* win32-nat.c (do_win32_fetch_inferior_registers): Use get_regcache_arch

to get at the current architecture and at the target specific vector.
	Add target specific vector to I387_FISEG_REGNUM and I387_FOP_REGNUM and
	remove define of I387_ST0_REGNUM.

	* amd64-tdep.c (I387_ST0_REGNUM): Remove define.

	(amd64_supply_fxsave, amd64_collect_fxsave): Use get_regcache_arch to
	get at the current architecture
	(I387_FISEG_REGNUM, I387_FOSEG_REGNUM): Add target specific vector as
	parameter.

	* i386-tdep.c: Remove various define's and undef's of I387_ST0_REGNUM,
	I387_NUM_XMM_REGS and I387_MM0_REGNUM.

	(I387_NUM_XMM_REGS, I387_XMM0_REGNUM, I387_MXCSR_REGNUM,
	I387_ST0_REGNUM, I387_FCTRL_REGNUM, I387_MM0_REGNUM,
	(I387_FSTAT_REGNUM): Add target specific vector as parameter.

	(i386_register_name, i386_dbx_reg_to_regnum): Use gdbarch_tdep to get
	at the target specific vector.

	(i386_get_longjmp_target): Use get_frame_arch to get at the current
	architecture. Use gdbarch_tdep to get at the target specific vector.

	(i386_fp_regnum_p, i386_fpc_regnum_p): Add gdbarch as parameter and
	update caller. Use gdbarch_tdep to get at the target specific vector.

	(i386_register_to_value: Use get_frame_arch to get at the current
	architecture.

	* i386-tdep.h (i386_fp_regnum_p, i386_fpc_regnum_p): Add gdbarch as
	parameter.

	* i387-tdep.c (I387_FCTRL_REGNUM, I387_FSTAT_REGNUM, I387_FTAG_REGNUM,
	I387_FISEG_REGNUM, I387_FIOFF_REGNUM, I387_FOSEG_REGNUM
	I387_FOOFF_REGNUM, I387_FOP_REGNUM, I387_ST0_REGNUM, FSAVE_ADDR,
	FXSAVE_ADDR, I387_XMM0_REGNUM): Add target specific vector as parameter.

	(I387_ST0_REGNUM, I387_NUM_XMM_REGS): Remove various define's and
	undef's.

	(i387_convert_register_p, i387_register_to_value,
	i387_value_to_register): Update call for i386_fp_regnum_p.

	* i387-tdep.h: Remove comment.
	(I387_ST0_REGNUM, I387_NUM_XMM_REGS, I387_MM0_REGNUM): Add define.
	(I387_FCTRL_REGNUM, I387_FSTAT_REGNUM, I387_FTAG_REGNUM,
	I387_FISEG_REGNUM, I387_FIOFF_REGNUM, I387_FOSEG_REGNUM,
	I387_FOOFF_REGNUM, I387_FOP_REGNUM, I387_XMM0_REGNUM,
	I387_MXCSR_REGNUM): Add target specific vector as parameter.
This commit is contained in:
Markus Deuling 2008-03-11 05:21:38 +00:00
parent dd2c76da55
commit 20a6ec495b
8 changed files with 202 additions and 218 deletions

View file

@ -1,3 +1,57 @@
2008-03-11 Markus Deuling <deuling@de.ibm.com>
* win32-nat.c (do_win32_fetch_inferior_registers): Use get_regcache_arch
to get at the current architecture and at the target specific vector.
Add target specific vector to I387_FISEG_REGNUM and I387_FOP_REGNUM and
remove define of I387_ST0_REGNUM.
* amd64-tdep.c (I387_ST0_REGNUM): Remove define.
(amd64_supply_fxsave, amd64_collect_fxsave): Use get_regcache_arch to
get at the current architecture
(I387_FISEG_REGNUM, I387_FOSEG_REGNUM): Add target specific vector as
parameter.
* i386-tdep.c: Remove various define's and undef's of I387_ST0_REGNUM,
I387_NUM_XMM_REGS and I387_MM0_REGNUM.
(I387_NUM_XMM_REGS, I387_XMM0_REGNUM, I387_MXCSR_REGNUM,
I387_ST0_REGNUM, I387_FCTRL_REGNUM, I387_MM0_REGNUM,
(I387_FSTAT_REGNUM): Add target specific vector as parameter.
(i386_register_name, i386_dbx_reg_to_regnum): Use gdbarch_tdep to get
at the target specific vector.
(i386_get_longjmp_target): Use get_frame_arch to get at the current
architecture. Use gdbarch_tdep to get at the target specific vector.
(i386_fp_regnum_p, i386_fpc_regnum_p): Add gdbarch as parameter and
update caller. Use gdbarch_tdep to get at the target specific vector.
(i386_register_to_value: Use get_frame_arch to get at the current
architecture.
* i386-tdep.h (i386_fp_regnum_p, i386_fpc_regnum_p): Add gdbarch as
parameter.
* i387-tdep.c (I387_FCTRL_REGNUM, I387_FSTAT_REGNUM, I387_FTAG_REGNUM,
I387_FISEG_REGNUM, I387_FIOFF_REGNUM, I387_FOSEG_REGNUM
I387_FOOFF_REGNUM, I387_FOP_REGNUM, I387_ST0_REGNUM, FSAVE_ADDR,
FXSAVE_ADDR, I387_XMM0_REGNUM): Add target specific vector as parameter.
(I387_ST0_REGNUM, I387_NUM_XMM_REGS): Remove various define's and
undef's.
(i387_convert_register_p, i387_register_to_value,
i387_value_to_register): Update call for i386_fp_regnum_p.
* i387-tdep.h: Remove comment.
(I387_ST0_REGNUM, I387_NUM_XMM_REGS, I387_MM0_REGNUM): Add define.
(I387_FCTRL_REGNUM, I387_FSTAT_REGNUM, I387_FTAG_REGNUM,
I387_FISEG_REGNUM, I387_FIOFF_REGNUM, I387_FOSEG_REGNUM,
I387_FOOFF_REGNUM, I387_FOP_REGNUM, I387_XMM0_REGNUM,
I387_MXCSR_REGNUM): Add target specific vector as parameter.
2008-03-10 Daniel Jacobowitz <dan@codesourcery.com> 2008-03-10 Daniel Jacobowitz <dan@codesourcery.com>
* Makefile.in (fork-child.o): Update. * Makefile.in (fork-child.o): Update.

View file

@ -1177,8 +1177,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
} }
#define I387_ST0_REGNUM AMD64_ST0_REGNUM
/* The 64-bit FXSAVE format differs from the 32-bit format in the /* The 64-bit FXSAVE format differs from the 32-bit format in the
sense that the instruction pointer and data pointer are simply sense that the instruction pointer and data pointer are simply
64-bit offsets into the code segment and the data segment instead 64-bit offsets into the code segment and the data segment instead
@ -1193,18 +1191,21 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
void void
amd64_supply_fxsave (struct regcache *regcache, int regnum, amd64_supply_fxsave (struct regcache *regcache, int regnum,
const void *fxsave) const void *fxsave)
{ {
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
i387_supply_fxsave (regcache, regnum, fxsave); i387_supply_fxsave (regcache, regnum, fxsave);
if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
{ {
const gdb_byte *regs = fxsave; const gdb_byte *regs = fxsave;
if (regnum == -1 || regnum == I387_FISEG_REGNUM) if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12); regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
if (regnum == -1 || regnum == I387_FOSEG_REGNUM) if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20); regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
} }
} }
@ -1217,15 +1218,17 @@ void
amd64_collect_fxsave (const struct regcache *regcache, int regnum, amd64_collect_fxsave (const struct regcache *regcache, int regnum,
void *fxsave) void *fxsave)
{ {
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
gdb_byte *regs = fxsave; gdb_byte *regs = fxsave;
i387_collect_fxsave (regcache, regnum, fxsave); i387_collect_fxsave (regcache, regnum, fxsave);
if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) if (gdbarch_ptr_bit (gdbarch) == 64)
{ {
if (regnum == -1 || regnum == I387_FISEG_REGNUM) if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12); regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
if (regnum == -1 || regnum == I387_FOSEG_REGNUM) if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20); regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
} }
} }

View file

@ -96,16 +96,11 @@ i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
{ {
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
#define I387_ST0_REGNUM tdep->st0_regnum if (I387_NUM_XMM_REGS (tdep) == 0)
#define I387_NUM_XMM_REGS tdep->num_xmm_regs
if (I387_NUM_XMM_REGS == 0)
return 0; return 0;
return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM); return (I387_XMM0_REGNUM (tdep) <= regnum
&& regnum < I387_MXCSR_REGNUM (tdep));
#undef I387_ST0_REGNUM
#undef I387_NUM_XMM_REGS
} }
static int static int
@ -113,40 +108,36 @@ i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
{ {
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
#define I387_ST0_REGNUM tdep->st0_regnum if (I387_NUM_XMM_REGS (tdep) == 0)
#define I387_NUM_XMM_REGS tdep->num_xmm_regs
if (I387_NUM_XMM_REGS == 0)
return 0; return 0;
return (regnum == I387_MXCSR_REGNUM); return (regnum == I387_MXCSR_REGNUM (tdep));
#undef I387_ST0_REGNUM
#undef I387_NUM_XMM_REGS
} }
#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
/* FP register? */ /* FP register? */
int int
i386_fp_regnum_p (int regnum) i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
{ {
if (I387_ST0_REGNUM < 0) struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (I387_ST0_REGNUM (tdep) < 0)
return 0; return 0;
return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM); return (I387_ST0_REGNUM (tdep) <= regnum
&& regnum < I387_FCTRL_REGNUM (tdep));
} }
int int
i386_fpc_regnum_p (int regnum) i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
{ {
if (I387_ST0_REGNUM < 0) struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (I387_ST0_REGNUM (tdep) < 0)
return 0; return 0;
return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM); return (I387_FCTRL_REGNUM (tdep) <= regnum
&& regnum < I387_XMM0_REGNUM (tdep));
} }
/* Return the name of register REGNUM. */ /* Return the name of register REGNUM. */
@ -155,7 +146,7 @@ const char *
i386_register_name (struct gdbarch *gdbarch, int regnum) i386_register_name (struct gdbarch *gdbarch, int regnum)
{ {
if (i386_mmx_regnum_p (gdbarch, regnum)) if (i386_mmx_regnum_p (gdbarch, regnum))
return i386_mmx_names[regnum - I387_MM0_REGNUM]; return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
if (regnum >= 0 && regnum < i386_num_register_names) if (regnum >= 0 && regnum < i386_num_register_names)
return i386_register_names[regnum]; return i386_register_names[regnum];
@ -169,6 +160,8 @@ i386_register_name (struct gdbarch *gdbarch, int regnum)
static int static int
i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg) i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{ {
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* This implements what GCC calls the "default" register map /* This implements what GCC calls the "default" register map
(dbx_register_map[]). */ (dbx_register_map[]). */
@ -185,17 +178,17 @@ i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
else if (reg >= 12 && reg <= 19) else if (reg >= 12 && reg <= 19)
{ {
/* Floating-point registers. */ /* Floating-point registers. */
return reg - 12 + I387_ST0_REGNUM; return reg - 12 + I387_ST0_REGNUM (tdep);
} }
else if (reg >= 21 && reg <= 28) else if (reg >= 21 && reg <= 28)
{ {
/* SSE registers. */ /* SSE registers. */
return reg - 21 + I387_XMM0_REGNUM; return reg - 21 + I387_XMM0_REGNUM (tdep);
} }
else if (reg >= 29 && reg <= 36) else if (reg >= 29 && reg <= 36)
{ {
/* MMX registers. */ /* MMX registers. */
return reg - 29 + I387_MM0_REGNUM; return reg - 29 + I387_MM0_REGNUM (tdep);
} }
/* This will hopefully provoke a warning. */ /* This will hopefully provoke a warning. */
@ -208,6 +201,8 @@ i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
static int static int
i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg) i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{ {
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* This implements the GCC register map that tries to be compatible /* This implements the GCC register map that tries to be compatible
with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */ with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
@ -221,7 +216,7 @@ i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
else if (reg >= 11 && reg <= 18) else if (reg >= 11 && reg <= 18)
{ {
/* Floating-point registers. */ /* Floating-point registers. */
return reg - 11 + I387_ST0_REGNUM; return reg - 11 + I387_ST0_REGNUM (tdep);
} }
else if (reg >= 21 && reg <= 36) else if (reg >= 21 && reg <= 36)
{ {
@ -231,9 +226,9 @@ i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
switch (reg) switch (reg)
{ {
case 37: return I387_FCTRL_REGNUM; case 37: return I387_FCTRL_REGNUM (tdep);
case 38: return I387_FSTAT_REGNUM; case 38: return I387_FSTAT_REGNUM (tdep);
case 39: return I387_MXCSR_REGNUM; case 39: return I387_MXCSR_REGNUM (tdep);
case 40: return I386_ES_REGNUM; case 40: return I386_ES_REGNUM;
case 41: return I386_CS_REGNUM; case 41: return I386_CS_REGNUM;
case 42: return I386_SS_REGNUM; case 42: return I386_SS_REGNUM;
@ -246,9 +241,6 @@ i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
} }
#undef I387_ST0_REGNUM
#undef I387_MM0_REGNUM
#undef I387_NUM_XMM_REGS
/* This is the variable that is set with "set disassembly-flavor", and /* This is the variable that is set with "set disassembly-flavor", and
@ -1312,7 +1304,8 @@ i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{ {
gdb_byte buf[8]; gdb_byte buf[8];
CORE_ADDR sp, jb_addr; CORE_ADDR sp, jb_addr;
int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset; struct gdbarch *gdbarch = get_frame_arch (frame);
int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
int len = TYPE_LENGTH (builtin_type_void_func_ptr); int len = TYPE_LENGTH (builtin_type_void_func_ptr);
/* If JB_PC_OFFSET is -1, we have no way to find out where the /* If JB_PC_OFFSET is -1, we have no way to find out where the
@ -1322,7 +1315,7 @@ i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
/* Don't use I386_ESP_REGNUM here, since this function is also used /* Don't use I386_ESP_REGNUM here, since this function is also used
for AMD64. */ for AMD64. */
get_frame_register (frame, gdbarch_sp_regnum (get_frame_arch (frame)), buf); get_frame_register (frame, gdbarch_sp_regnum (gdbarch), buf);
sp = extract_typed_address (buf, builtin_type_void_data_ptr); sp = extract_typed_address (buf, builtin_type_void_data_ptr);
if (target_read_memory (sp + len, buf, len)) if (target_read_memory (sp + len, buf, len))
return 0; return 0;
@ -1459,10 +1452,6 @@ i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int len = TYPE_LENGTH (type); int len = TYPE_LENGTH (type);
/* Define I387_ST0_REGNUM such that we use the proper definitions
for the architecture. */
#define I387_ST0_REGNUM I386_ST0_REGNUM
if (TYPE_CODE (type) == TYPE_CODE_FLT) if (TYPE_CODE (type) == TYPE_CODE_FLT)
{ {
ULONGEST fstat; ULONGEST fstat;
@ -1489,14 +1478,14 @@ i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
actual value doesn't really matter, but 7 is what a normal actual value doesn't really matter, but 7 is what a normal
function return would end up with if the program started out function return would end up with if the program started out
with a freshly initialized FPU. */ with a freshly initialized FPU. */
regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat); regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
fstat |= (7 << 11); fstat |= (7 << 11);
regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat); regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
/* Mark %st(1) through %st(7) as empty. Since we set the top of /* Mark %st(1) through %st(7) as empty. Since we set the top of
the floating-point register stack to 7, the appropriate value the floating-point register stack to 7, the appropriate value
for the tag word is 0x3fff. */ for the tag word is 0x3fff. */
regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff); regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
} }
else else
{ {
@ -1515,8 +1504,6 @@ i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
internal_error (__FILE__, __LINE__, internal_error (__FILE__, __LINE__,
_("Cannot store return value of %d bytes long."), len); _("Cannot store return value of %d bytes long."), len);
} }
#undef I387_ST0_REGNUM
} }
@ -1786,7 +1773,7 @@ i386_register_type (struct gdbarch *gdbarch, int regnum)
if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM) if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
return builtin_type_void_data_ptr; return builtin_type_void_data_ptr;
if (i386_fp_regnum_p (regnum)) if (i386_fp_regnum_p (gdbarch, regnum))
return builtin_type_i387_ext; return builtin_type_i387_ext;
if (i386_mmx_regnum_p (gdbarch, regnum)) if (i386_mmx_regnum_p (gdbarch, regnum))
@ -1795,15 +1782,9 @@ i386_register_type (struct gdbarch *gdbarch, int regnum)
if (i386_sse_regnum_p (gdbarch, regnum)) if (i386_sse_regnum_p (gdbarch, regnum))
return i386_sse_type (gdbarch); return i386_sse_type (gdbarch);
#define I387_ST0_REGNUM I386_ST0_REGNUM if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
#define I387_NUM_XMM_REGS (gdbarch_tdep (gdbarch)->num_xmm_regs)
if (regnum == I387_MXCSR_REGNUM)
return i386_mxcsr_type; return i386_mxcsr_type;
#undef I387_ST0_REGNUM
#undef I387_NUM_XMM_REGS
return builtin_type_int; return builtin_type_int;
} }
@ -1818,18 +1799,12 @@ i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
ULONGEST fstat; ULONGEST fstat;
int tos; int tos;
/* Define I387_ST0_REGNUM such that we use the proper definitions
for REGCACHE's architecture. */
#define I387_ST0_REGNUM tdep->st0_regnum
mmxreg = regnum - tdep->mm0_regnum; mmxreg = regnum - tdep->mm0_regnum;
regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat); regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
tos = (fstat >> 11) & 0x7; tos = (fstat >> 11) & 0x7;
fpreg = (mmxreg + tos) % 8; fpreg = (mmxreg + tos) % 8;
return (I387_ST0_REGNUM + fpreg); return (I387_ST0_REGNUM (tdep) + fpreg);
#undef I387_ST0_REGNUM
} }
static void static void
@ -1936,12 +1911,13 @@ static void
i386_register_to_value (struct frame_info *frame, int regnum, i386_register_to_value (struct frame_info *frame, int regnum,
struct type *type, gdb_byte *to) struct type *type, gdb_byte *to)
{ {
struct gdbarch *gdbarch = get_frame_arch (frame);
int len = TYPE_LENGTH (type); int len = TYPE_LENGTH (type);
/* FIXME: kettenis/20030609: What should we do if REGNUM isn't /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
available in FRAME (i.e. if it wasn't saved)? */ available in FRAME (i.e. if it wasn't saved)? */
if (i386_fp_regnum_p (regnum)) if (i386_fp_regnum_p (gdbarch, regnum))
{ {
i387_register_to_value (frame, regnum, type, to); i387_register_to_value (frame, regnum, type, to);
return; return;
@ -1954,7 +1930,7 @@ i386_register_to_value (struct frame_info *frame, int regnum,
while (len > 0) while (len > 0)
{ {
gdb_assert (regnum != -1); gdb_assert (regnum != -1);
gdb_assert (register_size (get_frame_arch (frame), regnum) == 4); gdb_assert (register_size (gdbarch, regnum) == 4);
get_frame_register (frame, regnum, to); get_frame_register (frame, regnum, to);
regnum = i386_next_regnum (regnum); regnum = i386_next_regnum (regnum);
@ -1972,7 +1948,7 @@ i386_value_to_register (struct frame_info *frame, int regnum,
{ {
int len = TYPE_LENGTH (type); int len = TYPE_LENGTH (type);
if (i386_fp_regnum_p (regnum)) if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
{ {
i387_value_to_register (frame, regnum, type, from); i387_value_to_register (frame, regnum, type, from);
return; return;
@ -2286,8 +2262,8 @@ i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
{ {
int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum) int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
|| i386_mxcsr_regnum_p (gdbarch, regnum)); || i386_mxcsr_regnum_p (gdbarch, regnum));
int fp_regnum_p = (i386_fp_regnum_p (regnum) int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
|| i386_fpc_regnum_p (regnum)); || i386_fpc_regnum_p (gdbarch, regnum));
int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum)); int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
if (group == i386_mmx_reggroup) if (group == i386_mmx_reggroup)

View file

@ -116,8 +116,8 @@ struct gdbarch_tdep
/* Return non-zero if REGNUM matches the FP register and the FP /* Return non-zero if REGNUM matches the FP register and the FP
register set is active. */ register set is active. */
extern int i386_fp_regnum_p (int regnum); extern int i386_fp_regnum_p (struct gdbarch *, int);
extern int i386_fpc_regnum_p (int regnum); extern int i386_fpc_regnum_p (struct gdbarch *, int);
/* Register numbers of various important registers. */ /* Register numbers of various important registers. */

View file

@ -215,18 +215,14 @@ i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
gdb_assert (gdbarch == get_frame_arch (frame)); gdb_assert (gdbarch == get_frame_arch (frame));
/* Define I387_ST0_REGNUM such that we use the proper definitions fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM (tdep));
for FRAME's architecture. */ fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM (tdep));
#define I387_ST0_REGNUM tdep->st0_regnum ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM (tdep));
fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM (tdep));
fctrl = get_frame_register_unsigned (frame, I387_FCTRL_REGNUM); fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM (tdep));
fstat = get_frame_register_unsigned (frame, I387_FSTAT_REGNUM); foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM (tdep));
ftag = get_frame_register_unsigned (frame, I387_FTAG_REGNUM); fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM (tdep));
fiseg = get_frame_register_unsigned (frame, I387_FISEG_REGNUM); fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM (tdep));
fioff = get_frame_register_unsigned (frame, I387_FIOFF_REGNUM);
foseg = get_frame_register_unsigned (frame, I387_FOSEG_REGNUM);
fooff = get_frame_register_unsigned (frame, I387_FOOFF_REGNUM);
fop = get_frame_register_unsigned (frame, I387_FOP_REGNUM);
top = ((fstat >> 11) & 7); top = ((fstat >> 11) & 7);
@ -254,7 +250,8 @@ i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
break; break;
} }
get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM, raw); get_frame_register (frame, (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep),
raw);
fputs_filtered ("0x", file); fputs_filtered ("0x", file);
for (i = 9; i >= 0; i--) for (i = 9; i >= 0; i--)
@ -280,8 +277,6 @@ i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
fprintf_filtered (file, "%s\n", hex_string_custom (fooff, 8)); fprintf_filtered (file, "%s\n", hex_string_custom (fooff, 8));
fprintf_filtered (file, "Opcode: %s\n", fprintf_filtered (file, "Opcode: %s\n",
hex_string_custom (fop ? (fop | 0xd800) : 0, 4)); hex_string_custom (fop ? (fop | 0xd800) : 0, 4));
#undef I387_ST0_REGNUM
} }
@ -291,7 +286,7 @@ i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
int int
i387_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type) i387_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
{ {
if (i386_fp_regnum_p (regnum)) if (i386_fp_regnum_p (gdbarch, regnum))
{ {
/* Floating point registers must be converted unless we are /* Floating point registers must be converted unless we are
accessing them in their hardware type. */ accessing them in their hardware type. */
@ -313,7 +308,7 @@ i387_register_to_value (struct frame_info *frame, int regnum,
{ {
gdb_byte from[I386_MAX_REGISTER_SIZE]; gdb_byte from[I386_MAX_REGISTER_SIZE];
gdb_assert (i386_fp_regnum_p (regnum)); gdb_assert (i386_fp_regnum_p (get_frame_arch (frame), regnum));
/* We only support floating-point values. */ /* We only support floating-point values. */
if (TYPE_CODE (type) != TYPE_CODE_FLT) if (TYPE_CODE (type) != TYPE_CODE_FLT)
@ -337,7 +332,7 @@ i387_value_to_register (struct frame_info *frame, int regnum,
{ {
gdb_byte to[I386_MAX_REGISTER_SIZE]; gdb_byte to[I386_MAX_REGISTER_SIZE];
gdb_assert (i386_fp_regnum_p (regnum)); gdb_assert (i386_fp_regnum_p (get_frame_arch (frame), regnum));
/* We only support floating-point values. */ /* We only support floating-point values. */
if (TYPE_CODE (type) != TYPE_CODE_FLT) if (TYPE_CODE (type) != TYPE_CODE_FLT)
@ -379,8 +374,8 @@ static int fsave_offset[] =
18 /* `fop' (bottom 11 bits). */ 18 /* `fop' (bottom 11 bits). */
}; };
#define FSAVE_ADDR(fsave, regnum) \ #define FSAVE_ADDR(tdep, fsave, regnum) \
(fsave + fsave_offset[regnum - I387_ST0_REGNUM]) (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
/* Fill register REGNUM in REGCACHE with the appropriate value from /* Fill register REGNUM in REGCACHE with the appropriate value from
@ -396,13 +391,7 @@ i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
/* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
proper definitions for REGCACHE's architecture. */
#define I387_ST0_REGNUM tdep->st0_regnum
#define I387_NUM_XMM_REGS tdep->num_xmm_regs
for (i = I387_ST0_REGNUM; i < I387_XMM0_REGNUM; i++)
if (regnum == -1 || regnum == i) if (regnum == -1 || regnum == i)
{ {
if (fsave == NULL) if (fsave == NULL)
@ -413,35 +402,32 @@ i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
/* Most of the FPU control registers occupy only 16 bits in the /* Most of the FPU control registers occupy only 16 bits in the
fsave area. Give those a special treatment. */ fsave area. Give those a special treatment. */
if (i >= I387_FCTRL_REGNUM if (i >= I387_FCTRL_REGNUM (tdep)
&& i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
{ {
gdb_byte val[4]; gdb_byte val[4];
memcpy (val, FSAVE_ADDR (regs, i), 2); memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
val[2] = val[3] = 0; val[2] = val[3] = 0;
if (i == I387_FOP_REGNUM) if (i == I387_FOP_REGNUM (tdep))
val[1] &= ((1 << 3) - 1); val[1] &= ((1 << 3) - 1);
regcache_raw_supply (regcache, i, val); regcache_raw_supply (regcache, i, val);
} }
else else
regcache_raw_supply (regcache, i, FSAVE_ADDR (regs, i)); regcache_raw_supply (regcache, i, FSAVE_ADDR (tdep, regs, i));
} }
/* Provide dummy values for the SSE registers. */ /* Provide dummy values for the SSE registers. */
for (i = I387_XMM0_REGNUM; i < I387_MXCSR_REGNUM; i++) for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
if (regnum == -1 || regnum == i) if (regnum == -1 || regnum == i)
regcache_raw_supply (regcache, i, NULL); regcache_raw_supply (regcache, i, NULL);
if (regnum == -1 || regnum == I387_MXCSR_REGNUM) if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
{ {
gdb_byte buf[4]; gdb_byte buf[4];
store_unsigned_integer (buf, 4, 0x1f80); store_unsigned_integer (buf, 4, 0x1f80);
regcache_raw_supply (regcache, I387_MXCSR_REGNUM, buf); regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), buf);
} }
#undef I387_ST0_REGNUM
#undef I387_NUM_XMM_REGS
} }
/* Fill register REGNUM (if it is a floating-point register) in *FSAVE /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
@ -458,35 +444,30 @@ i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
/* Define I387_ST0_REGNUM such that we use the proper definitions for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
for REGCACHE's architecture. */
#define I387_ST0_REGNUM tdep->st0_regnum
for (i = I387_ST0_REGNUM; i < I387_XMM0_REGNUM; i++)
if (regnum == -1 || regnum == i) if (regnum == -1 || regnum == i)
{ {
/* Most of the FPU control registers occupy only 16 bits in /* Most of the FPU control registers occupy only 16 bits in
the fsave area. Give those a special treatment. */ the fsave area. Give those a special treatment. */
if (i >= I387_FCTRL_REGNUM if (i >= I387_FCTRL_REGNUM (tdep)
&& i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
{ {
gdb_byte buf[4]; gdb_byte buf[4];
regcache_raw_collect (regcache, i, buf); regcache_raw_collect (regcache, i, buf);
if (i == I387_FOP_REGNUM) if (i == I387_FOP_REGNUM (tdep))
{ {
/* The opcode occupies only 11 bits. Make sure we /* The opcode occupies only 11 bits. Make sure we
don't touch the other bits. */ don't touch the other bits. */
buf[1] &= ((1 << 3) - 1); buf[1] &= ((1 << 3) - 1);
buf[1] |= ((FSAVE_ADDR (regs, i))[1] & ~((1 << 3) - 1)); buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
} }
memcpy (FSAVE_ADDR (regs, i), buf, 2); memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
} }
else else
regcache_raw_collect (regcache, i, FSAVE_ADDR (regs, i)); regcache_raw_collect (regcache, i, FSAVE_ADDR (tdep, regs, i));
} }
#undef I387_ST0_REGNUM
} }
@ -530,8 +511,8 @@ static int fxsave_offset[] =
160 + 15 * 16, /* ... %xmm15 (128 bits each). */ 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
}; };
#define FXSAVE_ADDR(fxsave, regnum) \ #define FXSAVE_ADDR(tdep, fxsave, regnum) \
(fxsave + fxsave_offset[regnum - I387_ST0_REGNUM]) (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
/* We made an unfortunate choice in putting %mxcsr after the SSE /* We made an unfortunate choice in putting %mxcsr after the SSE
registers %xmm0-%xmm7 instead of before, since it makes supporting registers %xmm0-%xmm7 instead of before, since it makes supporting
@ -557,13 +538,7 @@ i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
gdb_assert (tdep->num_xmm_regs > 0); gdb_assert (tdep->num_xmm_regs > 0);
/* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
proper definitions for REGCACHE's architecture. */
#define I387_ST0_REGNUM tdep->st0_regnum
#define I387_NUM_XMM_REGS tdep->num_xmm_regs
for (i = I387_ST0_REGNUM; i < I387_MXCSR_REGNUM; i++)
if (regnum == -1 || regnum == i) if (regnum == -1 || regnum == i)
{ {
if (regs == NULL) if (regs == NULL)
@ -574,16 +549,16 @@ i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
/* Most of the FPU control registers occupy only 16 bits in /* Most of the FPU control registers occupy only 16 bits in
the fxsave area. Give those a special treatment. */ the fxsave area. Give those a special treatment. */
if (i >= I387_FCTRL_REGNUM && i < I387_XMM0_REGNUM if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
&& i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
{ {
gdb_byte val[4]; gdb_byte val[4];
memcpy (val, FXSAVE_ADDR (regs, i), 2); memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
val[2] = val[3] = 0; val[2] = val[3] = 0;
if (i == I387_FOP_REGNUM) if (i == I387_FOP_REGNUM (tdep))
val[1] &= ((1 << 3) - 1); val[1] &= ((1 << 3) - 1);
else if (i== I387_FTAG_REGNUM) else if (i== I387_FTAG_REGNUM (tdep))
{ {
/* The fxsave area contains a simplified version of /* The fxsave area contains a simplified version of
the tag word. We have to look at the actual 80-bit the tag word. We have to look at the actual 80-bit
@ -593,7 +568,8 @@ i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
int fpreg; int fpreg;
int top; int top;
top = ((FXSAVE_ADDR (regs, I387_FSTAT_REGNUM))[1] >> 3); top = ((FXSAVE_ADDR (tdep, regs,
I387_FSTAT_REGNUM (tdep)))[1] >> 3);
top &= 0x7; top &= 0x7;
for (fpreg = 7; fpreg >= 0; fpreg--) for (fpreg = 7; fpreg >= 0; fpreg--)
@ -602,8 +578,9 @@ i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
if (val[0] & (1 << fpreg)) if (val[0] & (1 << fpreg))
{ {
int regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM; int regnum = (fpreg + 8 - top) % 8
tag = i387_tag (FXSAVE_ADDR (regs, regnum)); + I387_ST0_REGNUM (tdep);
tag = i387_tag (FXSAVE_ADDR (tdep, regs, regnum));
} }
else else
tag = 3; /* Empty */ tag = 3; /* Empty */
@ -616,20 +593,17 @@ i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
regcache_raw_supply (regcache, i, val); regcache_raw_supply (regcache, i, val);
} }
else else
regcache_raw_supply (regcache, i, FXSAVE_ADDR (regs, i)); regcache_raw_supply (regcache, i, FXSAVE_ADDR (tdep, regs, i));
} }
if (regnum == I387_MXCSR_REGNUM || regnum == -1) if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
{ {
if (regs == NULL) if (regs == NULL)
regcache_raw_supply (regcache, I387_MXCSR_REGNUM, NULL); regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep), NULL);
else else
regcache_raw_supply (regcache, I387_MXCSR_REGNUM, regcache_raw_supply (regcache, I387_MXCSR_REGNUM (tdep),
FXSAVE_MXCSR_ADDR (regs)); FXSAVE_MXCSR_ADDR (regs));
} }
#undef I387_ST0_REGNUM
#undef I387_NUM_XMM_REGS
} }
/* Fill register REGNUM (if it is a floating-point or SSE register) in /* Fill register REGNUM (if it is a floating-point or SSE register) in
@ -647,32 +621,26 @@ i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
gdb_assert (tdep->num_xmm_regs > 0); gdb_assert (tdep->num_xmm_regs > 0);
/* Define I387_ST0_REGNUM and I387_NUM_XMM_REGS such that we use the for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
proper definitions for REGCACHE's architecture. */
#define I387_ST0_REGNUM tdep->st0_regnum
#define I387_NUM_XMM_REGS tdep->num_xmm_regs
for (i = I387_ST0_REGNUM; i < I387_MXCSR_REGNUM; i++)
if (regnum == -1 || regnum == i) if (regnum == -1 || regnum == i)
{ {
/* Most of the FPU control registers occupy only 16 bits in /* Most of the FPU control registers occupy only 16 bits in
the fxsave area. Give those a special treatment. */ the fxsave area. Give those a special treatment. */
if (i >= I387_FCTRL_REGNUM && i < I387_XMM0_REGNUM if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
&& i != I387_FIOFF_REGNUM && i != I387_FOOFF_REGNUM) && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
{ {
gdb_byte buf[4]; gdb_byte buf[4];
regcache_raw_collect (regcache, i, buf); regcache_raw_collect (regcache, i, buf);
if (i == I387_FOP_REGNUM) if (i == I387_FOP_REGNUM (tdep))
{ {
/* The opcode occupies only 11 bits. Make sure we /* The opcode occupies only 11 bits. Make sure we
don't touch the other bits. */ don't touch the other bits. */
buf[1] &= ((1 << 3) - 1); buf[1] &= ((1 << 3) - 1);
buf[1] |= ((FXSAVE_ADDR (regs, i))[1] & ~((1 << 3) - 1)); buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
} }
else if (i == I387_FTAG_REGNUM) else if (i == I387_FTAG_REGNUM (tdep))
{ {
/* Converting back is much easier. */ /* Converting back is much easier. */
@ -691,18 +659,15 @@ i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
buf[0] |= (1 << fpreg); buf[0] |= (1 << fpreg);
} }
} }
memcpy (FXSAVE_ADDR (regs, i), buf, 2); memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
} }
else else
regcache_raw_collect (regcache, i, FXSAVE_ADDR (regs, i)); regcache_raw_collect (regcache, i, FXSAVE_ADDR (tdep, regs, i));
} }
if (regnum == I387_MXCSR_REGNUM || regnum == -1) if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
regcache_raw_collect (regcache, I387_MXCSR_REGNUM, regcache_raw_collect (regcache, I387_MXCSR_REGNUM (tdep),
FXSAVE_MXCSR_ADDR (regs)); FXSAVE_MXCSR_ADDR (regs));
#undef I387_ST0_REGNUM
#undef I387_NUM_XMM_REGS
} }
/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
@ -762,22 +727,17 @@ i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ULONGEST fstat; ULONGEST fstat;
/* Define I387_ST0_REGNUM such that we use the proper
definitions for the architecture. */
#define I387_ST0_REGNUM tdep->st0_regnum
/* Set the top of the floating-point register stack to 7. The /* Set the top of the floating-point register stack to 7. The
actual value doesn't really matter, but 7 is what a normal actual value doesn't really matter, but 7 is what a normal
function return would end up with if the program started out with function return would end up with if the program started out with
a freshly initialized FPU. */ a freshly initialized FPU. */
regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat); regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
fstat |= (7 << 11); fstat |= (7 << 11);
regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat); regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
/* Mark %st(1) through %st(7) as empty. Since we set the top of the /* Mark %st(1) through %st(7) as empty. Since we set the top of the
floating-point register stack to 7, the appropriate value for the floating-point register stack to 7, the appropriate value for the
tag word is 0x3fff. */ tag word is 0x3fff. */
regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff); regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
#undef I387_ST0_REGNUM
} }

View file

@ -27,26 +27,21 @@ struct regcache;
struct type; struct type;
struct ui_file; struct ui_file;
/* Because the number of general-purpose registers is different for #define I387_ST0_REGNUM(tdep) ((tdep)->st0_regnum)
AMD64, the floating-point registers and SSE registers get shifted. #define I387_NUM_XMM_REGS(tdep) ((tdep)->num_xmm_regs)
The following definitions are intended to help writing code that #define I387_MM0_REGNUM(tdep) ((tdep)->mm0_regnum)
needs the register numbers of floating-point registers and SSE
registers. In order to use these, one should provide a definition
for I387_ST0_REGNUM, and possibly I387_NUM_XMM_REGS, preferably by
using a local "#define" in the body of the function that uses this.
Please "#undef" them before the end of the function. */
#define I387_FCTRL_REGNUM (I387_ST0_REGNUM + 8) #define I387_FCTRL_REGNUM(tdep) (I387_ST0_REGNUM (tdep) + 8)
#define I387_FSTAT_REGNUM (I387_FCTRL_REGNUM + 1) #define I387_FSTAT_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 1)
#define I387_FTAG_REGNUM (I387_FCTRL_REGNUM + 2) #define I387_FTAG_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 2)
#define I387_FISEG_REGNUM (I387_FCTRL_REGNUM + 3) #define I387_FISEG_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 3)
#define I387_FIOFF_REGNUM (I387_FCTRL_REGNUM + 4) #define I387_FIOFF_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 4)
#define I387_FOSEG_REGNUM (I387_FCTRL_REGNUM + 5) #define I387_FOSEG_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 5)
#define I387_FOOFF_REGNUM (I387_FCTRL_REGNUM + 6) #define I387_FOOFF_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 6)
#define I387_FOP_REGNUM (I387_FCTRL_REGNUM + 7) #define I387_FOP_REGNUM(tdep) (I387_FCTRL_REGNUM (tdep) + 7)
#define I387_XMM0_REGNUM (I387_ST0_REGNUM + 16) #define I387_XMM0_REGNUM(tdep) (I387_ST0_REGNUM (tdep) + 16)
#define I387_MXCSR_REGNUM (I387_XMM0_REGNUM + I387_NUM_XMM_REGS) #define I387_MXCSR_REGNUM(tdep) \
(I387_XMM0_REGNUM (tdep) + I387_NUM_XMM_REGS (tdep))
/* Print out the i387 floating point state. */ /* Print out the i387 floating point state. */

View file

@ -359,6 +359,8 @@ static void
do_win32_fetch_inferior_registers (struct regcache *regcache, int r) do_win32_fetch_inferior_registers (struct regcache *regcache, int r)
{ {
char *context_offset = ((char *) &current_thread->context) + mappings[r]; char *context_offset = ((char *) &current_thread->context) + mappings[r];
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
long l; long l;
if (!current_thread) if (!current_thread)
@ -397,14 +399,12 @@ do_win32_fetch_inferior_registers (struct regcache *regcache, int r)
current_thread->reload_context = 0; current_thread->reload_context = 0;
} }
#define I387_ST0_REGNUM I386_ST0_REGNUM if (r == I387_FISEG_REGNUM (tdep))
if (r == I387_FISEG_REGNUM)
{ {
l = *((long *) context_offset) & 0xffff; l = *((long *) context_offset) & 0xffff;
regcache_raw_supply (regcache, r, (char *) &l); regcache_raw_supply (regcache, r, (char *) &l);
} }
else if (r == I387_FOP_REGNUM) else if (r == I387_FOP_REGNUM (tdep))
{ {
l = (*((long *) context_offset) >> 16) & ((1 << 11) - 1); l = (*((long *) context_offset) >> 16) & ((1 << 11) - 1);
regcache_raw_supply (regcache, r, (char *) &l); regcache_raw_supply (regcache, r, (char *) &l);
@ -413,11 +413,9 @@ do_win32_fetch_inferior_registers (struct regcache *regcache, int r)
regcache_raw_supply (regcache, r, context_offset); regcache_raw_supply (regcache, r, context_offset);
else else
{ {
for (r = 0; r < gdbarch_num_regs (get_regcache_arch (regcache)); r++) for (r = 0; r < gdbarch_num_regs (gdbarch); r++)
do_win32_fetch_inferior_registers (regcache, r); do_win32_fetch_inferior_registers (regcache, r);
} }
#undef I387_ST0_REGNUM
} }
static void static void

View file

@ -359,6 +359,8 @@ static void
do_win32_fetch_inferior_registers (struct regcache *regcache, int r) do_win32_fetch_inferior_registers (struct regcache *regcache, int r)
{ {
char *context_offset = ((char *) &current_thread->context) + mappings[r]; char *context_offset = ((char *) &current_thread->context) + mappings[r];
struct gdbarch *gdbarch = get_regcache_arch (regcache);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
long l; long l;
if (!current_thread) if (!current_thread)
@ -397,14 +399,12 @@ do_win32_fetch_inferior_registers (struct regcache *regcache, int r)
current_thread->reload_context = 0; current_thread->reload_context = 0;
} }
#define I387_ST0_REGNUM I386_ST0_REGNUM if (r == I387_FISEG_REGNUM (tdep))
if (r == I387_FISEG_REGNUM)
{ {
l = *((long *) context_offset) & 0xffff; l = *((long *) context_offset) & 0xffff;
regcache_raw_supply (regcache, r, (char *) &l); regcache_raw_supply (regcache, r, (char *) &l);
} }
else if (r == I387_FOP_REGNUM) else if (r == I387_FOP_REGNUM (tdep))
{ {
l = (*((long *) context_offset) >> 16) & ((1 << 11) - 1); l = (*((long *) context_offset) >> 16) & ((1 << 11) - 1);
regcache_raw_supply (regcache, r, (char *) &l); regcache_raw_supply (regcache, r, (char *) &l);
@ -413,11 +413,9 @@ do_win32_fetch_inferior_registers (struct regcache *regcache, int r)
regcache_raw_supply (regcache, r, context_offset); regcache_raw_supply (regcache, r, context_offset);
else else
{ {
for (r = 0; r < gdbarch_num_regs (get_regcache_arch (regcache)); r++) for (r = 0; r < gdbarch_num_regs (gdbarch); r++)
do_win32_fetch_inferior_registers (regcache, r); do_win32_fetch_inferior_registers (regcache, r);
} }
#undef I387_ST0_REGNUM
} }
static void static void