* inflow.c (terminal_init_inferior): Temporarily use Lynx PIDGET

macro to set process groups.
	* infptrace.c (child_resume): Temporarily use Lynx PIDGET to
	specify resumption of all threads.
	* infrun.c (wait_for_inferior):  Fix handling of thread-specific
	breakpoints for systems where DECR_PC_AFTER_BREAK > 0 (ie: backup
	PC by the right amount when continuing the thread).
	* thread.c (thread_apply_command):  Add the  `thread apply'
	command to apply a given GDB command to a list of threads.
This commit is contained in:
Stu Grossman 1993-11-05 19:27:49 +00:00
parent 87ce76559c
commit 5090e82cca
4 changed files with 205 additions and 59 deletions

View file

@ -1,3 +1,15 @@
Fri Nov 5 09:49:22 1993 Stu Grossman (grossman at cygnus.com)
* inflow.c (terminal_init_inferior): Temporarily use Lynx PIDGET
macro to set process groups.
* infptrace.c (child_resume): Temporarily use Lynx PIDGET to
specify resumption of all threads.
* infrun.c (wait_for_inferior): Fix handling of thread-specific
breakpoints for systems where DECR_PC_AFTER_BREAK > 0 (ie: backup
PC by the right amount when continuing the thread).
* thread.c (thread_apply_command): Add the `thread apply'
command to apply a given GDB command to a list of threads.
Fri Nov 5 05:58:03 1993 Jim Kingdon (kingdon@cygnus.com)
* Makefile.in (init.c): Don't call sed if filename is empty.

View file

@ -176,7 +176,11 @@ terminal_init_inferior ()
free (inferior_ttystate);
inferior_ttystate = SERIAL_GET_TTY_STATE (stdin_serial);
#ifdef PROCESS_GROUP_TYPE
#ifdef PIDGET /* XXX Lynx */
inferior_process_group = PIDGET (inferior_pid);
#else
inferior_process_group = inferior_pid;
#endif
#endif
/* Make sure that next time we call terminal_inferior (which will be

View file

@ -41,6 +41,9 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#if !defined (PT_KILL)
#define PT_KILL 8
#endif
#if !defined (PT_STEP)
#define PT_STEP 9
#define PT_CONTINUE 7
#define PT_READ_U 3
@ -49,7 +52,7 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define PT_READ_D 2
#define PT_WRITE_I 4
#define PT_WRITE_D 5
#endif /* No PT_KILL. */
#endif /* No PT_STEP. */
#ifndef PT_ATTACH
#define PT_ATTACH PTRACE_ATTACH
@ -62,11 +65,11 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#ifndef NO_SYS_FILE
#include <sys/file.h>
#endif
#if 0
/* Don't think this is used anymore. On the sequent (not sure whether it's
dynix or ptx or both), it is included unconditionally by sys/user.h and
not protected against multiple inclusion. */
#include <sys/stat.h>
#if defined (FIVE_ARG_PTRACE
/* Deal with HPUX 8.0 braindamage. */
#define ptrace(a,b,c,d) ptrace(a,b,c,d,0)
#endif
#if !defined (FETCH_INFERIOR_REGISTERS)
@ -86,10 +89,16 @@ call_ptrace (request, pid, addr, data)
PTRACE_ARG3_TYPE addr;
int data;
{
return ptrace (request, pid, addr, data);
return ptrace (request, pid, addr, data
#if defined (FIVE_ARG_PTRACE)
/* Deal with HPUX 8.0 braindamage. We never use the
calls which require the fifth argument. */
, 0
#endif
);
}
#ifdef DEBUG_PTRACE
#if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
@ -113,12 +122,20 @@ kill_inferior ()
If SIGNAL is nonzero, give it that signal. */
void
child_resume (step, signal)
child_resume (pid, step, signal)
int pid;
int step;
int signal;
{
errno = 0;
if (pid == -1)
#ifdef PIDGET /* XXX Lynx */
pid = PIDGET (inferior_pid);
#else
pid = inferior_pid;
#endif
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
it was. (If GDB wanted it to start some other way, we have already
written a new PC value to the child.)
@ -129,9 +146,9 @@ child_resume (step, signal)
instructions), so we don't have to worry about that here. */
if (step)
ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
else
ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1, signal);
if (errno)
perror_with_name ("ptrace");
@ -167,17 +184,22 @@ detach (signal)
}
#endif /* ATTACH_DETACH */
#if !defined (FETCH_INFERIOR_REGISTERS)
/* Default the type of the ptrace transfer to int. */
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#endif
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
to get the offset in the core file of the register values. */
#if defined (KERNEL_U_ADDR_BSD)
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
/* Get kernel_u_addr using BSD-style nlist(). */
CORE_ADDR kernel_u_addr;
#endif /* KERNEL_U_ADDR_BSD. */
void
_initialize_kernel_u_addr ()
{
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
struct nlist names[2];
names[0].n_un.n_name = "_u";
@ -186,30 +208,10 @@ _initialize_kernel_u_addr ()
kernel_u_addr = names[0].n_value;
else
fatal ("Unable to get kernel u area address.");
}
#endif /* KERNEL_U_ADDR_BSD. */
#if defined (KERNEL_U_ADDR_HPUX)
/* Get kernel_u_addr using HPUX-style nlist(). */
CORE_ADDR kernel_u_addr;
struct hpnlist {
char * n_name;
long n_value;
unsigned char n_type;
unsigned char n_length;
short n_almod;
short n_unused;
};
static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
/* read the value of the u area from the hp-ux kernel */
void _initialize_kernel_u_addr ()
{
nlist ("/hp-ux", &nl);
kernel_u_addr = nl[0].n_value;
}
#endif /* KERNEL_U_ADDR_HPUX. */
#if !defined (FETCH_INFERIOR_REGISTERS)
#if !defined (offsetof)
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
@ -244,7 +246,7 @@ fetch_register (regno)
if (CANNOT_FETCH_REGISTER (regno))
{
bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
supply_register (regno, buf);
return;
}
@ -252,12 +254,12 @@ fetch_register (regno)
offset = U_REGS_OFFSET;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
*(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
(PTRACE_ARG3_TYPE) regaddr, 0);
regaddr += sizeof (int);
*(PTRACE_XFER_TYPE *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
(PTRACE_ARG3_TYPE) regaddr, 0);
regaddr += sizeof (PTRACE_XFER_TYPE);
if (errno != 0)
{
sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
@ -296,7 +298,6 @@ store_inferior_registers (regno)
{
register unsigned int regaddr;
char buf[80];
extern char registers[];
register int i;
unsigned int offset = U_REGS_OFFSET;
@ -304,17 +305,17 @@ store_inferior_registers (regno)
if (regno >= 0)
{
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
{
errno = 0;
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) &registers[REGISTER_BYTE (regno) + i]);
*(PTRACE_XFER_TYPE *) &registers[REGISTER_BYTE (regno) + i]);
if (errno != 0)
{
sprintf (buf, "writing register number %d(%d)", regno, i);
perror_with_name (buf);
}
regaddr += sizeof(int);
regaddr += sizeof(PTRACE_XFER_TYPE);
}
}
else
@ -324,17 +325,17 @@ store_inferior_registers (regno)
if (CANNOT_STORE_REGISTER (regno))
continue;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
{
errno = 0;
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
*(int *) &registers[REGISTER_BYTE (regno) + i]);
*(PTRACE_XFER_TYPE *) &registers[REGISTER_BYTE (regno) + i]);
if (errno != 0)
{
sprintf (buf, "writing register number %d(%d)", regno, i);
perror_with_name (buf);
}
regaddr += sizeof(int);
regaddr += sizeof(PTRACE_XFER_TYPE);
}
}
}
@ -366,18 +367,20 @@ child_xfer_memory (memaddr, myaddr, len, write, target)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & - sizeof (int);
register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
/ sizeof (PTRACE_XFER_TYPE);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
register PTRACE_XFER_TYPE *buffer
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory data. */
if (addr != memaddr || len < (int)sizeof (int)) {
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
/* Need part of initial word -- fetch it. */
buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
0);
@ -387,17 +390,20 @@ child_xfer_memory (memaddr, myaddr, len, write, target)
{
buffer[count - 1]
= ptrace (PT_READ_I, inferior_pid,
(PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
((PTRACE_ARG3_TYPE)
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
myaddr,
len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (int))
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
@ -417,7 +423,7 @@ child_xfer_memory (memaddr, myaddr, len, write, target)
else
{
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
buffer[i] = ptrace (PT_READ_I, inferior_pid,
@ -428,7 +434,9 @@ child_xfer_memory (memaddr, myaddr, len, write, target)
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
memcpy (myaddr,
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
len);
}
return len;
}

View file

@ -210,6 +210,112 @@ thread_switch (pid)
select_frame (get_current_frame (), 0);
}
static void
restore_current_thread (pid)
int pid;
{
if (pid != inferior_pid)
thread_switch (pid);
}
/* Apply a GDB command to a list of threads. List syntax is a whitespace
seperated list of numbers, or ranges, or the keyword `all'. Ranges consist
of two numbers seperated by a hyphen. Examples:
thread apply 1 2 7 4 backtrace Apply backtrace cmd to threads 1,2,7,4
thread apply 2-7 9 p foo(1) Apply p foo(1) cmd to threads 2->7 & 9
thread apply all p x/i $pc Apply x/i $pc cmd to all threads
*/
static void
thread_apply_all_command (cmd, from_tty)
char *cmd;
int from_tty;
{
struct thread_info *tp;
struct cleanup *old_chain;
if (cmd == NULL || *cmd == '\000')
error ("Please specify a command following the thread ID list");
old_chain = make_cleanup (restore_current_thread, inferior_pid);
for (tp = thread_list; tp; tp = tp->next)
{
thread_switch (tp->pid);
printf_filtered ("\nThread %d (%s):\n", tp->num,
target_pid_to_str (inferior_pid));
execute_command (cmd, from_tty);
}
}
static void
thread_apply_command (tidlist, from_tty)
char *tidlist;
int from_tty;
{
char *cmd;
char *p;
struct cleanup *old_chain;
if (tidlist == NULL || *tidlist == '\000')
error ("Please specify a thread ID list");
for (cmd = tidlist; *cmd != '\000' && !isalpha(*cmd); cmd++);
if (*cmd == '\000')
error ("Please specify a command following the thread ID list");
old_chain = make_cleanup (restore_current_thread, inferior_pid);
while (tidlist < cmd)
{
struct thread_info *tp;
int start, end;
start = strtol (tidlist, &p, 10);
if (p == tidlist)
error ("Error parsing %s", tidlist);
tidlist = p;
while (*tidlist == ' ' || *tidlist == '\t')
tidlist++;
if (*tidlist == '-') /* Got a range of IDs? */
{
tidlist++; /* Skip the - */
end = strtol (tidlist, &p, 10);
if (p == tidlist)
error ("Error parsing %s", tidlist);
tidlist = p;
while (*tidlist == ' ' || *tidlist == '\t')
tidlist++;
}
else
end = start;
for (; start <= end; start++)
{
tp = find_thread_id (start);
if (!tp)
{
warning ("Unknown thread %d.", start);
continue;
}
thread_switch (tp->pid);
printf_filtered ("\nThread %d (%s):\n", tp->num,
target_pid_to_str (inferior_pid));
execute_command (cmd, from_tty);
}
}
}
/* Switch to the specified thread. Will dispatch off to thread_apply_command
if prefix of arg is `apply'. */
static void
thread_command (tidstr, from_tty)
char *tidstr;
@ -217,12 +323,12 @@ thread_command (tidstr, from_tty)
{
int num;
struct thread_info *tp;
char *p;
if (!tidstr)
error ("Please specify a thread ID. Use the \"info threads\" command to\n\
see the IDs of currently known threads.");
num = atoi (tidstr);
tp = find_thread_id (num);
@ -240,9 +346,25 @@ see the IDs of currently known threads.", num);
void
_initialize_thread ()
{
static struct cmd_list_element *thread_cmd_list = NULL;
static struct cmd_list_element *thread_apply_list = NULL;
extern struct cmd_list_element *cmdlist;
add_info ("threads", info_threads_command,
"IDs of currently known threads.");
add_com ("thread", class_info, thread_command,
"Use this command to switch between threads.\n\
The new thread ID must be currently known.");
add_prefix_cmd ("thread", class_run, thread_command,
"Use this command to switch between threads.\n\
The new thread ID must be currently known.", &thread_cmd_list, "thread ", 1,
&cmdlist);
add_prefix_cmd ("apply", class_run, thread_apply_command,
"Apply a command to a list of threads.",
&thread_apply_list, "apply ", 1, &thread_cmd_list);
add_cmd ("all", class_run, thread_apply_all_command,
"Apply a command to all threads.",
&thread_apply_list);
add_com_alias ("t", "thread", class_run, 1);
}