* configure.in (signaldirs): Define and add to configdirs for all

targets except some specific ones that are known to not support signals.
	Also clean up formatting.
	* gdb.base/Makefile.in (EXECUTABLES):  Remove sigall and signals.
	(signals, sigall):  Remove rules to build.
	* gdb.base/{sigall.c, sigall.exp, signals.c, signals.exp}:
	Moved to new gdb.signals directory.
	* gdb.signals: New test directory.
	* gdb.signals/{Makefile.in, configure.in, sigall.c, sigall.exp,
	signals.c signals.exp}:  New or moved files.
This commit is contained in:
Fred Fish 1995-07-07 04:11:42 +00:00
parent a35809e30d
commit 3ba76bd840
4 changed files with 35 additions and 1887 deletions

View file

@ -14,51 +14,61 @@ configdirs="gdb.base gdb.c++ gdb.chill gdb.disasm"
# debugging format.
stabsdirs="gdb.stabs"
# Directories to use for a configuration which supports signals.
# This usually excludes cross targets.
signaldirs="gdb.signals"
# per-host:
# per-target:
# everything defaults to unix for a target
# everything defaults to unix for a target
target_abbrev=unix
target_makefile_frag=config/mt-unix
# this section is for all targets
# this section is for all targets
case "${target}" in
i[345]86-*-aout) target_makefile_frag=config/mt-i386-aout ;;
*-*-lynx) target_makefile_frag=config/mt-lynx ;;
*-*-netware) target_makefile_frag=config/mt-netware ;;
*-*-vxworks*) target_makefile_frag=config/mt-vxworks ;;
m68k-*-*) target_makefile_frag=config/mt-m68k ;;
i960-*-nindy) target_makefile_frag=config/mt-i960-nindy ;;
a29k-*-udi) target_makefile_frag=config/mt-a29k-udi ;;
sparclite-*-*) target_makefile_frag=config/mt-slite ;;
sparc-*-aout) target_makefile_frag=config/mt-sparc-aout ;;
mips-*-ecoff) target_makefile_frag=config/mt-mips-ecoff ;;
*-*-lynx) target_makefile_frag=config/mt-lynx ;;
*-*-netware) target_makefile_frag=config/mt-netware ;;
*-*-vxworks*) target_makefile_frag=config/mt-vxworks ;;
m68k-*-*) target_makefile_frag=config/mt-m68k ;;
i960-*-nindy) target_makefile_frag=config/mt-i960-nindy ;;
a29k-*-udi) target_makefile_frag=config/mt-a29k-udi ;;
sparclite-*-*) target_makefile_frag=config/mt-slite ;;
sparc-*-aout) target_makefile_frag=config/mt-sparc-aout ;;
mips-*-ecoff) target_makefile_frag=config/mt-mips-ecoff ;;
esac
# add stabs tests for appropriate targets
case "${target}" in
rs6000-*-aix*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-bsd*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-go32*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-linux*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-lynxos*) configdirs="${configdirs} ${stabsdirs}" ;;
*-sun-*) configdirs="${configdirs} ${stabsdirs}" ;;
hppa*-*-*) configdirs="${configdirs} ${stabsdirs}" ;;
rs6000-*-aix*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-bsd*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-go32*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-linux*) configdirs="${configdirs} ${stabsdirs}" ;;
*-*-lynxos*) configdirs="${configdirs} ${stabsdirs}" ;;
*-sun-*) configdirs="${configdirs} ${stabsdirs}" ;;
hppa*-*-*) configdirs="${configdirs} ${stabsdirs}" ;;
*) if [ x${with_stabs} = xyes ]; then
configdirs="${configdirs} ${stabsdirs}"
fi
;;
*) if [ x${with_stabs} = xyes ]; then
configdirs="${configdirs} ${stabsdirs}"
fi
;;
esac
# link in the lib directory if needed
# add signal tests for appropriate targets
case "${target}" in
sh*-hms) ;;
*) configdirs="${configdirs} ${signaldirs}" ;;
esac
# link in the lib directory if needed
#if [ ! -d lib ] ; then
# files="lib"
# links="lib"
#fi
# make list of files and links based on tool name
# make list of files and links based on tool name
tool_list="${tool_list} gdb"
#for i in ${tool_list};
#do

File diff suppressed because it is too large Load diff

View file

@ -1,170 +0,0 @@
# Copyright (C) 1995 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
if $tracelevel then {
strace $tracelevel
}
set prms_id 0
set bug_id 0
gdb_reinitialize_dir $srcdir/$subdir
set binfile $objdir/$subdir/sigall
if ![file exists $binfile] then {
perror "$binfile does not exist."
return 0
}
# Make the first signal SIGABRT because it is always supported.
set sig_supported 1
set thissig "ABRT"
proc test_one_sig {nextsig} {
global sig_supported
global prompt
global thissig
set this_sig_supported $sig_supported
gdb_test "handle SIG$thissig stop print" \
"SIG$thissig\[ \t\]*Yes\[ \t\]*Yes\[ \t\]*Yes"
gdb_test "b handle_$thissig" "Breakpoint \[0-9\]"
gdb_test "b gen_$nextsig" "Breakpoint \[0-9\]"
set need_another_continue 1
if $this_sig_supported then {
send "continue\n"
expect {
-re "Continuing.*Program received signal SIG$thissig.*$prompt $" {
pass "get signal $thissig"
}
-re ".*$prompt $" {
fail "get signal $thissig"
set need_another_continue 0
}
default {
fail "get signal $thissig (eof or timeout)"
}
}
}
if $need_another_continue then {
gdb_test "continue" \
"Breakpoint.*handle_$thissig" "send signal $thissig"
}
send "signal 0\n"
expect {
-re "Breakpoint.*gen_$nextsig.*kill.*$prompt $" {
pass "advance to $nextsig"
set sig_supported 1
}
-re "Breakpoint.*gen_$nextsig.*handle.*$prompt $" {
pass "advance to $nextsig"
set sig_supported 0
}
-re ".*$prompt $" { fail "advance to $nextsig" }
default { fail "advance to $nextsig (eof or timeout)" }
}
set thissig $nextsig
}
gdb_load $binfile
runto gen_ABRT
test_one_sig HUP
test_one_sig QUIT
test_one_sig ILL
test_one_sig EMT
test_one_sig FPE
test_one_sig BUS
test_one_sig SEGV
test_one_sig SYS
test_one_sig PIPE
test_one_sig ALRM
test_one_sig URG
test_one_sig TSTP
test_one_sig CONT
test_one_sig CHLD
test_one_sig TTIN
test_one_sig TTOU
test_one_sig IO
test_one_sig XCPU
test_one_sig XFSZ
test_one_sig VTALRM
test_one_sig PROF
test_one_sig WINCH
test_one_sig LOST
test_one_sig USR1
test_one_sig USR2
test_one_sig PWR
test_one_sig POLL
test_one_sig WIND
test_one_sig PHONE
test_one_sig WAITING
test_one_sig LWP
test_one_sig DANGER
test_one_sig GRANT
test_one_sig RETRACT
test_one_sig MSG
test_one_sig SOUND
test_one_sig SAK
test_one_sig PRIO
test_one_sig 33
test_one_sig 34
test_one_sig 35
test_one_sig 36
test_one_sig 37
test_one_sig 38
test_one_sig 39
test_one_sig 40
test_one_sig 41
test_one_sig 42
test_one_sig 43
test_one_sig 44
test_one_sig 45
test_one_sig 46
test_one_sig 47
test_one_sig 48
test_one_sig 49
test_one_sig 50
test_one_sig 51
test_one_sig 52
test_one_sig 53
test_one_sig 54
test_one_sig 55
test_one_sig 56
test_one_sig 57
test_one_sig 58
test_one_sig 59
test_one_sig 60
test_one_sig 61
test_one_sig 62
test_one_sig 63
test_one_sig TERM
# The last signal (SIGTERM) gets handled slightly differently because
# we are not setting up for another test.
gdb_test "handle SIGTERM stop print" \
"SIGTERM\[ \t\]*Yes\[ \t\]*Yes\[ \t\]*Yes"
gdb_test "b handle_TERM" "Breakpoint \[0-9\]"
gdb_test "continue" \
"Continuing.*Program received signal SIGTERM" \
"get signal TERM"
gdb_test "continue" "Breakpoint.*handle_TERM" "send signal TERM"
gdb_test "continue" "Program exited normally" "continue to sigall exit"
return 0

View file

@ -1,317 +0,0 @@
if $tracelevel then {
strace $tracelevel
}
set prms_id 0
set bug_id 0
set binfile $objdir/$subdir/signals
if ![file exists $binfile] then {
perror "$binfile does not exist."
return 0
}
proc signal_tests_1 {} {
global prompt
if [runto_main] then {
gdb_test "next" "signal \\(SIGUSR1.*" \
"next over signal (SIGALRM, handler)"
gdb_test "next" "alarm \\(.*" \
"next over signal (SIGUSR1, handler)"
gdb_test "next" "\\+\\+count; /\\* first \\*/" \
"next over alarm (1)"
# An alarm has been signaled, give the signal time to get delivered.
exec sleep 2
# i386 BSD currently fails the next test with a SIGTRAP.
setup_xfail "i*86-*-bsd*"
# But Dynix has a DECR_PC_AFTER_BREAK of zero, so the failure
# is shadowed by hitting the through_sigtramp_breakpoint.
clear_xfail "i*86-sequent-bsd*"
# Univel SVR4 i386 continues instead of stepping.
setup_xfail "i*86-univel-sysv4*"
send "next\n"
expect {
-re "alarm .*$prompt $" { pass "next to 2nd alarm (1)" }
-re "Program received signal SIGTRAP.*first.*$prompt $" {
# This can happen on machines that have a trace flag
# in their PS register.
# The trace flag in the PS register will be set due to
# the `next' command.
# Before calling the signal handler, the PS register
# is pushed along with the context on the user stack.
# When the signal handler has finished, it reenters the
# the kernel via a sigreturn syscall, which restores the
# PS register along with the context.
# If the kernel erroneously does not clear the trace flag
# in the pushed context, gdb will receive a SIGTRAP from
# the set trace flag in the restored context after the
# signal handler has finished.
# I do not yet understand why the SIGTRAP does not occur
# after stepping the instruction at the restored PC on
# i386 BSDI 1.0 systems.
# Note that the vax under Ultrix also exhibits
# this behaviour (it is uncovered by the `continue from
# a break in a signal handler' test below).
# With this test the failure is shadowed by hitting the
# through_sigtramp_breakpoint upon return from the signal
# handler.
fail "next to 2nd alarm (1) (probably kernel bug)"
gdb_test "next" "alarm.*" "next to 2nd alarm (1)"
}
-re "Program exited with code.*$prompt $" {
# This is apparently a bug in the UnixWare kernel (but
# has not been investigated beyond the
# resume/target_wait level, and has not been reported
# to Univel). If it steps when a signal is pending,
# it does a continue instead. I don't know whether
# there is a workaround.
# Perhaps this problem exists on other SVR4 systems;
# but (a) we have no reason to think so, and (b) if we
# put a wrong xfail here, we never get an XPASS to let
# us know that it was incorrect (and then if such a
# configuration regresses we have no way of knowing).
# Solaris is not a relevant data point either way
# because it lacks single stepping.
fail "'next' behaved as 'continue'"
return 0
}
-re ".*$prompt $" { fail "next to 2nd alarm (1)" }
timeout { fail "next to 2nd alarm (1); (timeout)" }
eof { fail "next to 2nd alarm (1); (eof)" }
}
gdb_test "break handler" "Breakpoint \[0-9\]+ .*"
gdb_test "next" "\\+\\+count; /\\* second \\*/" \
"next to 2nd ++count in signals_tests_1"
# An alarm has been signaled, give the signal time to get delivered.
exec sleep 2
set bash_bug 0
send "next\n"
expect {
-re "Breakpoint.*handler.*$prompt $" {
pass "next to handler in signals_tests_1"
}
-re "Program received signal SIGEMT.*$prompt $" {
# Bash versions before 1.13.5 cause this behaviour
# by blocking SIGTRAP.
fail "next to handler in signals_tests_1 (known problem with bash versions before 1.13.5)"
set bash_bug 1
gdb_test "signal 0" "Breakpoint.*handler.*"
}
-re ".*$prompt $" { fail "next to handler in signals_tests_1" }
timeout { fail "next to handler in signals_tests_1 (timeout)" }
eof { fail "next to handler in signals_tests_1 (eof)" }
}
# This doesn't test that main is frame #2, just that main is frame
# #2, #3, or higher. At some point this should be fixed (but
# it quite possibly would introduce new FAILs on some systems).
gdb_test "backtrace" "#0.*handler.*#1.*#2.*main.*" \
"backtrace in signals_tests_1"
gdb_test "break func1" "Breakpoint \[0-9\]+ .*"
gdb_test "break func2" "Breakpoint \[0-9\]+ .*"
# Vax Ultrix and i386 BSD currently fail the next test with
# a SIGTRAP, but with different symptoms.
setup_xfail "vax-*-ultrix*"
setup_xfail "i*86-*-bsd*"
send "continue\n"
expect {
-re "Breakpoint.*func1.*$prompt $" { pass "continue to func1" }
-re "Program received signal SIGTRAP.*second.*$prompt $" {
# See explanation for `next to 2nd alarm (1)' fail above.
# We did step into the signal handler, hit a breakpoint
# in the handler and continued from the breakpoint.
# The set trace flag in the restored context is causing
# the SIGTRAP, without stepping an instruction.
fail "continue to func1 (probably kernel bug)"
gdb_test "continue" "Breakpoint.*func1.*" \
"extra continue to func1"
}
-re "Program received signal SIGTRAP.*func1 ..;.*$prompt $" {
# On the vax under Ultrix the set trace flag in the restored
# context is causing the SIGTRAP, but after stepping one
# instruction, as expected.
fail "continue to func1 (probably kernel bug)"
gdb_test "continue" "Breakpoint.*func1.*" \
"extra continue to func1"
}
-re ".*$prompt $" { fail "continue to func1" }
default { fail "continue to func1" }
}
setup_xfail "*-*-irix*"
send "signal SIGUSR1\n"
expect {
-re "Breakpoint.*handler.*$prompt $" { pass "signal SIGUSR1" }
-re "Program received signal SIGUSR1.*$prompt $" {
# This is what irix4 and irix5 do.
# It would appear to be a kernel bug.
fail "signal SIGUSR1"
gdb_test "continue" "Breakpoint.*handler.*" "pass it SIGUSR1"
}
-re ".*$prompt $" { fail "signal SIGUSR1" }
default { fail "signal SIGUSR1" }
}
# Will tend to wrongly require an extra continue.
# The problem here is that the breakpoint at func1 will be
# inserted, and when the system finishes with the signal
# handler it will try to execute there. For GDB to try to
# remember that it was going to step over a breakpoint when a
# signal happened, distinguish this case from the case where
# func1 is called from the signal handler, etc., seems
# exceedingly difficult. So don't expect this to get fixed
# anytime soon.
setup_xfail "*-*-*"
send "continue\n"
expect {
-re "Breakpoint.*func2.*$prompt $" { pass "continue to func2" }
-re "Breakpoint.*func1.*$prompt $" {
fail "continue to func2"
gdb_test "continue" "Breakpoint.*func2.*" \
"extra continue to func2"
}
-re ".*$prompt $" { fail "continue to func2" }
default { fail "continue to func2" }
}
exec sleep 2
# GDB yanks out the breakpoints to step over the breakpoint it
# stopped at, which means the breakpoint at handler is yanked.
# But if NO_SINGLE_STEP, we won't get another chance to reinsert
# them (at least not with procfs, where we tell the kernel not
# to tell gdb about `pass' signals). So the fix would appear to
# be to just yank that one breakpoint when we step over it.
setup_xfail "sparc-*-*"
setup_xfail "rs6000-*-*"
# A faulty bash will not step the inferior into sigtramp on sun3.
if {$bash_bug} then {
setup_xfail "m68*-*-sunos4*"
}
gdb_test "continue" "Breakpoint.*handler.*" "continue to handler"
# If the NO_SINGLE_STEP failure happened, we have already exited.
# If we succeeded a continue will return from the handler to func2.
# GDB now has `forgotten' that it intended to step over the
# breakpoint at func2 and will stop at func2.
setup_xfail "*-*-*"
# The sun3 with a faulty bash will also be `forgetful' but it
# already got the spurious stop at func2 and this continue will work.
if {$bash_bug} then {
clear_xfail "m68*-*-sunos4*"
}
gdb_test "continue" "Program exited with code 010\\." \
"continue to exit in signals_tests_1 "
}
}
# On a few losing systems, ptrace (PT_CONTINUE) or ptrace (PT_STEP)
# causes pending signals to be cleared, which causes these tests to
# get nowhere fast. This is totally losing behavior (perhaps there
# are cases in which is it useful but the user needs more control,
# which they mostly have in GDB), but some people apparently think it
# is a feature. It is documented in the ptrace manpage on Motorola
# Delta Series sysV68 R3V7.1 and on HPUX 9.0. Even the non-HPUX PA
# OSes (BSD and OSF/1) seem to have figured they had to copy this
# braindamage.
if {[ istarget "m68*-motorola-*" ] || [ istarget "hppa*-*-bsd*" ] ||
[ istarget "*-*-hpux*" ] || [ istarget "hppa*-*-osf*" ]} then {
setup_xfail "*-*-*"
fail "ptrace loses on signals on this target"
return 0
}
gdb_exit
gdb_start
# This will need to be updated as the exact list of signals changes,
# but I want to test that TARGET_SIGNAL_0, TARGET_SIGNAL_DEFAULT, and
# TARGET_SIGNAL_UNKNOWN are skipped.
gdb_test "handle all print" "Signal Stop Print Pass to program Description\r\nSIGHUP Yes Yes Yes Hangup.*SIG63 Yes Yes Yes Real-time event 63"
gdb_exit
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load $binfile
signal_tests_1
# Force a resync, so we're looking at the right prompt. On SCO we
# were getting out of sync (I don't understand why).
send "p 1+1\n"
expect {
-re "= 2.*$prompt $" {}
-re ".*$prompt $" { perror "sync trouble in signals.exp" }
default { perror "sync trouble in signals.exp" }
}
if [runto_main] then {
gdb_test "break handler if 0" "Breakpoint \[0-9\]+ .*"
gdb_test "set \$handler_breakpoint_number = \$bpnum" ""
# Get to the point where a signal is waiting to be delivered
gdb_test "next" "signal \\(SIGUSR1.*" "next to signal in signals.exp"
gdb_test "next" "alarm \\(.*" "next to alarm #1 in signals.exp"
gdb_test "next" "\\+\\+count; /\\* first \\*/" \
"next to ++count #1 in signals.exp"
# Give the signal time to get delivered
exec sleep 2
# Now call a function. When GDB tries to run the stack dummy,
# it will hit the breakpoint at handler. Provided it doesn't
# lose its cool, this is not a problem, it just has to note
# that the breakpoint condition is false and keep going.
gdb_test "p func1 ()" "^p func1 \\(\\)\r\n.\[0-9\]* = void" \
"p func1 () #1 in signals.exp"
# Make sure the count got incremented.
# Haven't investigated this xfail
setup_xfail "rs6000-*-*"
gdb_test "p count" "= 2" "p count #1 in signals.exp"
if [istarget "rs6000-*-*"] { return 0 }
gdb_test "condition \$handler_breakpoint_number" "now unconditional\\."
gdb_test "next" "alarm \\(.*" "next to alarm #2 in signals.exp"
gdb_test "next" "\\+\\+count; /\\* second \\*/" \
"next to ++count #2 in signals.exp"
exec sleep 2
# This time we stop when GDB tries to run the stack dummy.
# So it is OK that we do not print the return value from the function.
gdb_test "p func1 ()" \
"Breakpoint \[0-9\]*, handler.*
The program being debugged stopped while in a function called from GDB.*" \
"p func1 () #2 in signals.exp"
# But we should be able to backtrace...
gdb_test "bt" "#0.*handler.*#1.*#2.*main.*" "bt in signals.exp"
# ...and continue...
gdb_test "continue" "Continuing\\." "continue in signals.exp"
# ...and then count should have been incremented
gdb_test "p count" "= 5" "p count #2 in signals.exp"
}
return 0