* v850-tdep.c: Full multi-arch.

* config/v850/tm-v850.h: Eliminate or move to v850-tdep.c everything.
	Define GDB_MULTI_ARCH to 2.
This commit is contained in:
Corinna Vinschen 2002-05-16 11:43:08 +00:00
parent 9819c6c883
commit 435e042a62
3 changed files with 446 additions and 284 deletions

View file

@ -1,3 +1,9 @@
2002-05-16 Corinna Vinschen <vinschen@redhat.com>
* v850-tdep.c: Full multi-arch.
* config/v850/tm-v850.h: Eliminate or move to v850-tdep.c everything.
Define GDB_MULTI_ARCH to 2.
2002-05-16 Pierre Muller <muller@ics.u-strasbg.fr> 2002-05-16 Pierre Muller <muller@ics.u-strasbg.fr>
* p-exp.y (current_type): New static variable. * p-exp.y (current_type): New static variable.

View file

@ -20,154 +20,4 @@
Foundation, Inc., 59 Temple Place - Suite 330, Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */ Boston, MA 02111-1307, USA. */
#include "regcache.h" #define GDB_MULTI_ARCH 2
#include "symtab.h" /* For namespace_enum. */
#include "symfile.h" /* For entry_point_address(). */
#define NUM_REGS 66
#define REGISTER_NAMES \
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
\
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", \
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", \
"sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23", \
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", \
\
"pc", "fp" }
/* Initializer for an array of names of registers.
Entries beyond the first NUM_REGS are ignored. */
extern char **v850_register_names;
#define REGISTER_NAME(i) v850_register_names[i]
#define REGISTER_BYTES (NUM_REGS * 4)
#define REGISTER_SIZE 4
#define MAX_REGISTER_RAW_SIZE 4
#define R0_REGNUM 0
#define R1_REGNUM 1
#define SAVE1_START_REGNUM 2
#define SAVE1_END_REGNUM 2
#define SP_REGNUM 3
#define ARG0_REGNUM 6
#define ARGLAST_REGNUM 9
#define V0_REGNUM 10
#define V1_REGNUM 11
#define R12_REGNUM 12
#define SAVE2_START_REGNUM 20
#define SAVE2_END_REGNUM 29
#define EP_REGNUM 30
#define SAVE3_START_REGNUM 31
#define SAVE3_END_REGNUM 31
#define RP_REGNUM 31
#define SR0_REGNUM 32
#define PS_REGNUM (SR0_REGNUM+5)
#define CTBP_REGNUM (SR0_REGNUM+20)
#define PC_REGNUM 64
#define FP_REGNUM 65
#define FP_RAW_REGNUM 29
#define TARGET_READ_FP() read_register (FP_RAW_REGNUM)
#define REGISTER_VIRTUAL_TYPE(REG) builtin_type_int
#define REGISTER_BYTE(REG) ((REG) * 4)
#define REGISTER_VIRTUAL_SIZE(REG) 4
#define REGISTER_RAW_SIZE(REG) 4
#define MAX_REGISTER_VIRTUAL_SIZE 4
#define BREAKPOINT {0x85, 0x05} /* little-ended */
#define FUNCTION_START_OFFSET 0
#define DECR_PC_AFTER_BREAK 0
#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
#define SAVED_PC_AFTER_CALL(fi) read_register (RP_REGNUM)
struct frame_info;
struct frame_saved_regs;
struct type;
struct value;
extern void v850_init_extra_frame_info (struct frame_info *fi);
#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) v850_init_extra_frame_info (fi)
#define INIT_FRAME_PC /* Not necessary */
extern void v850_frame_init_saved_regs (struct frame_info *fi);
#define FRAME_INIT_SAVED_REGS(FI) v850_frame_init_saved_regs (FI)
extern CORE_ADDR v850_frame_chain (struct frame_info *fi);
#define FRAME_CHAIN(fi) v850_frame_chain (fi)
#define FRAME_CHAIN_VALID(FP, FI) generic_file_frame_chain_valid (FP, FI)
extern CORE_ADDR v850_find_callers_reg (struct frame_info *fi, int regnum);
extern CORE_ADDR v850_frame_saved_pc (struct frame_info *);
#define FRAME_SAVED_PC(FI) (v850_frame_saved_pc (FI))
#define EXTRACT_RETURN_VALUE(TYPE, REGBUF, VALBUF) \
memcpy (VALBUF, REGBUF + REGISTER_BYTE (V0_REGNUM), TYPE_LENGTH (TYPE))
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
REGISTER_RAW_SIZE (V0_REGNUM))
#define STORE_RETURN_VALUE(TYPE, VALBUF) \
write_register_bytes(REGISTER_BYTE (V0_REGNUM), VALBUF, TYPE_LENGTH (TYPE));
extern CORE_ADDR v850_skip_prologue (CORE_ADDR pc);
#define SKIP_PROLOGUE(pc) (v850_skip_prologue (pc))
#define FRAME_ARGS_SKIP 0
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
#define FRAME_NUM_ARGS(fi) (-1)
extern void v850_pop_frame (struct frame_info *frame);
#define POP_FRAME v850_pop_frame (get_current_frame ())
#define USE_GENERIC_DUMMY_FRAMES 1
#define CALL_DUMMY {0}
#define CALL_DUMMY_START_OFFSET (0)
#define CALL_DUMMY_BREAKPOINT_OFFSET (0)
#define CALL_DUMMY_LOCATION AT_ENTRY_POINT
#define FIX_CALL_DUMMY(DUMMY, START, FUNADDR, NARGS, ARGS, TYPE, GCCP)
#define CALL_DUMMY_ADDRESS() entry_point_address ()
extern CORE_ADDR v850_push_return_address (CORE_ADDR, CORE_ADDR);
#define PUSH_RETURN_ADDRESS(PC, SP) v850_push_return_address (PC, SP)
#define PUSH_DUMMY_FRAME generic_push_dummy_frame ()
extern CORE_ADDR
v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
unsigned char struct_return, CORE_ADDR struct_addr);
#define PUSH_ARGUMENTS(NARGS, ARGS, SP, STRUCT_RETURN, STRUCT_ADDR) \
(v850_push_arguments (NARGS, ARGS, SP, STRUCT_RETURN, STRUCT_ADDR))
#define STORE_STRUCT_RETURN(STRUCT_ADDR, SP)
#define PC_IN_CALL_DUMMY(PC, SP, FP) generic_pc_in_call_dummy (PC, SP, FP)
extern use_struct_convention_fn v850_use_struct_convention;
#define USE_STRUCT_CONVENTION(GCC_P, TYPE) v850_use_struct_convention (GCC_P, TYPE);
/* override the default get_saved_register function with
one that takes account of generic CALL_DUMMY frames */
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
/* Define this for Wingdb */
#define TARGET_V850

View file

@ -1,5 +1,5 @@
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger. /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Copyright 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GDB. This file is part of GDB.
@ -30,9 +30,112 @@
#include "symfile.h" #include "symfile.h"
#include "arch-utils.h" #include "arch-utils.h"
#include "regcache.h" #include "regcache.h"
#include "symtab.h"
struct gdbarch_tdep
{
/* gdbarch target dependent data here. Currently unused for v850. */
};
static char *v850_generic_reg_names[] = REGISTER_NAMES; /* Extra info which is saved in each frame_info. */
struct frame_extra_info
{
};
enum {
E_R0_REGNUM,
E_R1_REGNUM,
E_R2_REGNUM, E_SAVE1_START_REGNUM = E_R2_REGNUM, E_SAVE1_END_REGNUM = E_R2_REGNUM,
E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
E_R4_REGNUM,
E_R5_REGNUM,
E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
E_R7_REGNUM,
E_R8_REGNUM,
E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
E_R12_REGNUM,
E_R13_REGNUM,
E_R14_REGNUM,
E_R15_REGNUM,
E_R16_REGNUM,
E_R17_REGNUM,
E_R18_REGNUM,
E_R19_REGNUM,
E_R20_REGNUM, E_SAVE2_START_REGNUM = E_R20_REGNUM,
E_R21_REGNUM,
E_R22_REGNUM,
E_R23_REGNUM,
E_R24_REGNUM,
E_R25_REGNUM,
E_R26_REGNUM,
E_R27_REGNUM,
E_R28_REGNUM,
E_R29_REGNUM, E_SAVE2_END_REGNUM = E_R29_REGNUM, E_FP_RAW_REGNUM = E_R29_REGNUM,
E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
E_R31_REGNUM, E_SAVE3_START_REGNUM = E_R31_REGNUM, E_SAVE3_END_REGNUM = E_R31_REGNUM, E_RP_REGNUM = E_R31_REGNUM,
E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
E_R33_REGNUM,
E_R34_REGNUM,
E_R35_REGNUM,
E_R36_REGNUM,
E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
E_R38_REGNUM,
E_R39_REGNUM,
E_R40_REGNUM,
E_R41_REGNUM,
E_R42_REGNUM,
E_R43_REGNUM,
E_R44_REGNUM,
E_R45_REGNUM,
E_R46_REGNUM,
E_R47_REGNUM,
E_R48_REGNUM,
E_R49_REGNUM,
E_R50_REGNUM,
E_R51_REGNUM,
E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
E_R53_REGNUM,
E_R54_REGNUM,
E_R55_REGNUM,
E_R56_REGNUM,
E_R57_REGNUM,
E_R58_REGNUM,
E_R59_REGNUM,
E_R60_REGNUM,
E_R61_REGNUM,
E_R62_REGNUM,
E_R63_REGNUM,
E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
E_R65_REGNUM, E_FP_REGNUM = E_R65_REGNUM,
E_NUM_REGS
};
enum
{
v850_reg_size = 4
};
/* Size of all registers as a whole. */
enum
{
E_ALL_REGS_SIZE = (E_NUM_REGS) * v850_reg_size
};
static LONGEST call_dummy_nil[] = {0};
static char *v850_generic_reg_names[] =
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
"sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
"pc", "fp"
};
static char *v850e_reg_names[] = static char *v850e_reg_names[] =
{ {
@ -93,6 +196,75 @@ struct prologue_info
static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs); static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs);
/* Function: v850_register_name
Returns the name of the v850/v850e register N. */
static char *
v850_register_name (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_name: illegal register number %d",
regnum);
else
return v850_register_names[regnum];
}
/* Function: v850_register_byte
Returns the byte position in the register cache for register N. */
static int
v850_register_byte (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_byte: illegal register number %d",
regnum);
else
return regnum * v850_reg_size;
}
/* Function: v850_register_raw_size
Returns the number of bytes occupied by the register on the target. */
static int
v850_register_raw_size (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_raw_size: illegal register number %d",
regnum);
/* Only the PC has 4 Byte, all other registers 2 Byte. */
else
return v850_reg_size;
}
/* Function: v850_register_virtual_size
Returns the number of bytes occupied by the register as represented
internally by gdb. */
static int
v850_register_virtual_size (int regnum)
{
return v850_register_raw_size (regnum);
}
/* Function: v850_reg_virtual_type
Returns the default type for register N. */
static struct type *
v850_reg_virtual_type (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_virtual_type: illegal register number %d",
regnum);
else if (regnum == E_PC_REGNUM)
return builtin_type_uint32;
else
return builtin_type_int32;
}
/* Should call_function allocate stack space for a struct return? */ /* Should call_function allocate stack space for a struct return? */
int int
@ -150,7 +322,7 @@ handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
it to the immediate value used to adjust SP. */ it to the immediate value used to adjust SP. */
for (i = 0; reg_table[i].mask != 0; i++) for (i = 0; reg_table[i].mask != 0; i++)
if (list12 & reg_table[i].mask) if (list12 & reg_table[i].mask)
offset += REGISTER_RAW_SIZE (regtable[i].regno); offset += v850_register_raw_size (reg_table[i].regno);
pi->frameoffset -= offset; pi->frameoffset -= offset;
/* Calculate the offsets of the registers relative to the value /* Calculate the offsets of the registers relative to the value
@ -163,7 +335,7 @@ handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
if (list12 & reg_table[i].mask) if (list12 & reg_table[i].mask)
{ {
int reg = reg_table[i].regno; int reg = reg_table[i].regno;
offset -= REGISTER_RAW_SIZE (reg); offset -= v850_register_raw_size (reg);
pifsr->reg = reg; pifsr->reg = reg;
pifsr->offset = offset; pifsr->offset = offset;
pifsr->cur_frameoffset = pi->frameoffset; pifsr->cur_frameoffset = pi->frameoffset;
@ -197,7 +369,7 @@ handle_pushm (int insn, int insn2, struct prologue_info *pi,
long offset = 0; long offset = 0;
static struct reg_list pushml_reg_table[] = static struct reg_list pushml_reg_table[] =
{ {
{0x80000, PS_REGNUM}, /* PSW */ {0x80000, E_PS_REGNUM}, /* PSW */
{0x40000, 1}, /* r1 */ {0x40000, 1}, /* r1 */
{0x20000, 2}, /* r2 */ {0x20000, 2}, /* r2 */
{0x10000, 3}, /* r3 */ {0x10000, 3}, /* r3 */
@ -248,7 +420,7 @@ handle_pushm (int insn, int insn2, struct prologue_info *pi,
it to the immediate value used to adjust SP. */ it to the immediate value used to adjust SP. */
for (i = 0; reg_table[i].mask != 0; i++) for (i = 0; reg_table[i].mask != 0; i++)
if (list12 & reg_table[i].mask) if (list12 & reg_table[i].mask)
offset += REGISTER_RAW_SIZE (regtable[i].regno); offset += v850_register_raw_size (reg_table[i].regno);
pi->frameoffset -= offset; pi->frameoffset -= offset;
/* Calculate the offsets of the registers relative to the value /* Calculate the offsets of the registers relative to the value
@ -261,7 +433,7 @@ handle_pushm (int insn, int insn2, struct prologue_info *pi,
if (list12 & reg_table[i].mask) if (list12 & reg_table[i].mask)
{ {
int reg = reg_table[i].regno; int reg = reg_table[i].regno;
offset -= REGISTER_RAW_SIZE (reg); offset -= v850_register_raw_size (reg);
pifsr->reg = reg; pifsr->reg = reg;
pifsr->offset = offset; pifsr->offset = offset;
pifsr->cur_frameoffset = pi->frameoffset; pifsr->cur_frameoffset = pi->frameoffset;
@ -340,7 +512,7 @@ v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
registers. */ registers. */
pi->frameoffset = 0; pi->frameoffset = 0;
pi->framereg = SP_REGNUM; pi->framereg = E_SP_REGNUM;
fp_used = 0; fp_used = 0;
ep_used = 0; ep_used = 0;
pifsr = pi->pifsrs; pifsr = pi->pifsrs;
@ -397,7 +569,7 @@ v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
} }
else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p) else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
{ /* callt <imm6> */ { /* callt <imm6> */
long ctbp = read_register (CTBP_REGNUM); long ctbp = read_register (E_CTBP_REGNUM);
long adr = ctbp + ((insn & 0x3f) << 1); long adr = ctbp + ((insn & 0x3f) << 1);
save_pc = current_pc; save_pc = current_pc;
@ -455,33 +627,33 @@ v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
break; /* Ran into end of prologue */ break; /* Ran into end of prologue */
} }
else if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */ else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10; pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */ else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) /* addi <imm>,sp,sp */
pi->frameoffset += insn2; pi->frameoffset += insn2;
else if (insn == ((FP_RAW_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,fp */ else if (insn == ((E_FP_RAW_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,fp */
{ {
fp_used = 1; fp_used = 1;
pi->framereg = FP_RAW_REGNUM; pi->framereg = E_FP_RAW_REGNUM;
} }
else if (insn == ((R12_REGNUM << 11) | 0x0640 | R0_REGNUM)) /* movhi hi(const),r0,r12 */ else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) /* movhi hi(const),r0,r12 */
r12_tmp = insn2 << 16; r12_tmp = insn2 << 16;
else if (insn == ((R12_REGNUM << 11) | 0x0620 | R12_REGNUM)) /* movea lo(const),r12,r12 */ else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) /* movea lo(const),r12,r12 */
r12_tmp += insn2; r12_tmp += insn2;
else if (insn == ((SP_REGNUM << 11) | 0x01c0 | R12_REGNUM) && r12_tmp) /* add r12,sp */ else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) /* add r12,sp */
pi->frameoffset = r12_tmp; pi->frameoffset = r12_tmp;
else if (insn == ((EP_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,ep */ else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,ep */
ep_used = 1; ep_used = 1;
else if (insn == ((EP_REGNUM << 11) | 0x0000 | R1_REGNUM)) /* mov r1,ep */ else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) /* mov r1,ep */
ep_used = 0; ep_used = 0;
else if (((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w <reg>,<offset>[sp] */ else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|| (fp_used || (fp_used
&& (insn & 0x07ff) == (0x0760 | FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */ && (insn & 0x07ff) == (0x0760 | E_FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
&& pifsr && pifsr
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM) && (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM) || (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM))) || (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
{ {
pifsr->reg = reg; pifsr->reg = reg;
pifsr->offset = insn2 & ~1; pifsr->offset = insn2 & ~1;
@ -495,9 +667,9 @@ v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
else if (ep_used /* sst.w <reg>,<offset>[ep] */ else if (ep_used /* sst.w <reg>,<offset>[ep] */
&& ((insn & 0x0781) == 0x0501) && ((insn & 0x0781) == 0x0501)
&& pifsr && pifsr
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM) && (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM) || (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM))) || (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
{ {
pifsr->reg = reg; pifsr->reg = reg;
pifsr->offset = (insn & 0x007e) << 1; pifsr->offset = (insn & 0x007e) << 1;
@ -536,68 +708,25 @@ v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
return current_pc; return current_pc;
} }
void /* Function: find_callers_reg
v850_frame_init_saved_regs (struct frame_info *fi) Find REGNUM on the stack. Otherwise, it's in an active register.
One thing we might want to do here is to check REGNUM against the
clobber mask, and somehow flag it as invalid if it isn't saved on
the stack somewhere. This would provide a graceful failure mode
when trying to get the value of caller-saves registers for an inner
frame. */
CORE_ADDR
v850_find_callers_reg (struct frame_info *fi, int regnum)
{ {
struct prologue_info pi; for (; fi; fi = fi->next)
struct pifsr pifsrs[NUM_REGS + 1], *pifsr; if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
CORE_ADDR func_addr, func_end; return generic_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->saved_regs[regnum] != 0)
return read_memory_unsigned_integer (fi->saved_regs[regnum],
v850_register_raw_size (regnum));
if (!fi->saved_regs) return read_register (regnum);
{
frame_saved_regs_zalloc (fi);
/* The call dummy doesn't save any registers on the stack, so we
can return now. */
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return;
/* Find the beginning of this function, so we can analyze its
prologue. */
if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
{
pi.pifsrs = pifsrs;
v850_scan_prologue (fi->pc, &pi);
if (!fi->next && pi.framereg == SP_REGNUM)
fi->frame = read_register (pi.framereg) - pi.frameoffset;
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
{
fi->saved_regs[pifsr->reg] = pifsr->offset + fi->frame;
if (pifsr->framereg == SP_REGNUM)
fi->saved_regs[pifsr->reg] += pi.frameoffset;
}
}
/* Else we're out of luck (can't debug completely stripped code).
FIXME. */
}
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in scan_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
void
v850_init_extra_frame_info (struct frame_info *fi)
{
struct prologue_info pi;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
v850_frame_init_saved_regs (fi);
} }
/* Function: frame_chain /* Function: frame_chain
@ -616,7 +745,7 @@ v850_frame_chain (struct frame_info *fi)
/* First, find out who called us */ /* First, find out who called us */
callers_pc = FRAME_SAVED_PC (fi); callers_pc = FRAME_SAVED_PC (fi);
/* If caller is a call-dummy, then our FP bears no relation to his FP! */ /* If caller is a call-dummy, then our FP bears no relation to his FP! */
fp = v850_find_callers_reg (fi, FP_RAW_REGNUM); fp = v850_find_callers_reg (fi, E_FP_RAW_REGNUM);
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
return fp; /* caller is call-dummy: return oldest value of FP */ return fp; /* caller is call-dummy: return oldest value of FP */
@ -629,33 +758,12 @@ v850_frame_chain (struct frame_info *fi)
if (pi.start_function) if (pi.start_function)
return 0; /* Don't chain beyond the start function */ return 0; /* Don't chain beyond the start function */
if (pi.framereg == FP_RAW_REGNUM) if (pi.framereg == E_FP_RAW_REGNUM)
return v850_find_callers_reg (fi, pi.framereg); return v850_find_callers_reg (fi, pi.framereg);
return fi->frame - pi.frameoffset; return fi->frame - pi.frameoffset;
} }
/* Function: find_callers_reg
Find REGNUM on the stack. Otherwise, it's in an active register.
One thing we might want to do here is to check REGNUM against the
clobber mask, and somehow flag it as invalid if it isn't saved on
the stack somewhere. This would provide a graceful failure mode
when trying to get the value of caller-saves registers for an inner
frame. */
CORE_ADDR
v850_find_callers_reg (struct frame_info *fi, int regnum)
{
for (; fi; fi = fi->next)
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->saved_regs[regnum] != 0)
return read_memory_unsigned_integer (fi->saved_regs[regnum],
REGISTER_RAW_SIZE (regnum));
return read_register (regnum);
}
/* Function: skip_prologue /* Function: skip_prologue
Return the address of the first code past the prologue of the function. */ Return the address of the first code past the prologue of the function. */
@ -690,23 +798,24 @@ v850_skip_prologue (CORE_ADDR pc)
command, or the call dummy breakpoint gets hit. */ command, or the call dummy breakpoint gets hit. */
void void
v850_pop_frame (struct frame_info *frame) v850_pop_frame (void)
{ {
struct frame_info *frame = get_current_frame ();
int regnum; int regnum;
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame (); generic_pop_dummy_frame ();
else else
{ {
write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); write_register (E_PC_REGNUM, FRAME_SAVED_PC (frame));
for (regnum = 0; regnum < NUM_REGS; regnum++) for (regnum = 0; regnum < E_NUM_REGS; regnum++)
if (frame->saved_regs[regnum] != 0) if (frame->saved_regs[regnum] != 0)
write_register (regnum, write_register (regnum,
read_memory_unsigned_integer (frame->saved_regs[regnum], read_memory_unsigned_integer (frame->saved_regs[regnum],
REGISTER_RAW_SIZE (regnum))); v850_register_raw_size (regnum)));
write_register (SP_REGNUM, FRAME_FP (frame)); write_register (E_SP_REGNUM, FRAME_FP (frame));
} }
flush_cached_frames (); flush_cached_frames ();
@ -725,7 +834,7 @@ v850_pop_frame (struct frame_info *frame)
CORE_ADDR CORE_ADDR
v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp, v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
unsigned char struct_return, CORE_ADDR struct_addr) int struct_return, CORE_ADDR struct_addr)
{ {
int argreg; int argreg;
int argnum; int argnum;
@ -741,7 +850,7 @@ v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
sp -= len; /* possibly over-allocating, but it works... */ sp -= len; /* possibly over-allocating, but it works... */
/* (you might think we could allocate 16 bytes */ /* (you might think we could allocate 16 bytes */
/* less, but the ABI seems to use it all! ) */ /* less, but the ABI seems to use it all! ) */
argreg = ARG0_REGNUM; argreg = E_ARG0_REGNUM;
/* the struct_return pointer occupies the first parameter-passing reg */ /* the struct_return pointer occupies the first parameter-passing reg */
if (struct_return) if (struct_return)
@ -759,7 +868,7 @@ v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
{ {
int len; int len;
char *val; char *val;
char valbuf[REGISTER_RAW_SIZE (ARG0_REGNUM)]; char valbuf[v850_register_raw_size (E_ARG0_REGNUM)];
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8) && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
@ -775,15 +884,15 @@ v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
} }
while (len > 0) while (len > 0)
if (argreg <= ARGLAST_REGNUM) if (argreg <= E_ARGLAST_REGNUM)
{ {
CORE_ADDR regval; CORE_ADDR regval;
regval = extract_address (val, REGISTER_RAW_SIZE (argreg)); regval = extract_address (val, v850_register_raw_size (argreg));
write_register (argreg, regval); write_register (argreg, regval);
len -= REGISTER_RAW_SIZE (argreg); len -= v850_register_raw_size (argreg);
val += REGISTER_RAW_SIZE (argreg); val += v850_register_raw_size (argreg);
argreg++; argreg++;
} }
else else
@ -806,12 +915,12 @@ v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
CORE_ADDR CORE_ADDR
v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp) v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{ {
write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); write_register (E_RP_REGNUM, CALL_DUMMY_ADDRESS ());
return sp; return sp;
} }
/* Function: frame_saved_pc /* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if RP_REGNUM Find the caller of this frame. We do this by seeing if E_RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the is saved in the stack anywhere, otherwise we get it from the
registers. If the inner frame is a dummy frame, return its PC registers. If the inner frame is a dummy frame, return its PC
instead of RP, because that's where "caller" of the dummy-frame instead of RP, because that's where "caller" of the dummy-frame
@ -821,9 +930,9 @@ CORE_ADDR
v850_frame_saved_pc (struct frame_info *fi) v850_frame_saved_pc (struct frame_info *fi)
{ {
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); return generic_read_register_dummy (fi->pc, fi->frame, E_PC_REGNUM);
else else
return v850_find_callers_reg (fi, RP_REGNUM); return v850_find_callers_reg (fi, E_RP_REGNUM);
} }
@ -834,7 +943,7 @@ v850_frame_saved_pc (struct frame_info *fi)
trap trap
*/ */
int void
v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs, v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p) struct value **args, struct type *type, int gcc_p)
{ {
@ -846,12 +955,122 @@ v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff); store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16); store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
return 0; }
static CORE_ADDR
v850_saved_pc_after_call (struct frame_info *ignore)
{
return read_register (E_RP_REGNUM);
}
static void
v850_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
memcpy (valbuf, regbuf + v850_register_byte (E_V0_REGNUM),
TYPE_LENGTH (type));
}
const static unsigned char *
v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] = { 0x85, 0x05 };
*lenptr = sizeof (breakpoint);
return breakpoint;
}
static CORE_ADDR
v850_extract_struct_value_address (char *regbuf)
{
return extract_address (regbuf + v850_register_byte (E_V0_REGNUM),
v850_register_raw_size (E_V0_REGNUM));
}
static void
v850_store_return_value (struct type *type, char *valbuf)
{
write_register_bytes(v850_register_byte (E_V0_REGNUM), valbuf,
TYPE_LENGTH (type));
}
static void
v850_frame_init_saved_regs (struct frame_info *fi)
{
struct prologue_info pi;
struct pifsr pifsrs[E_NUM_REGS + 1], *pifsr;
CORE_ADDR func_addr, func_end;
if (!fi->saved_regs)
{
frame_saved_regs_zalloc (fi);
/* The call dummy doesn't save any registers on the stack, so we
can return now. */
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return;
/* Find the beginning of this function, so we can analyze its
prologue. */
if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
{
pi.pifsrs = pifsrs;
v850_scan_prologue (fi->pc, &pi);
if (!fi->next && pi.framereg == E_SP_REGNUM)
fi->frame = read_register (pi.framereg) - pi.frameoffset;
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
{
fi->saved_regs[pifsr->reg] = pifsr->offset + fi->frame;
if (pifsr->framereg == E_SP_REGNUM)
fi->saved_regs[pifsr->reg] += pi.frameoffset;
}
}
/* Else we're out of luck (can't debug completely stripped code).
FIXME. */
}
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in scan_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
static void
v850_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
struct prologue_info pi;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
v850_frame_init_saved_regs (fi);
}
static void
v850_store_struct_return (CORE_ADDR a, CORE_ADDR b)
{
}
static CORE_ADDR
v850_target_read_fp (void)
{
return read_register (E_FP_RAW_REGNUM);
} }
static struct gdbarch * static struct gdbarch *
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{ {
static LONGEST call_dummy_words[1] = { 0 };
struct gdbarch_tdep *tdep = NULL; struct gdbarch_tdep *tdep = NULL;
struct gdbarch *gdbarch; struct gdbarch *gdbarch;
int i; int i;
@ -865,22 +1084,109 @@ v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
#endif #endif
/* Change the register names based on the current machine type. */
if (info.bfd_arch_info->arch != bfd_arch_v850) if (info.bfd_arch_info->arch != bfd_arch_v850)
return 0; return 0;
gdbarch = gdbarch_alloc (&info, 0); gdbarch = gdbarch_alloc (&info, 0);
/* Change the register names based on the current machine type. */
for (i = 0; v850_processor_type_table[i].regnames != NULL; i++) for (i = 0; v850_processor_type_table[i].regnames != NULL; i++)
{ {
if (v850_processor_type_table[i].mach == info.bfd_arch_info->mach) if (v850_processor_type_table[i].mach == info.bfd_arch_info->mach)
{ {
v850_register_names = v850_processor_type_table[i].regnames; v850_register_names = v850_processor_type_table[i].regnames;
tm_print_insn_info.mach = info.bfd_arch_info->mach; tm_print_insn_info.mach = info.bfd_arch_info->mach;
break; break;
} }
} }
/*
* Basic register fields and methods.
*/
set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
set_gdbarch_num_pseudo_regs (gdbarch, 0);
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
set_gdbarch_register_name (gdbarch, v850_register_name);
set_gdbarch_register_size (gdbarch, v850_reg_size);
set_gdbarch_register_bytes (gdbarch, E_ALL_REGS_SIZE);
set_gdbarch_register_byte (gdbarch, v850_register_byte);
set_gdbarch_register_raw_size (gdbarch, v850_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, v850_reg_size);
set_gdbarch_register_virtual_size (gdbarch, v850_register_raw_size);
set_gdbarch_max_register_virtual_size (gdbarch, v850_reg_size);
set_gdbarch_register_virtual_type (gdbarch, v850_reg_virtual_type);
set_gdbarch_read_fp (gdbarch, v850_target_read_fp);
/*
* Frame Info
*/
set_gdbarch_init_extra_frame_info (gdbarch, v850_init_extra_frame_info);
set_gdbarch_frame_init_saved_regs (gdbarch, v850_frame_init_saved_regs);
set_gdbarch_frame_chain (gdbarch, v850_frame_chain);
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
set_gdbarch_saved_pc_after_call (gdbarch, v850_saved_pc_after_call);
set_gdbarch_frame_saved_pc (gdbarch, v850_frame_saved_pc);
set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
/*
* Miscelany
*/
/* Stack grows up. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
/* PC stops zero byte after a trap instruction
(which means: exactly on trap instruction). */
set_gdbarch_decr_pc_after_break (gdbarch, 0);
/* This value is almost never non-zero... */
set_gdbarch_function_start_offset (gdbarch, 0);
/* This value is almost never non-zero... */
set_gdbarch_frame_args_skip (gdbarch, 0);
/* OK to default this value to 'unknown'. */
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
/* W/o prototype, coerce float args to double. */
set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double);
/*
* Call Dummies
*
* These values and methods are used when gdb calls a target function. */
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_return_address (gdbarch, v850_push_return_address);
set_gdbarch_extract_return_value (gdbarch, v850_extract_return_value);
set_gdbarch_push_arguments (gdbarch, v850_push_arguments);
set_gdbarch_pop_frame (gdbarch, v850_pop_frame);
set_gdbarch_store_struct_return (gdbarch, v850_store_struct_return);
set_gdbarch_store_return_value (gdbarch, v850_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch, v850_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, v850_use_struct_convention);
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_length (gdbarch, 0);
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
/* set_gdbarch_call_dummy_stack_adjust */
set_gdbarch_fix_call_dummy (gdbarch, v850_fix_call_dummy);
set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
return gdbarch; return gdbarch;
} }