went wrong. Stacks are four byte aligned on the mn10300. */
sp &= ~3;
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3);
/* Now make space on the stack for the args.
XXX This doesn't appear to handle pass-by-invisible reference
arguments. */
for (argnum = 0; argnum < nargs; argnum++)
{
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
while (regsused < 2 && arg_length > 0)
{
regsused++;
arg_length -= 4;
}
len += arg_length;
}
/* Allocate stack space. */
sp -= len;
regsused = struct_return ? 1 : 0;
/* Push all arguments onto the stack. */
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
char *val;
/* XXX Check this. What about UNIONS? */
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
{
/* for now, pretend structs aren't special */
/* XXX Wrong, we want a pointer to this argument. */
len = TYPE_LENGTH (VALUE_TYPE (*args));
val = (char *)VALUE_CONTENTS (*args);
}
@ -254,19 +526,27 @@ mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
val = (char *)VALUE_CONTENTS (*args);
}
while (regsused < 2 && len > 0)
{
write_register (regsused, extract_unsigned_integer (val, 4));
val += 4;
len -= 4;
regsused++;
}
while (len > 0)
{
write_memory (sp + stack_offset, val, 4);
len -= 4;
val += 4;
stack_offset += 4;
}
args++;
}
/* printf"mn10300_push_arguments end\n"); */
/* Make space for the flushback area. */
sp -= 8;
return sp;
}
@ -279,9 +559,24 @@ mn10300_push_return_address (pc, sp)
CORE_ADDR pc;
CORE_ADDR sp;
{
/* printf("mn10300_push_return_address\n"); */
unsigned char buf[4];
/* write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); */
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
write_memory (sp - 4, buf, 4);
return sp - 4;
}
/* Function: store_struct_return (addr,sp)
Store the structure value return address for an inferior function
call. */
CORE_ADDR
mn10300_store_struct_return (addr, sp)
CORE_ADDR addr;
CORE_ADDR sp;
{
/* The structure return address is passed as the first argument. */
write_register (0, addr);
return sp;
}
@ -296,9 +591,14 @@ CORE_ADDR
mn10300_frame_saved_pc (fi)
struct frame_info *fi;
{
/* printf("mn10300_frame_saved_pc\n"); */
int adjust = 0;
return (read_memory_integer(fi->frame - REGISTER_SIZE, REGISTER_SIZE));
adjust += (fi->fsr.regs[2] ? 4 : 0);
adjust += (fi->fsr.regs[3] ? 4 : 0);
adjust += (fi->fsr.regs[6] ? 4 : 0);
adjust += (fi->fsr.regs[7] ? 4 : 0);
return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
}
void
@ -310,62 +610,59 @@ get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
int regnum;
enum lval_type *lval;
{
/* printf("get_saved_register\n"); */
generic_get_saved_register (raw_buffer, optimized, addrp,
frame, regnum, lval);
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in frame_chain().
registers. Most of the work is done in mn10300_analyze_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
always be correct. mn10300_analyze_prologue will fix fi->frame if
it's not valid.
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy).
*/
pointer just prior to calling the target function (see run_stack_dummy). */
void
mn10300_init_extra_frame_info (fi)
struct frame_info *fi;
{
struct prologue_info pi;
struct pifsr pifsrs[NUM_REGS + 1], *pifsr;
int reg;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
fi->status = 0;
fi->stack_size = 0;
/* The call dummy doesn't save any registers on the stack, so we can return
now. */
/*
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return;
mn10300_analyze_prologue (fi, 0);
}
pi.pifsrs = pifsrs;
*/
/* This can be made more generic later. */
static void
set_machine_hook (filename)
char *filename;
{
int i;
/* v850_scan_prologue (fi->pc, &pi); */
/*
if (!fi->next && pi.framereg == SP_REGNUM)
fi->frame = read_register (pi.framereg) - pi.frameoffset;
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
|| bfd_get_mach (exec_bfd) == 0)
{
fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame;
if (pifsr->framereg == SP_REGNUM)
fi->fsr.regs[pifsr->reg] += pi.frameoffset;
for (i = 0; i < NUM_REGS; i++)
reg_names[i] = mn10300_generic_register_names[i];
}
*/
/* printf("init_extra_frame_info\n"); */
/* start-sanitize-am33 */
if (bfd_get_mach (exec_bfd) == bfd_mach_am33)
{
for (i = 0; i < NUM_REGS; i++)
reg_names[i] = am33_register_names[i];
}
/* end-sanitize-am33 */
}
void
@ -374,5 +671,7 @@ _initialize_mn10300_tdep ()
/* printf("_initialize_mn10300_tdep\n"); */
tm_print_insn = print_insn_mn10300;
specify_exec_file_hook (set_machine_hook);
}