Documentation of the xmethod support in GDB Python API.

* NEWS (Python Scripting): Add entry about the new xmethods
	feature.

	doc/
	*  python.texi (Xmethods In Python, XMethod API)
	(Writing an Xmethod): New nodes.
	(Python API): New menu entries "Xmethods In Python",
	"Xmethod API", "Writing an Xmethod".
This commit is contained in:
Siva Chandra 2014-03-30 16:24:50 -07:00
parent 883964a75e
commit 0c6e92a52c
4 changed files with 362 additions and 0 deletions

View file

@ -1,3 +1,8 @@
2014-06-03 Siva Chandra Reddy <sivachandra@google.com>
* NEWS (Python Scripting): Add entry about the new xmethods
feature.
2014-06-03 Siva Chandra Reddy <sivachandra@google.com>
* python/py-xmethods.c: New file.

View file

@ -153,6 +153,11 @@ qXfer:btrace:read's annex
** Valid Python operations on gdb.Value objects representing
structs/classes invoke the corresponding overloaded operators if
available.
** New `Xmethods' feature in the Python API. Xmethods are
additional methods or replacements for existing methods of a C++
class. This feature is useful for those cases where a method
defined in C++ source code could be inlined or optimized out by
the compiler, making it unavailable to GDB.
* New targets
PowerPC64 GNU/Linux little-endian powerpc64le-*-linux*

View file

@ -1,3 +1,10 @@
2014-06-03 Siva Chandra Reddy <sivachandra@google.com>
* python.texi (Xmethods In Python, XMethod API)
(Writing an Xmethod): New nodes.
(Python API): New menu entries "Xmethods In Python",
"Xmethod API", "Writing an Xmethod".
2014-06-02 Doug Evans <xdje42@gmail.com>
* guile.texi (Guile API): Add entry for Parameters In Guile.

View file

@ -144,6 +144,9 @@ optional arguments while skipping others. Example:
* Frame Filter API:: Filtering Frames.
* Frame Decorator API:: Decorating Frames.
* Writing a Frame Filter:: Writing a Frame Filter.
* Xmethods In Python:: Adding and replacing methods of C++ classes.
* Xmethod API:: Xmethod types.
* Writing an Xmethod:: Writing an xmethod.
* Inferiors In Python:: Python representation of inferiors (processes)
* Events In Python:: Listening for events from @value{GDBN}.
* Threads In Python:: Accessing inferior threads from Python.
@ -2174,6 +2177,348 @@ printed hierarchically. Another approach would be to combine the
marker in the inlined frame, and also show the hierarchical
relationship.
@node Xmethods In Python
@subsubsection Xmethods In Python
@cindex xmethods in Python
@dfn{Xmethods} are additional methods or replacements for existing
methods of a C@t{++} class. This feature is useful for those cases
where a method defined in C@t{++} source code could be inlined or
optimized out by the compiler, making it unavailable to @value{GDBN}.
For such cases, one can define an xmethod to serve as a replacement
for the method defined in the C@t{++} source code. @value{GDBN} will
then invoke the xmethod, instead of the C@t{++} method, to
evaluate expressions. One can also use xmethods when debugging
with core files. Moreover, when debugging live programs, invoking an
xmethod need not involve running the inferior (which can potentially
perturb its state). Hence, even if the C@t{++} method is available, it
is better to use its replacement xmethod if one is defined.
The xmethods feature in Python is available via the concepts of an
@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
implement an xmethod, one has to implement a matcher and a
corresponding worker for it (more than one worker can be
implemented, each catering to a different overloaded instance of the
method). Internally, @value{GDBN} invokes the @code{match} method of a
matcher to match the class type and method name. On a match, the
@code{match} method returns a list of matching @emph{worker} objects.
Each worker object typically corresponds to an overloaded instance of
the xmethod. They implement a @code{get_arg_types} method which
returns a sequence of types corresponding to the arguments the xmethod
requires. @value{GDBN} uses this sequence of types to perform
overload resolution and picks a winning xmethod worker. A winner
is also selected from among the methods @value{GDBN} finds in the
C@t{++} source code. Next, the winning xmethod worker and the
winning C@t{++} method are compared to select an overall winner. In
case of a tie between a xmethod worker and a C@t{++} method, the
xmethod worker is selected as the winner. That is, if a winning
xmethod worker is found to be equivalent to the winning C@t{++}
method, then the xmethod worker is treated as a replacement for
the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
method. If the winning xmethod worker is the overall winner, then
the corresponding xmethod is invoked via the @code{invoke} method
of the worker object.
If one wants to implement an xmethod as a replacement for an
existing C@t{++} method, then they have to implement an equivalent
xmethod which has exactly the same name and takes arguments of
exactly the same type as the C@t{++} method. If the user wants to
invoke the C@t{++} method even though a replacement xmethod is
available for that method, then they can disable the xmethod.
@xref{Xmethod API}, for API to implement xmethods in Python.
@xref{Writing an Xmethod}, for implementing xmethods in Python.
@node Xmethod API
@subsubsection Xmethod API
@cindex xmethod API
The @value{GDBN} Python API provides classes, interfaces and functions
to implement, register and manipulate xmethods.
@xref{Xmethods In Python}.
An xmethod matcher should be an instance of a class derived from
@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
object with similar interface and attributes. An instance of
@code{XMethodMatcher} has the following attributes:
@defvar name
The name of the matcher.
@end defvar
@defvar enabled
A boolean value indicating whether the matcher is enabled or disabled.
@end defvar
@defvar methods
A list of named methods managed by the matcher. Each object in the list
is an instance of the class @code{XMethod} defined in the module
@code{gdb.xmethod}, or any object with the following attributes:
@table @code
@item name
Name of the xmethod which should be unique for each xmethod
managed by the matcher.
@item enabled
A boolean value indicating whether the xmethod is enabled or
disabled.
@end table
The class @code{XMethod} is a convenience class with same
attributes as above along with the following constructor:
@defun XMethod.__init__(self, name)
Constructs an enabled xmethod with name @var{name}.
@end defun
@end defvar
@noindent
The @code{XMethodMatcher} class has the following methods:
@defun XMethodMatcher.__init__(self, name)
Constructs an enabled xmethod matcher with name @var{name}. The
@code{methods} attribute is initialized to @code{None}.
@end defun
@defun XMethodMatcher.match(self, class_type, method_name)
Derived classes should override this method. It should return a
xmethod worker object (or a sequence of xmethod worker
objects) matching the @var{class_type} and @var{method_name}.
@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
is a string value. If the matcher manages named methods as listed in
its @code{methods} attribute, then only those worker objects whose
corresponding entries in the @code{methods} list are enabled should be
returned.
@end defun
An xmethod worker should be an instance of a class derived from
@code{XMethodWorker} defined in the module @code{gdb.xmethod},
or support the following interface:
@defun XMethodWorker.get_arg_types(self)
This method returns a sequence of @code{gdb.Type} objects corresponding
to the arguments that the xmethod takes. It can return an empty
sequence or @code{None} if the xmethod does not take any arguments.
If the xmethod takes a single argument, then a single
@code{gdb.Type} object corresponding to it can be returned.
@end defun
@defun XMethodWorker.__call__(self, *args)
This is the method which does the @emph{work} of the xmethod. The
@var{args} arguments is the tuple of arguments to the xmethod. Each
element in this tuple is a gdb.Value object. The first element is
always the @code{this} pointer value.
@end defun
For @value{GDBN} to lookup xmethods, the xmethod matchers
should be registered using the following function defined in the module
@code{gdb.xmethod}:
@defun register_xmethod_matcher(locus, matcher, replace=False)
The @code{matcher} is registered with @code{locus}, replacing an
existing matcher with the same name as @code{matcher} if
@code{replace} is @code{True}. @code{locus} can be a
@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
@code{gdb.Progspace} object (@pxref{Program Spaces In Python}), or
@code{None}. If it is @code{None}, then @code{matcher} is registered
globally.
@end defun
@node Writing an Xmethod
@subsubsection Writing an Xmethod
@cindex writing xmethods in Python
Implementing xmethods in Python will require implementing xmethod
matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
the following C@t{++} class:
@smallexample
class MyClass
@{
public:
MyClass (int a) : a_(a) @{ @}
int geta (void) @{ return a_; @}
int operator+ (int b);
private:
int a_;
@};
int
MyClass::operator+ (int b)
@{
return a_ + b;
@}
@end smallexample
@noindent
Let us define two xmethods for the class @code{MyClass}, one
replacing the method @code{geta}, and another adding an overloaded
flavor of @code{operator+} which takes a @code{MyClass} argument (the
C@t{++} code above already has an overloaded @code{operator+}
which takes an @code{int} argument). The xmethod matcher can be
defined as follows:
@smallexample
class MyClass_geta(gdb.xmethod.XMethod):
def __init__(self):
gdb.xmethod.XMethod.__init__(self, 'geta')
def get_worker(self, method_name):
if method_name == 'geta':
return MyClassWorker_geta()
class MyClass_sum(gdb.xmethod.XMethod):
def __init__(self):
gdb.xmethod.XMethod.__init__(self, 'sum')
def get_worker(self, method_name):
if method_name == 'operator+':
return MyClassWorker_plus()
class MyClassMatcher(gdb.xmethod.XMethodMatcher):
def __init__(self):
gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
# List of methods 'managed' by this matcher
self.methods = [MyClass_geta(), MyClass_sum()]
def match(self, class_type, method_name):
if class_type.tag != 'MyClass':
return None
workers = []
for method in self.methods:
if method.enabled:
worker = method.get_worker(method_name)
if worker:
workers.append(worker)
return workers
@end smallexample
@noindent
Notice that the @code{match} method of @code{MyClassMatcher} returns
a worker object of type @code{MyClassWorker_geta} for the @code{geta}
method, and a worker object of type @code{MyClassWorker_plus} for the
@code{operator+} method. This is done indirectly via helper classes
derived from @code{gdb.xmethod.XMethod}. One does not need to use the
@code{methods} attribute in a matcher as it is optional. However, if a
matcher manages more than one xmethod, it is a good practice to list the
xmethods in the @code{methods} attribute of the matcher. This will then
facilitate enabling and disabling individual xmethods via the
@code{enable/disable} commands. Notice also that a worker object is
returned only if the corresponding entry in the @code{methods} attribute
of the matcher is enabled.
The implementation of the worker classes returned by the matcher setup
above is as follows:
@smallexample
class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
def get_arg_types(self):
return None
def __call__(self, obj):
return obj['a_']
class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
def get_arg_types(self):
return gdb.lookup_type('MyClass')
def __call__(self, obj, other):
return obj['a_'] + other['a_']
@end smallexample
For @value{GDBN} to actually lookup a xmethod, it has to be
registered with it. The matcher defined above is registered with
@value{GDBN} globally as follows:
@smallexample
gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
@end smallexample
If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
code as follows:
@smallexample
MyClass obj(5);
@end smallexample
@noindent
then, after loading the Python script defining the xmethod matchers
and workers into @code{GDBN}, invoking the method @code{geta} or using
the operator @code{+} on @code{obj} will invoke the xmethods
defined above:
@smallexample
(gdb) p obj.geta()
$1 = 5
(gdb) p obj + obj
$2 = 10
@end smallexample
Consider another example with a C++ template class:
@smallexample
template <class T>
class MyTemplate
@{
public:
MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
~MyTemplate () @{ delete [] data_; @}
int footprint (void)
@{
return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
@}
private:
int dsize_;
T *data_;
@};
@end smallexample
Let us implement an xmethod for the above class which serves as a
replacement for the @code{footprint} method. The full code listing
of the xmethod workers and xmethod matchers is as follows:
@smallexample
class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
def __init__(self, class_type):
self.class_type = class_type
def get_arg_types(self):
return None
def __call__(self, obj):
return (self.class_type.sizeof +
obj['dsize_'] *
self.class_type.template_argument(0).sizeof)
class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
def __init__(self):
gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
def match(self, class_type, method_name):
if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
class_type.tag) and
method_name == 'footprint'):
return MyTemplateWorker_footprint(class_type)
@end smallexample
Notice that, in this example, we have not used the @code{methods}
attribute of the matcher as the matcher manages only one xmethod. The
user can enable/disable this xmethod by enabling/disabling the matcher
itself.
@node Inferiors In Python
@subsubsection Inferiors In Python
@cindex inferiors in Python