* v850-tdep.c: Cleanup lots of things. Add many comments.
* testsuite/gdb.base/nodebug.exp: Whack out -g options by hand so that cflags can contains -gstabs, and work correctly for other tests.
This commit is contained in:
parent
dece5fa0c3
commit
23da411ac8
2 changed files with 198 additions and 147 deletions
|
@ -1,3 +1,9 @@
|
|||
Mon Oct 21 14:40:50 1996 Stu Grossman (grossman@critters.cygnus.com)
|
||||
|
||||
* v850-tdep.c: Cleanup lots of things. Add many comments.
|
||||
* testsuite/gdb.base/nodebug.exp: Whack out -g options by hand so
|
||||
that cflags can contains -gstabs, and work correctly for other tests.
|
||||
|
||||
Mon Oct 21 14:01:38 1996 Michael Snyder <msnyder@cleaver.cygnus.com>
|
||||
|
||||
* top.c: Add new commands "set annotate" and "show annotate".
|
||||
|
|
327
gdb/v850-tdep.c
327
gdb/v850-tdep.c
|
@ -26,61 +26,85 @@ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
#include "bfd.h"
|
||||
#include "gdb_string.h"
|
||||
#include "gdbcore.h"
|
||||
#include "symfile.h"
|
||||
|
||||
/* Dummy frame. This saves the processor state just prior to setting up the
|
||||
inferior function call. On most targets, the registers are saved on the
|
||||
target stack, but that really slows down function calls. */
|
||||
|
||||
struct dummy_frame
|
||||
{
|
||||
struct dummy_frame *next;
|
||||
|
||||
CORE_ADDR fp;
|
||||
CORE_ADDR sp;
|
||||
CORE_ADDR rp;
|
||||
CORE_ADDR pc;
|
||||
char regs[REGISTER_BYTES];
|
||||
};
|
||||
|
||||
static struct dummy_frame *dummy_frame_stack = NULL;
|
||||
|
||||
/* This function actually figures out the frame address for a given pc and
|
||||
sp. This is tricky on the v850 because we only use an explicit frame
|
||||
pointer when using alloca(). The only reliable way to get this info is to
|
||||
examine the prologue.
|
||||
*/
|
||||
|
||||
void
|
||||
v850_init_extra_frame_info (fi)
|
||||
struct frame_info *fi;
|
||||
static CORE_ADDR read_register_dummy PARAMS ((int regno));
|
||||
|
||||
/* Info gleaned from scanning a function's prologue. */
|
||||
|
||||
struct prologue_info
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
CORE_ADDR func_addr, prologue_end, current_pc;
|
||||
int reg;
|
||||
int frameoffset;
|
||||
int framereg;
|
||||
int frameoffset;
|
||||
int start_function;
|
||||
struct frame_saved_regs *fsr;
|
||||
};
|
||||
|
||||
if (fi->next)
|
||||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||||
static CORE_ADDR scan_prologue PARAMS ((CORE_ADDR pc, struct prologue_info *fs));
|
||||
|
||||
/* Scan the prologue of the function that contains PC, and record what we find
|
||||
in PI. PI->fsr must be zeroed by the called. Returns the pc after the
|
||||
prologue. Note that the addresses saved in pi->fsr are actually just frame
|
||||
relative (negative offsets from the frame pointer). This is because we
|
||||
don't know the actual value of the frame pointer yet. In some
|
||||
circumstances, the frame pointer can't be determined till after we have
|
||||
scanned the prologue. */
|
||||
|
||||
static CORE_ADDR
|
||||
scan_prologue (pc, pi)
|
||||
CORE_ADDR pc;
|
||||
struct prologue_info *pi;
|
||||
{
|
||||
CORE_ADDR func_addr, prologue_end, current_pc;
|
||||
int fp_used;
|
||||
|
||||
/* First, figure out the bounds of the prologue so that we can limit the
|
||||
search to something reasonable. */
|
||||
|
||||
if (find_pc_partial_function (fi->pc, NULL, &func_addr, NULL))
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (func_addr == entry_point_address ())
|
||||
pi->start_function = 1;
|
||||
else
|
||||
pi->start_function = 0;
|
||||
|
||||
if (sal.line == 0)
|
||||
prologue_end = fi->pc;
|
||||
prologue_end = pc;
|
||||
else
|
||||
prologue_end = sal.end;
|
||||
}
|
||||
else
|
||||
prologue_end = func_addr + 100; /* We're in the boondocks */
|
||||
{ /* We're in the boondocks */
|
||||
func_addr = pc - 100;
|
||||
prologue_end = pc;
|
||||
}
|
||||
|
||||
prologue_end = min (prologue_end, fi->pc);
|
||||
prologue_end = min (prologue_end, pc);
|
||||
|
||||
/* Now, search the prologue looking for instructions that setup fp, save
|
||||
rp, adjust sp and such. */
|
||||
rp, adjust sp and such. We also record the frame offset of any saved
|
||||
registers. */
|
||||
|
||||
framereg = SP_REGNUM;
|
||||
frameoffset = 0;
|
||||
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
||||
pi->frameoffset = 0;
|
||||
pi->framereg = SP_REGNUM;
|
||||
fp_used = 0;
|
||||
|
||||
for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
|
||||
{
|
||||
|
@ -89,44 +113,125 @@ v850_init_extra_frame_info (fi)
|
|||
insn = read_memory_unsigned_integer (current_pc, 2);
|
||||
|
||||
if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
|
||||
frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
|
||||
pi->frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
|
||||
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
|
||||
frameoffset = read_memory_integer (current_pc + 2, 2);
|
||||
else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,r2 */
|
||||
framereg = FP_REGNUM; /* Setting up fp */
|
||||
else if ((insn & 0x07ff) == (0x0760 | SP_REGNUM)) /* st.w <reg>,<offset>[sp] */
|
||||
pi->frameoffset = read_memory_integer (current_pc + 2, 2);
|
||||
else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,fp */
|
||||
{
|
||||
reg = (insn >> 11) & 0x1f; /* Extract <reg> */
|
||||
|
||||
insn = read_memory_integer (current_pc + 2, 2) & ~1;
|
||||
|
||||
fi->fsr.regs[reg] = insn + frameoffset;
|
||||
fp_used = 1;
|
||||
pi->framereg = FP_REGNUM;
|
||||
}
|
||||
else if ((insn & 0x07ff) == (0x0760 | FP_REGNUM)) /* st.w <reg>,<offset>[fp] */
|
||||
else if ((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|
||||
|| (fp_used
|
||||
&& (insn & 0x07ff) == (0x0760 | FP_REGNUM))) /* st.w <reg>,<offset>[fp] */
|
||||
if (pi->fsr)
|
||||
{
|
||||
int framereg;
|
||||
int reg;
|
||||
int offset;
|
||||
|
||||
framereg = insn & 0x1f;
|
||||
reg = (insn >> 11) & 0x1f; /* Extract <reg> */
|
||||
|
||||
insn = read_memory_integer (current_pc + 2, 2) & ~1;
|
||||
offset = read_memory_integer (current_pc + 2, 2) & ~1;
|
||||
|
||||
fi->fsr.regs[reg] = insn;
|
||||
if (framereg == SP_REGNUM) /* Using SP? */
|
||||
offset += pi->frameoffset; /* Yes, correct for frame size */
|
||||
|
||||
pi->fsr->regs[reg] = offset;
|
||||
}
|
||||
|
||||
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
|
||||
current_pc += 2;
|
||||
}
|
||||
|
||||
return current_pc;
|
||||
}
|
||||
|
||||
/* Setup the frame frame pointer, pc, and frame addresses for saved registers.
|
||||
Most of the work is done in scan_prologue().
|
||||
|
||||
Note that when we are called for the last frame (currently active frame),
|
||||
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
||||
be valid only if this routine uses FP. For previous frames, fi-frame will
|
||||
always be correct (since that is derived from v850_frame_chain ()).
|
||||
|
||||
We can be called with the PC in the call dummy under two circumstances.
|
||||
First, during normal backtracing, second, while figuring out the frame
|
||||
pointer just prior to calling the target function (see run_stack_dummy).
|
||||
*/
|
||||
|
||||
void
|
||||
v850_init_extra_frame_info (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
struct prologue_info pi;
|
||||
int reg;
|
||||
|
||||
if (fi->next)
|
||||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||||
|
||||
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
||||
|
||||
/* The call dummy doesn't save any registers on the stack, so we can return
|
||||
now. */
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
|
||||
fi->frame = dummy_frame_stack->sp;
|
||||
else if (!fi->next && framereg == SP_REGNUM)
|
||||
fi->frame = read_register (framereg) - frameoffset;
|
||||
{
|
||||
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
||||
by assuming it's always FP. */
|
||||
fi->frame = read_register_dummy (SP_REGNUM);
|
||||
return;
|
||||
}
|
||||
|
||||
pi.fsr = &fi->fsr;
|
||||
|
||||
scan_prologue (fi->pc, &pi);
|
||||
|
||||
if (!fi->next && pi.framereg == SP_REGNUM)
|
||||
fi->frame = read_register (pi.framereg) - pi.frameoffset;
|
||||
|
||||
for (reg = 0; reg < NUM_REGS; reg++)
|
||||
if (fi->fsr.regs[reg] != 0)
|
||||
fi->fsr.regs[reg] += fi->frame;
|
||||
}
|
||||
|
||||
/* Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
|
||||
in the stack anywhere, otherwise we get it from the registers. */
|
||||
/* Figure out the frame prior to FI. Unfortunately, this involves scanning the
|
||||
prologue of the caller, which will also be done shortly by
|
||||
v850_init_extra_frame_info. For the dummy frame, we just return the stack
|
||||
pointer that was in use at the time the function call was made. */
|
||||
|
||||
CORE_ADDR
|
||||
v850_frame_chain (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
CORE_ADDR callers_pc;
|
||||
struct prologue_info pi;
|
||||
|
||||
/* First, find out who called us */
|
||||
|
||||
callers_pc = FRAME_SAVED_PC (fi);
|
||||
|
||||
if (PC_IN_CALL_DUMMY (callers_pc, NULL, NULL))
|
||||
return read_register_dummy (SP_REGNUM); /* XXX Won't work if multiple dummy frames on stack! */
|
||||
|
||||
pi.fsr = NULL;
|
||||
|
||||
scan_prologue (callers_pc, &pi);
|
||||
|
||||
if (pi.start_function)
|
||||
return 0; /* Don't chain beyond the start function */
|
||||
|
||||
if (pi.framereg == FP_REGNUM)
|
||||
return v850_find_callers_reg (fi, pi.framereg);
|
||||
|
||||
return fi->frame - pi.frameoffset;
|
||||
}
|
||||
|
||||
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
|
||||
we might want to do here is to check REGNUM against the clobber mask, and
|
||||
somehow flag it as invalid if it isn't saved on the stack somewhere. This
|
||||
would provide a graceful failure mode when trying to get the value of
|
||||
caller-saves registers for an inner frame. */
|
||||
|
||||
CORE_ADDR
|
||||
v850_find_callers_reg (fi, regnum)
|
||||
|
@ -134,93 +239,21 @@ v850_find_callers_reg (fi, regnum)
|
|||
int regnum;
|
||||
{
|
||||
/* XXX - Won't work if multiple dummy frames are active */
|
||||
/* When the caller requests RP from the dummy frame, we return PC because
|
||||
that's where the previous routine appears to have done a call from. */
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
|
||||
switch (regnum)
|
||||
{
|
||||
case SP_REGNUM:
|
||||
return dummy_frame_stack->sp;
|
||||
break;
|
||||
case FP_REGNUM:
|
||||
return dummy_frame_stack->fp;
|
||||
break;
|
||||
case RP_REGNUM:
|
||||
return dummy_frame_stack->pc;
|
||||
break;
|
||||
case PC_REGNUM:
|
||||
return dummy_frame_stack->pc;
|
||||
break;
|
||||
}
|
||||
if (regnum == RP_REGNUM)
|
||||
regnum = PC_REGNUM;
|
||||
|
||||
for (; fi; fi = fi->next)
|
||||
if (fi->fsr.regs[regnum] != 0)
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
|
||||
return read_register_dummy (regnum);
|
||||
else if (fi->fsr.regs[regnum] != 0)
|
||||
return read_memory_integer (fi->fsr.regs[regnum], 4);
|
||||
|
||||
return read_register (regnum);
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
v850_frame_chain (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
CORE_ADDR callers_pc, callers_sp;
|
||||
CORE_ADDR func_addr, prologue_end, current_pc;
|
||||
int frameoffset;
|
||||
|
||||
/* First, find out who called us */
|
||||
|
||||
callers_pc = FRAME_SAVED_PC (fi);
|
||||
|
||||
if (PC_IN_CALL_DUMMY (callers_pc, NULL, NULL))
|
||||
return dummy_frame_stack->sp; /* XXX Won't work if multiple dummy frames on stack! */
|
||||
|
||||
/* Next, figure out where his prologue is. */
|
||||
|
||||
if (find_pc_partial_function (callers_pc, NULL, &func_addr, NULL))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
/* Stop when the caller is the entry point function */
|
||||
if (func_addr == entry_point_address ())
|
||||
return 0;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (sal.line == 0)
|
||||
prologue_end = callers_pc;
|
||||
else
|
||||
prologue_end = sal.end;
|
||||
}
|
||||
else
|
||||
prologue_end = func_addr + 100; /* We're in the boondocks */
|
||||
|
||||
prologue_end = min (prologue_end, callers_pc);
|
||||
|
||||
/* Now, figure out the frame location of the caller by examining his prologue.
|
||||
We're looking for either a load of the frame pointer register, or a stack
|
||||
adjustment. */
|
||||
|
||||
frameoffset = 0;
|
||||
|
||||
for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
|
||||
{
|
||||
int insn;
|
||||
|
||||
insn = read_memory_unsigned_integer (current_pc, 2);
|
||||
|
||||
if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
|
||||
frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
|
||||
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
|
||||
frameoffset = read_memory_integer (current_pc + 2, 2);
|
||||
else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,r2 */
|
||||
return v850_find_callers_reg (fi, FP_REGNUM); /* It's using a frame pointer reg */
|
||||
|
||||
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
|
||||
current_pc += 2;
|
||||
}
|
||||
|
||||
return fi->frame - frameoffset;
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
v850_skip_prologue (pc)
|
||||
CORE_ADDR pc;
|
||||
|
@ -248,7 +281,12 @@ v850_skip_prologue (pc)
|
|||
return pc;
|
||||
}
|
||||
|
||||
/* All we do here is record SP and FP on the call dummy stack */
|
||||
/* Save all the registers on the dummy frame stack. Most ports save the
|
||||
registers on the target stack. This results in lots of unnecessary memory
|
||||
references, which are slow when debugging via a serial line. Instead, we
|
||||
save all the registers internally, and never write them to the stack. The
|
||||
registers get restored when the called function returns to the entry point,
|
||||
where a breakpoint is laying in wait. */
|
||||
|
||||
void
|
||||
v850_push_dummy_frame ()
|
||||
|
@ -257,14 +295,22 @@ v850_push_dummy_frame ()
|
|||
|
||||
dummy_frame = xmalloc (sizeof (struct dummy_frame));
|
||||
|
||||
dummy_frame->fp = read_register (FP_REGNUM);
|
||||
dummy_frame->sp = read_register (SP_REGNUM);
|
||||
dummy_frame->rp = read_register (RP_REGNUM);
|
||||
dummy_frame->pc = read_register (PC_REGNUM);
|
||||
read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
|
||||
|
||||
dummy_frame->next = dummy_frame_stack;
|
||||
dummy_frame_stack = dummy_frame;
|
||||
}
|
||||
|
||||
/* Read registers from the topmost dummy frame. */
|
||||
|
||||
CORE_ADDR
|
||||
read_register_dummy (regno)
|
||||
int regno;
|
||||
{
|
||||
return extract_address (&dummy_frame_stack->regs[REGISTER_BYTE (regno)],
|
||||
REGISTER_RAW_SIZE(regno));
|
||||
}
|
||||
|
||||
int
|
||||
v850_pc_in_call_dummy (pc)
|
||||
CORE_ADDR pc;
|
||||
|
@ -274,6 +320,9 @@ v850_pc_in_call_dummy (pc)
|
|||
&& pc <= CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK;
|
||||
}
|
||||
|
||||
/* This routine gets called when either the user uses the `return' command, or
|
||||
the call dummy breakpoint gets hit. */
|
||||
|
||||
struct frame_info *
|
||||
v850_pop_frame (frame)
|
||||
struct frame_info *frame;
|
||||
|
@ -290,32 +339,28 @@ v850_pop_frame (frame)
|
|||
|
||||
dummy_frame_stack = dummy_frame->next;
|
||||
|
||||
write_register (FP_REGNUM, dummy_frame->fp);
|
||||
write_register (SP_REGNUM, dummy_frame->sp);
|
||||
write_register (RP_REGNUM, dummy_frame->rp);
|
||||
write_register (PC_REGNUM, dummy_frame->pc);
|
||||
write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
|
||||
|
||||
free (dummy_frame);
|
||||
|
||||
flush_cached_frames ();
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
||||
|
||||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||||
if (frame->fsr.regs[regnum] != 0)
|
||||
write_register (regnum, read_memory_integer (frame->fsr.regs[regnum], 4));
|
||||
write_register (regnum,
|
||||
read_memory_integer (frame->fsr.regs[regnum], 4));
|
||||
|
||||
write_register (SP_REGNUM, FRAME_FP (frame));
|
||||
}
|
||||
|
||||
flush_cached_frames ();
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Put arguments in the right places, and setup return address register (RP) to
|
||||
point at a convenient place to put a breakpoint. First four args go in
|
||||
/* Setup arguments and RP for a call to the target. First four args go in
|
||||
R6->R9, subsequent args go into sp + 16 -> sp + ... Structs are passed by
|
||||
reference. 64 bit quantities (doubles and long longs) may be split between
|
||||
the regs and the stack. When calling a function that returns a struct, a
|
||||
|
|
Loading…
Reference in a new issue