Fix 68hc11 timer device (accuracy, io, timer overflow)

This commit is contained in:
Stephane Carrez 2000-09-06 19:33:12 +00:00
parent 51601921d2
commit 401493c8d9
2 changed files with 197 additions and 115 deletions

View file

@ -1,3 +1,13 @@
2000-09-06 Stephane Carrez <Stephane.Carrez@worldnet.fr>
* dv-m68hc11tim.c (m68hc11tim_timer_event): Compute the overflow
interrupt and compare events accurately. Take into account the
pending ticks not processed by the simulator yet (introduced a shift).
(m68hc11_port_event): Reset the timer interrupt delays.
(m68hc11tim_io_read_buffer): Be able to read several bytes.
(m68hc11tim_io_write_buffer): Likewise for write.
(m68hc11tim_io_write_buffer): Recompute the timer overflow interrupt.
2000-09-06 Stephane Carrez <Stephane.Carrez@worldnet.fr>
* dv-m68hc11spi.c (m68hc11spi_io_read_buffer): Clear the interrupts.

View file

@ -77,6 +77,8 @@ struct m68hc11tim
unsigned long ovf_delay;
signed64 clock_prescaler;
signed64 tcnt_adjust;
signed64 cop_prev_interrupt;
signed64 rti_prev_interrupt;
/* Periodic timers. */
struct hw_event *rti_timer_event;
@ -165,11 +167,13 @@ m68hc11tim_port_event (struct hw *me,
{
hw_event_queue_deschedule (me, controller->rti_timer_event);
controller->rti_timer_event = 0;
controller->rti_prev_interrupt = 0;
}
if (controller->cop_timer_event)
{
hw_event_queue_deschedule (me, controller->cop_timer_event);
controller->cop_timer_event = 0;
controller->cop_prev_interrupt = 0;
}
if (controller->tof_timer_event)
{
@ -220,13 +224,16 @@ m68hc11tim_timer_event (struct hw *me, void *data)
int check_interrupt = 0;
unsigned mask;
unsigned flags;
unsigned long tcnt_internal;
unsigned long tcnt;
int i;
sim_events *events;
controller = hw_data (me);
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
type = (enum event_type) ((long) data) & 0x0FF;
events = STATE_EVENTS (sd);
delay = 0;
switch (type)
@ -234,43 +241,82 @@ m68hc11tim_timer_event (struct hw *me, void *data)
case COP_EVENT:
eventp = &controller->cop_timer_event;
delay = controller->cop_delay;
delay = controller->cop_prev_interrupt + controller->cop_delay;
controller->cop_prev_interrupt = delay;
delay = delay - cpu->cpu_absolute_cycle;
check_interrupt = 1;
delay += events->nr_ticks_to_process;
break;
case RTI_EVENT:
eventp = &controller->rti_timer_event;
delay = controller->rti_delay;
delay = controller->rti_prev_interrupt + controller->rti_delay;
if (((long) (data) & 0x0100) == 0)
{
cpu->ios[M6811_TFLG2] |= M6811_RTIF;
check_interrupt = 1;
controller->rti_prev_interrupt = delay;
delay += controller->rti_delay;
}
delay = delay - cpu->cpu_absolute_cycle;
delay += events->nr_ticks_to_process;
break;
case OVERFLOW_EVENT:
/* Compute the 68HC11 internal free running counter.
There may be 'nr_ticks_to_process' pending cycles that are
not (yet) taken into account by 'sim_events_time'. */
tcnt_internal = sim_events_time (sd) - controller->tcnt_adjust;
tcnt_internal += events->nr_ticks_to_process;
/* We must take into account the prescaler that comes
before the counter (it's a power of 2). */
tcnt_internal &= 0x0ffff * controller->clock_prescaler;
/* Compute the time when the overflow will occur. It occurs when
the counter increments from 0x0ffff to 0x10000 (and thus resets). */
delay = (0x10000 * controller->clock_prescaler) - tcnt_internal;
/* The 'nr_ticks_to_process' will be subtracted when the event
is scheduled. */
delay += events->nr_ticks_to_process;
eventp = &controller->tof_timer_event;
delay = controller->ovf_delay;
cpu->ios[M6811_TFLG2] |= M6811_TOF;
if (((long) (data) & 0x100) == 0)
{
cpu->ios[M6811_TFLG2] |= M6811_TOF;
check_interrupt = 1;
}
break;
case COMPARE_EVENT:
eventp = &controller->cmp_timer_event;
/* Get current free running counter. */
tcnt = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ controller->clock_prescaler);
tcnt &= 0x0ffffL;
/* Compute the 68HC11 internal free running counter.
There may be 'nr_ticks_to_process' pending cycles that are
not (yet) taken into account by 'sim_events_time'. */
events = STATE_EVENTS (sd);
tcnt_internal = sim_events_time (sd) - controller->tcnt_adjust;
tcnt_internal += events->nr_ticks_to_process;
/* We must take into account the prescaler that comes
before the counter (it's a power of 2). */
tcnt_internal &= 0x0ffff * controller->clock_prescaler;
/* Get current visible TCNT register value. */
tcnt = tcnt_internal / controller->clock_prescaler;
flags = cpu->ios[M6811_TMSK1];
mask = 0x80;
delay = 65536;
delay = 65536 * controller->clock_prescaler;
/* Scan each output compare register to see if one matches
the free running counter. Set the corresponding OCi flag
if the output compare is enabled. */
for (i = M6811_TOC1; i <= M6811_TOC5; i += 2, mask >>= 1)
{
unsigned short compare;
unsigned long compare;
compare = (cpu->ios[i] << 8) + cpu->ios[i+1];
if (compare == tcnt && (flags & mask))
@ -279,16 +325,19 @@ m68hc11tim_timer_event (struct hw *me, void *data)
check_interrupt++;
}
/* Compute how many times for the next match. */
if (compare > tcnt)
compare = compare - tcnt;
/* Compute how many times for the next match.
Use the internal counter value to take into account the
prescaler accurately. */
compare = compare * controller->clock_prescaler;
if (compare > tcnt_internal)
compare = compare - tcnt_internal;
else
compare = compare - tcnt + 65536;
compare = compare - tcnt_internal
+ 65536 * controller->clock_prescaler;
if (compare < delay)
delay = compare;
}
delay = delay * controller->clock_prescaler;
/* Deactivate the compare timer if no output compare is enabled. */
if ((flags & 0xF0) == 0)
@ -442,6 +491,7 @@ m68hc11tim_io_read_buffer (struct hw *me,
struct m68hc11tim *controller;
sim_cpu *cpu;
unsigned8 val;
unsigned cnt = 0;
HW_TRACE ((me, "read 0x%08lx %d", (long) base, (int) nr_bytes));
@ -449,27 +499,34 @@ m68hc11tim_io_read_buffer (struct hw *me,
cpu = STATE_CPU (sd, 0);
controller = hw_data (me);
switch (base)
while (nr_bytes)
{
/* The cpu_absolute_cycle is updated after each instruction.
Reading in a 16-bit register will be split in two accesses
but this will be atomic within the simulator. */
case M6811_TCTN_H:
val = (uint8) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ (controller->clock_prescaler * 256));
break;
switch (base)
{
/* The cpu_absolute_cycle is updated after each instruction.
Reading in a 16-bit register will be split in two accesses
but this will be atomic within the simulator. */
case M6811_TCTN_H:
val = (uint8) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ (controller->clock_prescaler * 256));
break;
case M6811_TCTN_L:
val = (uint8) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ controller->clock_prescaler);
break;
case M6811_TCTN_L:
val = (uint8) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ controller->clock_prescaler);
break;
default:
val = cpu->ios[base];
break;
default:
val = cpu->ios[base];
break;
}
*((unsigned8*) dest) = val;
dest++;
base++;
nr_bytes--;
cnt++;
}
*((unsigned8*) dest) = val;
return 1;
return cnt;
}
static unsigned
@ -485,6 +542,8 @@ m68hc11tim_io_write_buffer (struct hw *me,
unsigned8 val, n;
signed64 adj;
int reset_compare = 0;
int reset_overflow = 0;
int cnt = 0;
HW_TRACE ((me, "write 0x%08lx %d", (long) base, (int) nr_bytes));
@ -492,102 +551,111 @@ m68hc11tim_io_write_buffer (struct hw *me,
cpu = STATE_CPU (sd, 0);
controller = hw_data (me);
val = *((const unsigned8*) source);
switch (base)
while (nr_bytes)
{
/* Set the timer counter low part, trying to preserve the low part.
We compute the absolute cycle adjustment that we have to apply
to obtain the timer current value. Computation must be made
in 64-bit to avoid overflow problems. */
case M6811_TCTN_L:
adj = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ (controller->clock_prescaler * (signed64) 256)) & 0x0FF;
adj = cpu->cpu_absolute_cycle
- (adj * controller->clock_prescaler * (signed64) 256)
- ((signed64) adj * controller->clock_prescaler);
controller->tcnt_adjust = adj;
reset_compare = 1;
break;
val = *((const unsigned8*) source);
switch (base)
{
/* Set the timer counter low part, trying to preserve the low part.
We compute the absolute cycle adjustment that we have to apply
to obtain the timer current value. Computation must be made
in 64-bit to avoid overflow problems. */
case M6811_TCTN_L:
adj = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ (controller->clock_prescaler * (signed64) 256)) & 0x0FF;
adj = cpu->cpu_absolute_cycle
- (adj * controller->clock_prescaler * (signed64) 256)
- ((signed64) adj * controller->clock_prescaler);
controller->tcnt_adjust = adj;
reset_compare = 1;
reset_overflow = 1;
break;
case M6811_TCTN_H:
adj = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ controller->clock_prescaler) & 0x0ff;
adj = cpu->cpu_absolute_cycle
- ((signed64) val * controller->clock_prescaler * (signed64) 256)
- (adj * controller->clock_prescaler);
controller->tcnt_adjust = adj;
reset_compare = 1;
break;
case M6811_TCTN_H:
adj = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
/ controller->clock_prescaler) & 0x0ff;
adj = cpu->cpu_absolute_cycle
- ((signed64) val * controller->clock_prescaler * (signed64) 256)
- (adj * controller->clock_prescaler);
controller->tcnt_adjust = adj;
reset_compare = 1;
reset_overflow = 1;
break;
case M6811_TMSK2:
case M6811_TMSK2:
/* Timer prescaler cannot be changed after 64 bus cycles. */
if (cpu->cpu_absolute_cycle >= 64)
{
val &= ~(M6811_PR1 | M6811_PR0);
val |= cpu->ios[M6811_TMSK2] & (M6811_PR1 | M6811_PR0);
}
switch (val & (M6811_PR1 | M6811_PR0))
{
case 0:
n = 1;
if (cpu->cpu_absolute_cycle >= 64)
{
val &= ~(M6811_PR1 | M6811_PR0);
val |= cpu->ios[M6811_TMSK2] & (M6811_PR1 | M6811_PR0);
}
switch (val & (M6811_PR1 | M6811_PR0))
{
case 0:
n = 1;
break;
case M6811_PR0:
n = 4;
break;
case M6811_PR1:
n = 8;
break;
default:
case M6811_PR1 | M6811_PR0:
n = 16;
break;
}
if (cpu->cpu_absolute_cycle < 64)
{
reset_overflow = 1;
controller->clock_prescaler = n;
}
cpu->ios[base] = val;
interrupts_update_pending (&cpu->cpu_interrupts);
break;
case M6811_PR0:
n = 4;
break;
case M6811_PR1:
n = 8;
break;
default:
case M6811_PR1 | M6811_PR0:
n = 16;
break;
}
if (controller->clock_prescaler != n)
{
controller->clock_prescaler = n;
controller->ovf_delay = n * 65536;
m68hc11tim_timer_event (me, (void*) (OVERFLOW_EVENT| 0x100));
}
cpu->ios[base] = val;
interrupts_update_pending (&cpu->cpu_interrupts);
break;
case M6811_PACTL:
n = (1 << ((val & (M6811_RTR1 | M6811_RTR0))));
cpu->ios[base] = val;
case M6811_PACTL:
n = (1 << ((val & (M6811_RTR1 | M6811_RTR0))));
cpu->ios[base] = val;
controller->rti_delay = (long) (n) * 8192;
m68hc11tim_timer_event (me, (void*) (RTI_EVENT| 0x100));
break;
controller->rti_delay = (long) (n) * 8192;
m68hc11tim_timer_event (me, (void*) (RTI_EVENT| 0x100));
break;
case M6811_TFLG2:
if (val & M6811_TOF)
val &= ~M6811_TOF;
else
val |= cpu->ios[M6811_TFLG2] & M6811_TOF;
case M6811_TFLG2:
if (val & M6811_TOF)
val &= ~M6811_TOF;
else
val |= cpu->ios[M6811_TFLG2] & M6811_TOF;
/* Clear the Real Time interrupt flag. */
if (val & M6811_RTIF)
val &= ~M6811_RTIF;
else
val |= cpu->ios[M6811_TFLG2] & M6811_RTIF;
if (val & M6811_RTIF)
val &= ~M6811_RTIF;
else
val |= cpu->ios[M6811_TFLG2] & M6811_RTIF;
cpu->ios[base] = val;
interrupts_update_pending (&cpu->cpu_interrupts);
break;
cpu->ios[base] = val;
interrupts_update_pending (&cpu->cpu_interrupts);
break;
case M6811_TOC1:
case M6811_TOC2:
case M6811_TOC3:
case M6811_TOC4:
case M6811_TOC5:
cpu->ios[base] = val;
reset_compare = 1;
break;
case M6811_TOC1:
case M6811_TOC2:
case M6811_TOC3:
case M6811_TOC4:
case M6811_TOC5:
cpu->ios[base] = val;
reset_compare = 1;
break;
default:
return 0;
default:
break;
}
base++;
nr_bytes--;
cnt++;
source++;
}
/* Re-compute the next timer compare event. */
@ -595,7 +663,11 @@ m68hc11tim_io_write_buffer (struct hw *me,
{
m68hc11tim_timer_event (me, (void*) (COMPARE_EVENT));
}
return nr_bytes;
if (reset_overflow)
{
m68hc11tim_timer_event (me, (void*) (OVERFLOW_EVENT| 0x100));
}
return cnt;
}