1991-03-28 16:26:26 +00:00
|
|
|
|
/* Find a variable's value in memory, for GDB, the GNU debugger.
|
|
|
|
|
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
1991-07-14 07:48:06 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
1991-03-28 16:26:26 +00:00
|
|
|
|
it under the terms of the GNU General Public License as published by
|
1991-07-14 07:48:06 +00:00
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1991-03-28 16:26:26 +00:00
|
|
|
|
|
1991-07-14 07:48:06 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
1991-03-28 16:26:26 +00:00
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
1991-07-14 07:48:06 +00:00
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
1991-03-28 16:26:26 +00:00
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "param.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
|
|
|
|
|
#if !defined (GET_SAVED_REGISTER)
|
|
|
|
|
|
|
|
|
|
/* Return the address in which frame FRAME's value of register REGNUM
|
|
|
|
|
has been saved in memory. Or return zero if it has not been saved.
|
|
|
|
|
If REGNUM specifies the SP, the value we return is actually
|
|
|
|
|
the SP value, not an address where it was saved. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
|
|
|
find_saved_register (frame, regnum)
|
|
|
|
|
FRAME frame;
|
|
|
|
|
int regnum;
|
|
|
|
|
{
|
|
|
|
|
struct frame_info *fi;
|
|
|
|
|
struct frame_saved_regs saved_regs;
|
|
|
|
|
|
|
|
|
|
register FRAME frame1 = 0;
|
|
|
|
|
register CORE_ADDR addr = 0;
|
|
|
|
|
|
|
|
|
|
if (frame == 0) /* No regs saved if want current frame */
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_REGISTER_WINDOWS
|
|
|
|
|
/* We assume that a register in a register window will only be saved
|
|
|
|
|
in one place (since the name changes and/or disappears as you go
|
|
|
|
|
towards inner frames), so we only call get_frame_saved_regs on
|
|
|
|
|
the current frame. This is directly in contradiction to the
|
|
|
|
|
usage below, which assumes that registers used in a frame must be
|
|
|
|
|
saved in a lower (more interior) frame. This change is a result
|
|
|
|
|
of working on a register window machine; get_frame_saved_regs
|
|
|
|
|
always returns the registers saved within a frame, within the
|
|
|
|
|
context (register namespace) of that frame. */
|
|
|
|
|
|
|
|
|
|
/* However, note that we don't want this to return anything if
|
|
|
|
|
nothing is saved (if there's a frame inside of this one). Also,
|
|
|
|
|
callers to this routine asking for the stack pointer want the
|
|
|
|
|
stack pointer saved for *this* frame; this is returned from the
|
|
|
|
|
next frame. */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (REGISTER_IN_WINDOW_P(regnum))
|
|
|
|
|
{
|
|
|
|
|
frame1 = get_next_frame (frame);
|
|
|
|
|
if (!frame1) return 0; /* Registers of this frame are
|
|
|
|
|
active. */
|
|
|
|
|
|
|
|
|
|
/* Get the SP from the next frame in; it will be this
|
|
|
|
|
current frame. */
|
|
|
|
|
if (regnum != SP_REGNUM)
|
|
|
|
|
frame1 = frame;
|
|
|
|
|
|
|
|
|
|
fi = get_frame_info (frame1);
|
|
|
|
|
get_frame_saved_regs (fi, &saved_regs);
|
|
|
|
|
return saved_regs.regs[regnum]; /* ... which might be zero */
|
|
|
|
|
}
|
|
|
|
|
#endif /* HAVE_REGISTER_WINDOWS */
|
|
|
|
|
|
|
|
|
|
/* Note that this next routine assumes that registers used in
|
|
|
|
|
frame x will be saved only in the frame that x calls and
|
|
|
|
|
frames interior to it. This is not true on the sparc, but the
|
|
|
|
|
above macro takes care of it, so we should be all right. */
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
frame1 = get_prev_frame (frame1);
|
|
|
|
|
if (frame1 == 0 || frame1 == frame)
|
|
|
|
|
break;
|
|
|
|
|
fi = get_frame_info (frame1);
|
|
|
|
|
get_frame_saved_regs (fi, &saved_regs);
|
|
|
|
|
if (saved_regs.regs[regnum])
|
|
|
|
|
addr = saved_regs.regs[regnum];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find register number REGNUM relative to FRAME and put its
|
|
|
|
|
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
|
|
|
|
was optimized out (and thus can't be fetched). Set *LVAL to
|
|
|
|
|
lval_memory, lval_register, or not_lval, depending on whether the
|
|
|
|
|
value was fetched from memory, from a register, or in a strange
|
|
|
|
|
and non-modifiable way (e.g. a frame pointer which was calculated
|
|
|
|
|
rather than fetched). Set *ADDRP to the address, either in memory
|
|
|
|
|
on as a REGISTER_BYTE offset into the registers array.
|
|
|
|
|
|
|
|
|
|
Note that this implementation never sets *LVAL to not_lval. But
|
|
|
|
|
it can be replaced by defining GET_SAVED_REGISTER and supplying
|
|
|
|
|
your own.
|
|
|
|
|
|
|
|
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
|
|
|
|
void
|
|
|
|
|
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
|
|
|
|
char *raw_buffer;
|
|
|
|
|
int *optimized;
|
|
|
|
|
CORE_ADDR *addrp;
|
|
|
|
|
FRAME frame;
|
|
|
|
|
int regnum;
|
|
|
|
|
enum lval_type *lval;
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
/* Normal systems don't optimize out things with register numbers. */
|
|
|
|
|
if (optimized != NULL)
|
|
|
|
|
*optimized = 0;
|
|
|
|
|
addr = find_saved_register (frame, regnum);
|
|
|
|
|
if (addr != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (lval != NULL)
|
|
|
|
|
*lval = lval_memory;
|
|
|
|
|
if (regnum == SP_REGNUM)
|
|
|
|
|
{
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
*(CORE_ADDR *)raw_buffer = addr;
|
|
|
|
|
if (addrp != NULL)
|
|
|
|
|
*addrp = 0;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (lval != NULL)
|
|
|
|
|
*lval = lval_register;
|
|
|
|
|
addr = REGISTER_BYTE (regnum);
|
|
|
|
|
if (raw_buffer != NULL)
|
|
|
|
|
read_register_gen (regnum, raw_buffer);
|
|
|
|
|
}
|
|
|
|
|
if (addrp != NULL)
|
|
|
|
|
*addrp = addr;
|
|
|
|
|
}
|
|
|
|
|
#endif /* GET_SAVED_REGISTER. */
|
|
|
|
|
|
|
|
|
|
/* Copy the bytes of register REGNUM, relative to the current stack frame,
|
|
|
|
|
into our memory at MYADDR, in target byte order.
|
|
|
|
|
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
|
|
|
|
|
|
|
|
|
Returns 1 if could not be read, 0 if could. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
read_relative_register_raw_bytes (regnum, myaddr)
|
|
|
|
|
int regnum;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
{
|
|
|
|
|
int optim;
|
|
|
|
|
if (regnum == FP_REGNUM && selected_frame)
|
|
|
|
|
{
|
|
|
|
|
bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR));
|
|
|
|
|
SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
1991-05-02 04:28:42 +00:00
|
|
|
|
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
|
1991-03-28 16:26:26 +00:00
|
|
|
|
regnum, (enum lval_type *)NULL);
|
|
|
|
|
return optim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a `value' with the contents of register REGNUM
|
|
|
|
|
in its virtual format, with the type specified by
|
|
|
|
|
REGISTER_VIRTUAL_TYPE. */
|
|
|
|
|
|
|
|
|
|
value
|
|
|
|
|
value_of_register (regnum)
|
|
|
|
|
int regnum;
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
int optim;
|
|
|
|
|
register value val;
|
|
|
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
|
|
|
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
|
|
|
|
enum lval_type lval;
|
|
|
|
|
|
|
|
|
|
get_saved_register (raw_buffer, &optim, &addr,
|
|
|
|
|
selected_frame, regnum, &lval);
|
|
|
|
|
|
|
|
|
|
target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
|
|
|
|
|
val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
|
|
|
|
|
bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val),
|
|
|
|
|
REGISTER_VIRTUAL_SIZE (regnum));
|
|
|
|
|
VALUE_LVAL (val) = lval;
|
|
|
|
|
VALUE_ADDRESS (val) = addr;
|
|
|
|
|
VALUE_REGNO (val) = regnum;
|
|
|
|
|
VALUE_OPTIMIZED_OUT (val) = optim;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Low level examining and depositing of registers.
|
|
|
|
|
|
|
|
|
|
The caller is responsible for making
|
|
|
|
|
sure that the inferior is stopped before calling the fetching routines,
|
|
|
|
|
or it will get garbage. (a change from GDB version 3, in which
|
|
|
|
|
the caller got the value from the last stop). */
|
|
|
|
|
|
|
|
|
|
/* Contents of the registers in target byte order.
|
|
|
|
|
We allocate some extra slop since we do a lot of bcopy's around `registers',
|
|
|
|
|
and failing-soft is better than failing hard. */
|
|
|
|
|
char registers[REGISTER_BYTES + /* SLOP */ 256];
|
|
|
|
|
|
|
|
|
|
/* Nonzero if that register has been fetched. */
|
|
|
|
|
char register_valid[NUM_REGS];
|
|
|
|
|
|
|
|
|
|
/* Indicate that registers may have changed, so invalidate the cache. */
|
|
|
|
|
void
|
|
|
|
|
registers_changed ()
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 0; i < NUM_REGS; i++)
|
|
|
|
|
register_valid[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Indicate that all registers have been fetched, so mark them all valid. */
|
|
|
|
|
void
|
|
|
|
|
registers_fetched ()
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 0; i < NUM_REGS; i++)
|
|
|
|
|
register_valid[i] = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy LEN bytes of consecutive data from registers
|
|
|
|
|
starting with the REGBYTE'th byte of register data
|
|
|
|
|
into memory at MYADDR. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
read_register_bytes (regbyte, myaddr, len)
|
|
|
|
|
int regbyte;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
int len;
|
|
|
|
|
{
|
|
|
|
|
/* Fetch all registers. */
|
|
|
|
|
int i;
|
|
|
|
|
for (i = 0; i < NUM_REGS; i++)
|
|
|
|
|
if (!register_valid[i])
|
|
|
|
|
{
|
|
|
|
|
target_fetch_registers (-1);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (myaddr != NULL)
|
|
|
|
|
bcopy (®isters[regbyte], myaddr, len);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read register REGNO into memory at MYADDR, which must be large enough
|
1991-04-20 03:57:50 +00:00
|
|
|
|
for REGISTER_RAW_BYTES (REGNO). Target byte-order.
|
|
|
|
|
If the register is known to be the size of a CORE_ADDR or smaller,
|
|
|
|
|
read_register can be used instead. */
|
1991-03-28 16:26:26 +00:00
|
|
|
|
void
|
|
|
|
|
read_register_gen (regno, myaddr)
|
|
|
|
|
int regno;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
{
|
|
|
|
|
if (!register_valid[regno])
|
|
|
|
|
target_fetch_registers (regno);
|
|
|
|
|
bcopy (®isters[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy LEN bytes of consecutive data from memory at MYADDR
|
|
|
|
|
into registers starting with the REGBYTE'th byte of register data. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
write_register_bytes (regbyte, myaddr, len)
|
|
|
|
|
int regbyte;
|
|
|
|
|
char *myaddr;
|
|
|
|
|
int len;
|
|
|
|
|
{
|
|
|
|
|
/* Make sure the entire registers array is valid. */
|
|
|
|
|
read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
|
|
|
|
|
bcopy (myaddr, ®isters[regbyte], len);
|
|
|
|
|
target_store_registers (-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the contents of register REGNO, regarding it as an integer. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
|
|
|
read_register (regno)
|
|
|
|
|
int regno;
|
|
|
|
|
{
|
|
|
|
|
int reg;
|
|
|
|
|
if (!register_valid[regno])
|
|
|
|
|
target_fetch_registers (regno);
|
|
|
|
|
/* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
|
|
|
|
|
reg = *(int *) ®isters[REGISTER_BYTE (regno)];
|
|
|
|
|
SWAP_TARGET_AND_HOST (®, sizeof (int));
|
|
|
|
|
return reg;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Registers we shouldn't try to store. */
|
|
|
|
|
#if !defined (CANNOT_STORE_REGISTER)
|
|
|
|
|
#define CANNOT_STORE_REGISTER(regno) 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Store VALUE in the register number REGNO, regarded as an integer. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
write_register (regno, val)
|
|
|
|
|
int regno, val;
|
|
|
|
|
{
|
|
|
|
|
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
|
|
|
|
|
the registers array if something writes to this register. */
|
|
|
|
|
if (CANNOT_STORE_REGISTER (regno))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
SWAP_TARGET_AND_HOST (&val, sizeof (int));
|
|
|
|
|
|
|
|
|
|
target_prepare_to_store ();
|
|
|
|
|
|
|
|
|
|
register_valid [regno] = 1;
|
|
|
|
|
/* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
|
|
|
|
|
/* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */
|
|
|
|
|
*(int *) ®isters[REGISTER_BYTE (regno)] = val;
|
|
|
|
|
|
|
|
|
|
target_store_registers (regno);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record that register REGNO contains VAL.
|
|
|
|
|
This is used when the value is obtained from the inferior or core dump,
|
|
|
|
|
so there is no need to store the value there. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
supply_register (regno, val)
|
|
|
|
|
int regno;
|
|
|
|
|
char *val;
|
|
|
|
|
{
|
|
|
|
|
register_valid[regno] = 1;
|
|
|
|
|
bcopy (val, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a struct symbol for a variable,
|
|
|
|
|
and a stack frame id, read the value of the variable
|
|
|
|
|
and return a (pointer to a) struct value containing the value.
|
1991-04-22 20:08:53 +00:00
|
|
|
|
If the variable cannot be found, return a zero pointer.
|
|
|
|
|
If FRAME is NULL, use the selected_frame. */
|
1991-03-28 16:26:26 +00:00
|
|
|
|
|
|
|
|
|
value
|
|
|
|
|
read_var_value (var, frame)
|
|
|
|
|
register struct symbol *var;
|
|
|
|
|
FRAME frame;
|
|
|
|
|
{
|
|
|
|
|
register value v;
|
|
|
|
|
struct frame_info *fi;
|
|
|
|
|
struct type *type = SYMBOL_TYPE (var);
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
register int len;
|
|
|
|
|
|
|
|
|
|
v = allocate_value (type);
|
|
|
|
|
VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
|
|
|
|
|
len = TYPE_LENGTH (type);
|
|
|
|
|
|
|
|
|
|
if (frame == 0) frame = selected_frame;
|
|
|
|
|
|
|
|
|
|
switch (SYMBOL_CLASS (var))
|
|
|
|
|
{
|
|
|
|
|
case LOC_CONST:
|
1991-05-02 04:28:42 +00:00
|
|
|
|
bcopy (&SYMBOL_VALUE (var), VALUE_CONTENTS_RAW (v), len);
|
1991-03-28 16:26:26 +00:00
|
|
|
|
SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
VALUE_LVAL (v) = not_lval;
|
|
|
|
|
return v;
|
|
|
|
|
|
|
|
|
|
case LOC_LABEL:
|
|
|
|
|
addr = SYMBOL_VALUE_ADDRESS (var);
|
|
|
|
|
bcopy (&addr, VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
VALUE_LVAL (v) = not_lval;
|
|
|
|
|
return v;
|
|
|
|
|
|
|
|
|
|
case LOC_CONST_BYTES:
|
1991-07-14 07:48:06 +00:00
|
|
|
|
{
|
|
|
|
|
char *bytes_addr;
|
|
|
|
|
bytes_addr = SYMBOL_VALUE_BYTES (var);
|
|
|
|
|
bcopy (bytes_addr, VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
VALUE_LVAL (v) = not_lval;
|
|
|
|
|
return v;
|
|
|
|
|
}
|
1991-03-28 16:26:26 +00:00
|
|
|
|
|
|
|
|
|
case LOC_STATIC:
|
|
|
|
|
case LOC_EXTERNAL:
|
|
|
|
|
addr = SYMBOL_VALUE_ADDRESS (var);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if a struct which is located in a register or a LOC_ARG
|
|
|
|
|
really contains
|
|
|
|
|
the address of the struct, not the struct itself. GCC_P is nonzero
|
|
|
|
|
if the function was compiled with GCC. */
|
|
|
|
|
#if !defined (REG_STRUCT_HAS_ADDR)
|
|
|
|
|
#define REG_STRUCT_HAS_ADDR(gcc_p) 0
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
case LOC_ARG:
|
|
|
|
|
fi = get_frame_info (frame);
|
1991-04-22 20:08:53 +00:00
|
|
|
|
if (fi == NULL)
|
|
|
|
|
return 0;
|
1991-03-28 16:26:26 +00:00
|
|
|
|
addr = FRAME_ARGS_ADDRESS (fi);
|
|
|
|
|
if (!addr) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
addr += SYMBOL_VALUE (var);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LOC_REF_ARG:
|
|
|
|
|
fi = get_frame_info (frame);
|
1991-04-22 20:08:53 +00:00
|
|
|
|
if (fi == NULL)
|
|
|
|
|
return 0;
|
1991-03-28 16:26:26 +00:00
|
|
|
|
addr = FRAME_ARGS_ADDRESS (fi);
|
|
|
|
|
if (!addr) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
addr += SYMBOL_VALUE (var);
|
1991-05-02 04:28:42 +00:00
|
|
|
|
read_memory (addr, &addr, sizeof (CORE_ADDR));
|
1991-03-28 16:26:26 +00:00
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LOC_LOCAL:
|
|
|
|
|
case LOC_LOCAL_ARG:
|
|
|
|
|
fi = get_frame_info (frame);
|
1991-04-22 20:08:53 +00:00
|
|
|
|
if (fi == NULL)
|
|
|
|
|
return 0;
|
1991-03-28 16:26:26 +00:00
|
|
|
|
addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LOC_TYPEDEF:
|
|
|
|
|
error ("Cannot look up value of a typedef");
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LOC_BLOCK:
|
|
|
|
|
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
|
|
|
|
|
return v;
|
|
|
|
|
|
|
|
|
|
case LOC_REGISTER:
|
|
|
|
|
case LOC_REGPARM:
|
|
|
|
|
{
|
1991-04-22 20:08:53 +00:00
|
|
|
|
struct block *b;
|
1991-03-28 16:26:26 +00:00
|
|
|
|
|
1991-04-22 20:08:53 +00:00
|
|
|
|
if (frame == NULL)
|
|
|
|
|
return 0;
|
|
|
|
|
b = get_frame_block (frame);
|
|
|
|
|
|
1991-03-28 16:26:26 +00:00
|
|
|
|
v = value_from_register (type, SYMBOL_VALUE (var), frame);
|
|
|
|
|
|
1991-05-02 04:28:42 +00:00
|
|
|
|
if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
|
1991-03-28 16:26:26 +00:00
|
|
|
|
&& TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
|
|
|
|
addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
|
|
|
|
|
else
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
error ("Cannot look up value of a botched symbol.");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
VALUE_ADDRESS (v) = addr;
|
|
|
|
|
VALUE_LAZY (v) = 1;
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a value of type TYPE, stored in register REGNUM, in frame
|
|
|
|
|
FRAME. */
|
|
|
|
|
|
|
|
|
|
value
|
|
|
|
|
value_from_register (type, regnum, frame)
|
|
|
|
|
struct type *type;
|
|
|
|
|
int regnum;
|
|
|
|
|
FRAME frame;
|
|
|
|
|
{
|
|
|
|
|
char raw_buffer [MAX_REGISTER_RAW_SIZE];
|
|
|
|
|
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
int optim;
|
|
|
|
|
value v = allocate_value (type);
|
|
|
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
|
char *value_bytes = 0;
|
|
|
|
|
int value_bytes_copied = 0;
|
|
|
|
|
int num_storage_locs;
|
|
|
|
|
enum lval_type lval;
|
|
|
|
|
|
|
|
|
|
VALUE_REGNO (v) = regnum;
|
|
|
|
|
|
|
|
|
|
num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
|
|
|
|
|
((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
|
|
|
|
|
1);
|
|
|
|
|
|
|
|
|
|
if (num_storage_locs > 1)
|
|
|
|
|
{
|
|
|
|
|
/* Value spread across multiple storage locations. */
|
|
|
|
|
|
|
|
|
|
int local_regnum;
|
|
|
|
|
int mem_stor = 0, reg_stor = 0;
|
|
|
|
|
int mem_tracking = 1;
|
|
|
|
|
CORE_ADDR last_addr = 0;
|
|
|
|
|
CORE_ADDR first_addr;
|
|
|
|
|
|
|
|
|
|
value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
|
|
|
|
|
|
|
|
|
|
/* Copy all of the data out, whereever it may be. */
|
|
|
|
|
|
|
|
|
|
for (local_regnum = regnum;
|
|
|
|
|
value_bytes_copied < len;
|
|
|
|
|
(value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
|
|
|
|
|
++local_regnum))
|
|
|
|
|
{
|
|
|
|
|
get_saved_register (value_bytes + value_bytes_copied,
|
|
|
|
|
&optim,
|
|
|
|
|
&addr,
|
|
|
|
|
frame,
|
|
|
|
|
local_regnum,
|
|
|
|
|
&lval);
|
|
|
|
|
if (lval == lval_register)
|
|
|
|
|
reg_stor++;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
mem_stor++;
|
|
|
|
|
|
|
|
|
|
if (regnum == local_regnum)
|
|
|
|
|
first_addr = addr;
|
|
|
|
|
|
|
|
|
|
mem_tracking =
|
|
|
|
|
(mem_tracking
|
|
|
|
|
&& (regnum == local_regnum
|
|
|
|
|
|| addr == last_addr));
|
|
|
|
|
}
|
|
|
|
|
last_addr = addr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((reg_stor && mem_stor)
|
|
|
|
|
|| (mem_stor && !mem_tracking))
|
|
|
|
|
/* Mixed storage; all of the hassle we just went through was
|
|
|
|
|
for some good purpose. */
|
|
|
|
|
{
|
|
|
|
|
VALUE_LVAL (v) = lval_reg_frame_relative;
|
|
|
|
|
VALUE_FRAME (v) = FRAME_FP (frame);
|
|
|
|
|
VALUE_FRAME_REGNUM (v) = regnum;
|
|
|
|
|
}
|
|
|
|
|
else if (mem_stor)
|
|
|
|
|
{
|
|
|
|
|
VALUE_LVAL (v) = lval_memory;
|
|
|
|
|
VALUE_ADDRESS (v) = first_addr;
|
|
|
|
|
}
|
|
|
|
|
else if (reg_stor)
|
|
|
|
|
{
|
|
|
|
|
VALUE_LVAL (v) = lval_register;
|
|
|
|
|
VALUE_ADDRESS (v) = first_addr;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
fatal ("value_from_register: Value not stored anywhere!");
|
|
|
|
|
|
|
|
|
|
VALUE_OPTIMIZED_OUT (v) = optim;
|
|
|
|
|
|
|
|
|
|
/* Any structure stored in more than one register will always be
|
|
|
|
|
an integral number of registers. Otherwise, you'd need to do
|
|
|
|
|
some fiddling with the last register copied here for little
|
|
|
|
|
endian machines. */
|
|
|
|
|
|
|
|
|
|
/* Copy into the contents section of the value. */
|
|
|
|
|
bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Data is completely contained within a single register. Locate the
|
|
|
|
|
register's contents in a real register or in core;
|
|
|
|
|
read the data in raw format. */
|
|
|
|
|
|
|
|
|
|
get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
|
|
|
|
|
VALUE_OPTIMIZED_OUT (v) = optim;
|
|
|
|
|
VALUE_LVAL (v) = lval;
|
|
|
|
|
VALUE_ADDRESS (v) = addr;
|
|
|
|
|
|
|
|
|
|
/* Convert the raw contents to virtual contents.
|
|
|
|
|
(Just copy them if the formats are the same.) */
|
|
|
|
|
|
|
|
|
|
target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
|
|
|
|
|
|
|
|
|
|
if (REGISTER_CONVERTIBLE (regnum))
|
|
|
|
|
{
|
|
|
|
|
/* When the raw and virtual formats differ, the virtual format
|
|
|
|
|
corresponds to a specific data type. If we want that type,
|
|
|
|
|
copy the data into the value.
|
|
|
|
|
Otherwise, do a type-conversion. */
|
|
|
|
|
|
|
|
|
|
if (type != REGISTER_VIRTUAL_TYPE (regnum))
|
|
|
|
|
{
|
|
|
|
|
/* eg a variable of type `float' in a 68881 register
|
|
|
|
|
with raw type `extended' and virtual type `double'.
|
|
|
|
|
Fetch it as a `double' and then convert to `float'. */
|
|
|
|
|
v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
|
|
|
|
|
bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
v = value_cast (type, v);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Raw and virtual formats are the same for this register. */
|
|
|
|
|
|
|
|
|
|
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
|
|
|
if (len < REGISTER_RAW_SIZE (regnum))
|
|
|
|
|
{
|
|
|
|
|
/* Big-endian, and we want less than full size. */
|
|
|
|
|
VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
bcopy (virtual_buffer + VALUE_OFFSET (v),
|
|
|
|
|
VALUE_CONTENTS_RAW (v), len);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
1991-07-14 07:48:06 +00:00
|
|
|
|
/* Given a struct symbol for a variable or function,
|
1991-03-28 16:26:26 +00:00
|
|
|
|
and a stack frame id,
|
1991-07-14 07:48:06 +00:00
|
|
|
|
return a (pointer to a) struct value containing the properly typed
|
|
|
|
|
address. */
|
1991-03-28 16:26:26 +00:00
|
|
|
|
|
|
|
|
|
value
|
|
|
|
|
locate_var_value (var, frame)
|
|
|
|
|
register struct symbol *var;
|
|
|
|
|
FRAME frame;
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR addr = 0;
|
|
|
|
|
struct type *type = SYMBOL_TYPE (var);
|
|
|
|
|
struct type *result_type;
|
|
|
|
|
value lazy_value;
|
|
|
|
|
|
|
|
|
|
/* Evaluate it first; if the result is a memory address, we're fine.
|
|
|
|
|
Lazy evaluation pays off here. */
|
|
|
|
|
|
|
|
|
|
lazy_value = read_var_value (var, frame);
|
|
|
|
|
if (lazy_value == 0)
|
|
|
|
|
error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));
|
|
|
|
|
|
1991-07-14 07:48:06 +00:00
|
|
|
|
if (VALUE_LAZY (lazy_value)
|
|
|
|
|
|| TYPE_CODE (type) == TYPE_CODE_FUNC)
|
1991-03-28 16:26:26 +00:00
|
|
|
|
{
|
|
|
|
|
addr = VALUE_ADDRESS (lazy_value);
|
|
|
|
|
|
|
|
|
|
/* C++: The "address" of a reference should yield the address
|
|
|
|
|
* of the object pointed to. So force an extra de-reference. */
|
|
|
|
|
|
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
|
|
|
|
{
|
|
|
|
|
char *buf = alloca (TYPE_LENGTH (type));
|
|
|
|
|
read_memory (addr, buf, TYPE_LENGTH (type));
|
1991-05-02 04:28:42 +00:00
|
|
|
|
addr = unpack_pointer (type, buf);
|
1991-03-28 16:26:26 +00:00
|
|
|
|
type = TYPE_TARGET_TYPE (type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Address of an array is of the type of address of it's elements. */
|
1991-07-14 07:48:06 +00:00
|
|
|
|
/* FIXME, this is probably wrong now for ANSI C. */
|
1991-03-28 16:26:26 +00:00
|
|
|
|
result_type =
|
|
|
|
|
lookup_pointer_type (TYPE_CODE (type) == TYPE_CODE_ARRAY ?
|
|
|
|
|
TYPE_TARGET_TYPE (type) : type);
|
|
|
|
|
|
|
|
|
|
return value_cast (result_type,
|
|
|
|
|
value_from_long (builtin_type_long, (LONGEST) addr));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Not a memory address; check what the problem was. */
|
|
|
|
|
switch (VALUE_LVAL (lazy_value))
|
|
|
|
|
{
|
|
|
|
|
case lval_register:
|
|
|
|
|
case lval_reg_frame_relative:
|
|
|
|
|
error ("Address requested for identifier \"%s\" which is in a register.",
|
|
|
|
|
SYMBOL_NAME (var));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
error ("Can't take address of \"%s\" which isn't an lvalue.",
|
|
|
|
|
SYMBOL_NAME (var));
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return 0; /* For lint -- never reached */
|
|
|
|
|
}
|