1995-07-06 17:12:22 +00:00
|
|
|
|
/* ELF linker support.
|
|
|
|
|
Copyright 1995 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
1995-07-07 22:49:42 +00:00
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
1995-08-14 15:57:17 +00:00
|
|
|
|
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
/* ELF linker code. */
|
|
|
|
|
|
|
|
|
|
static boolean elf_link_add_object_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
|
static boolean elf_link_add_archive_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
|
static Elf_Internal_Rela *elf_link_read_relocs
|
|
|
|
|
PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean));
|
|
|
|
|
static boolean elf_export_symbol
|
|
|
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
|
static boolean elf_adjust_dynamic_symbol
|
|
|
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
|
|
|
|
|
|
/* This struct is used to pass information to routines called via
|
|
|
|
|
elf_link_hash_traverse which must return failure. */
|
|
|
|
|
|
|
|
|
|
struct elf_info_failed
|
|
|
|
|
{
|
|
|
|
|
boolean failed;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Given an ELF BFD, add symbols to the global hash table as
|
|
|
|
|
appropriate. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
elf_bfd_link_add_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
switch (bfd_get_format (abfd))
|
|
|
|
|
{
|
|
|
|
|
case bfd_object:
|
|
|
|
|
return elf_link_add_object_symbols (abfd, info);
|
|
|
|
|
case bfd_archive:
|
|
|
|
|
return elf_link_add_archive_symbols (abfd, info);
|
|
|
|
|
default:
|
|
|
|
|
bfd_set_error (bfd_error_wrong_format);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add symbols from an ELF archive file to the linker hash table. We
|
|
|
|
|
don't use _bfd_generic_link_add_archive_symbols because of a
|
|
|
|
|
problem which arises on UnixWare. The UnixWare libc.so is an
|
|
|
|
|
archive which includes an entry libc.so.1 which defines a bunch of
|
|
|
|
|
symbols. The libc.so archive also includes a number of other
|
|
|
|
|
object files, which also define symbols, some of which are the same
|
|
|
|
|
as those defined in libc.so.1. Correct linking requires that we
|
|
|
|
|
consider each object file in turn, and include it if it defines any
|
|
|
|
|
symbols we need. _bfd_generic_link_add_archive_symbols does not do
|
|
|
|
|
this; it looks through the list of undefined symbols, and includes
|
|
|
|
|
any object file which defines them. When this algorithm is used on
|
|
|
|
|
UnixWare, it winds up pulling in libc.so.1 early and defining a
|
|
|
|
|
bunch of symbols. This means that some of the other objects in the
|
|
|
|
|
archive are not included in the link, which is incorrect since they
|
|
|
|
|
precede libc.so.1 in the archive.
|
|
|
|
|
|
|
|
|
|
Fortunately, ELF archive handling is simpler than that done by
|
|
|
|
|
_bfd_generic_link_add_archive_symbols, which has to allow for a.out
|
|
|
|
|
oddities. In ELF, if we find a symbol in the archive map, and the
|
|
|
|
|
symbol is currently undefined, we know that we must pull in that
|
|
|
|
|
object file.
|
|
|
|
|
|
|
|
|
|
Unfortunately, we do have to make multiple passes over the symbol
|
|
|
|
|
table until nothing further is resolved. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_link_add_archive_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
symindex c;
|
|
|
|
|
boolean *defined = NULL;
|
|
|
|
|
boolean *included = NULL;
|
|
|
|
|
carsym *symdefs;
|
|
|
|
|
boolean loop;
|
|
|
|
|
|
|
|
|
|
if (! bfd_has_map (abfd))
|
|
|
|
|
{
|
|
|
|
|
/* An empty archive is a special case. */
|
|
|
|
|
if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
|
|
|
|
|
return true;
|
|
|
|
|
bfd_set_error (bfd_error_no_armap);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Keep track of all symbols we know to be already defined, and all
|
|
|
|
|
files we know to be already included. This is to speed up the
|
|
|
|
|
second and subsequent passes. */
|
|
|
|
|
c = bfd_ardata (abfd)->symdef_count;
|
|
|
|
|
if (c == 0)
|
|
|
|
|
return true;
|
|
|
|
|
defined = (boolean *) malloc (c * sizeof (boolean));
|
|
|
|
|
included = (boolean *) malloc (c * sizeof (boolean));
|
|
|
|
|
if (defined == (boolean *) NULL || included == (boolean *) NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
memset (defined, 0, c * sizeof (boolean));
|
|
|
|
|
memset (included, 0, c * sizeof (boolean));
|
|
|
|
|
|
|
|
|
|
symdefs = bfd_ardata (abfd)->symdefs;
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
file_ptr last;
|
|
|
|
|
symindex i;
|
|
|
|
|
carsym *symdef;
|
|
|
|
|
carsym *symdefend;
|
|
|
|
|
|
|
|
|
|
loop = false;
|
|
|
|
|
last = -1;
|
|
|
|
|
|
|
|
|
|
symdef = symdefs;
|
|
|
|
|
symdefend = symdef + c;
|
|
|
|
|
for (i = 0; symdef < symdefend; symdef++, i++)
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
bfd *element;
|
|
|
|
|
struct bfd_link_hash_entry *undefs_tail;
|
|
|
|
|
symindex mark;
|
|
|
|
|
|
|
|
|
|
if (defined[i] || included[i])
|
|
|
|
|
continue;
|
|
|
|
|
if (symdef->file_offset == last)
|
|
|
|
|
{
|
|
|
|
|
included[i] = true;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
|
|
|
|
|
false, false, false);
|
|
|
|
|
if (h == (struct elf_link_hash_entry *) NULL)
|
|
|
|
|
continue;
|
|
|
|
|
if (h->root.type != bfd_link_hash_undefined)
|
|
|
|
|
{
|
1995-08-21 15:12:34 +00:00
|
|
|
|
if (h->root.type != bfd_link_hash_undefweak)
|
|
|
|
|
defined[i] = true;
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We need to include this archive member. */
|
|
|
|
|
|
|
|
|
|
element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
|
|
|
|
if (element == (bfd *) NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
if (! bfd_check_format (element, bfd_object))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* Doublecheck that we have not included this object
|
|
|
|
|
already--it should be impossible, but there may be
|
|
|
|
|
something wrong with the archive. */
|
|
|
|
|
if (element->archive_pass != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
element->archive_pass = 1;
|
|
|
|
|
|
|
|
|
|
undefs_tail = info->hash->undefs_tail;
|
|
|
|
|
|
|
|
|
|
if (! (*info->callbacks->add_archive_element) (info, element,
|
|
|
|
|
symdef->name))
|
|
|
|
|
goto error_return;
|
|
|
|
|
if (! elf_link_add_object_symbols (element, info))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* If there are any new undefined symbols, we need to make
|
|
|
|
|
another pass through the archive in order to see whether
|
|
|
|
|
they can be defined. FIXME: This isn't perfect, because
|
|
|
|
|
common symbols wind up on undefs_tail and because an
|
|
|
|
|
undefined symbol which is defined later on in this pass
|
|
|
|
|
does not require another pass. This isn't a bug, but it
|
|
|
|
|
does make the code less efficient than it could be. */
|
|
|
|
|
if (undefs_tail != info->hash->undefs_tail)
|
|
|
|
|
loop = true;
|
|
|
|
|
|
|
|
|
|
/* Look backward to mark all symbols from this object file
|
|
|
|
|
which we have already seen in this pass. */
|
|
|
|
|
mark = i;
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
included[mark] = true;
|
|
|
|
|
if (mark == 0)
|
|
|
|
|
break;
|
|
|
|
|
--mark;
|
|
|
|
|
}
|
|
|
|
|
while (symdefs[mark].file_offset == symdef->file_offset);
|
|
|
|
|
|
|
|
|
|
/* We mark subsequent symbols from this object file as we go
|
|
|
|
|
on through the loop. */
|
|
|
|
|
last = symdef->file_offset;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
while (loop);
|
|
|
|
|
|
|
|
|
|
free (defined);
|
|
|
|
|
free (included);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
if (defined != (boolean *) NULL)
|
|
|
|
|
free (defined);
|
|
|
|
|
if (included != (boolean *) NULL)
|
|
|
|
|
free (included);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add symbols from an ELF object file to the linker hash table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_link_add_object_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
|
|
|
|
|
const Elf_Internal_Sym *,
|
|
|
|
|
const char **, flagword *,
|
|
|
|
|
asection **, bfd_vma *));
|
|
|
|
|
boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
|
|
|
|
|
asection *, const Elf_Internal_Rela *));
|
|
|
|
|
boolean collect;
|
|
|
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
|
size_t symcount;
|
|
|
|
|
size_t extsymcount;
|
|
|
|
|
size_t extsymoff;
|
|
|
|
|
Elf_External_Sym *buf = NULL;
|
|
|
|
|
struct elf_link_hash_entry **sym_hash;
|
|
|
|
|
boolean dynamic;
|
|
|
|
|
Elf_External_Dyn *dynbuf = NULL;
|
|
|
|
|
struct elf_link_hash_entry *weaks;
|
|
|
|
|
Elf_External_Sym *esym;
|
|
|
|
|
Elf_External_Sym *esymend;
|
|
|
|
|
|
|
|
|
|
add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
|
|
|
|
|
collect = get_elf_backend_data (abfd)->collect;
|
|
|
|
|
|
1995-09-01 18:08:28 +00:00
|
|
|
|
/* As a GNU extension, any input sections which are named
|
|
|
|
|
.gnu.warning.SYMBOL are treated as warning symbols for the given
|
|
|
|
|
symbol. This differs from .gnu.warning sections, which generate
|
|
|
|
|
warnings when they are included in an output file. */
|
|
|
|
|
if (! info->shared)
|
|
|
|
|
{
|
|
|
|
|
asection *s;
|
|
|
|
|
|
|
|
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
|
|
|
|
{
|
|
|
|
|
const char *name;
|
|
|
|
|
|
|
|
|
|
name = bfd_get_section_name (abfd, s);
|
|
|
|
|
if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
|
|
|
|
|
{
|
|
|
|
|
char *msg;
|
|
|
|
|
bfd_size_type sz;
|
|
|
|
|
|
|
|
|
|
sz = bfd_section_size (abfd, s);
|
|
|
|
|
msg = (char *) bfd_alloc (abfd, sz);
|
|
|
|
|
if (msg == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
if (! (_bfd_generic_link_add_one_symbol
|
|
|
|
|
(info, abfd,
|
|
|
|
|
name + sizeof ".gnu.warning." - 1,
|
|
|
|
|
BSF_WARNING, s, (bfd_vma) 0, msg, false, collect,
|
|
|
|
|
(struct bfd_link_hash_entry **) NULL)))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
if (! info->relocateable)
|
|
|
|
|
{
|
|
|
|
|
/* Clobber the section size so that the warning does
|
|
|
|
|
not get copied into the output file. */
|
|
|
|
|
s->_raw_size = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
/* A stripped shared library might only have a dynamic symbol table,
|
|
|
|
|
not a regular symbol table. In that case we can still go ahead
|
|
|
|
|
and link using the dynamic symbol table. */
|
|
|
|
|
if (elf_onesymtab (abfd) == 0
|
|
|
|
|
&& elf_dynsymtab (abfd) != 0)
|
|
|
|
|
{
|
|
|
|
|
elf_onesymtab (abfd) = elf_dynsymtab (abfd);
|
|
|
|
|
elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
|
|
|
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
|
|
|
|
|
|
|
|
|
/* The sh_info field of the symtab header tells us where the
|
|
|
|
|
external symbols start. We don't care about the local symbols at
|
|
|
|
|
this point. */
|
|
|
|
|
if (elf_bad_symtab (abfd))
|
|
|
|
|
{
|
|
|
|
|
extsymcount = symcount;
|
|
|
|
|
extsymoff = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
extsymcount = symcount - hdr->sh_info;
|
|
|
|
|
extsymoff = hdr->sh_info;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym));
|
|
|
|
|
if (buf == NULL && extsymcount != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We store a pointer to the hash table entry for each external
|
|
|
|
|
symbol. */
|
|
|
|
|
sym_hash = ((struct elf_link_hash_entry **)
|
|
|
|
|
bfd_alloc (abfd,
|
|
|
|
|
extsymcount * sizeof (struct elf_link_hash_entry *)));
|
|
|
|
|
if (sym_hash == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
elf_sym_hashes (abfd) = sym_hash;
|
|
|
|
|
|
|
|
|
|
if (elf_elfheader (abfd)->e_type != ET_DYN)
|
|
|
|
|
{
|
|
|
|
|
dynamic = false;
|
|
|
|
|
|
|
|
|
|
/* If we are creating a shared library, create all the dynamic
|
|
|
|
|
sections immediately. We need to attach them to something,
|
|
|
|
|
so we attach them to this BFD, provided it is the right
|
|
|
|
|
format. FIXME: If there are no input BFD's of the same
|
|
|
|
|
format as the output, we can't make a shared library. */
|
|
|
|
|
if (info->shared
|
|
|
|
|
&& ! elf_hash_table (info)->dynamic_sections_created
|
|
|
|
|
&& abfd->xvec == info->hash->creator)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_link_create_dynamic_sections (abfd, info))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
asection *s;
|
|
|
|
|
boolean add_needed;
|
|
|
|
|
const char *name;
|
|
|
|
|
bfd_size_type oldsize;
|
|
|
|
|
bfd_size_type strindex;
|
|
|
|
|
|
|
|
|
|
dynamic = true;
|
|
|
|
|
|
|
|
|
|
/* You can't use -r against a dynamic object. Also, there's no
|
|
|
|
|
hope of using a dynamic object which does not exactly match
|
|
|
|
|
the format of the output file. */
|
|
|
|
|
if (info->relocateable
|
|
|
|
|
|| info->hash->creator != abfd->xvec)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find the name to use in a DT_NEEDED entry that refers to this
|
|
|
|
|
object. If the object has a DT_SONAME entry, we use it.
|
|
|
|
|
Otherwise, if the generic linker stuck something in
|
|
|
|
|
elf_dt_needed_name, we use that. Otherwise, we just use the
|
|
|
|
|
file name. If the generic linker put a null string into
|
|
|
|
|
elf_dt_needed_name, we don't make a DT_NEEDED entry at all,
|
|
|
|
|
even if there is a DT_SONAME entry. */
|
|
|
|
|
add_needed = true;
|
|
|
|
|
name = bfd_get_filename (abfd);
|
|
|
|
|
if (elf_dt_needed_name (abfd) != NULL)
|
|
|
|
|
{
|
|
|
|
|
name = elf_dt_needed_name (abfd);
|
|
|
|
|
if (*name == '\0')
|
|
|
|
|
add_needed = false;
|
|
|
|
|
}
|
|
|
|
|
s = bfd_get_section_by_name (abfd, ".dynamic");
|
|
|
|
|
if (s != NULL)
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Dyn *extdyn;
|
|
|
|
|
Elf_External_Dyn *extdynend;
|
|
|
|
|
int elfsec;
|
|
|
|
|
unsigned long link;
|
|
|
|
|
|
* aoutx.h (NAME(aout,slurp_reloc_table)): Cast argument to size_t
for malloc.
* coff-mips.c (mips_relocate_section): Likewise, for memmove.
(mips_relax_section): Likewise, for malloc.
* cofflink.c (process_embedded_commands): Likewise.
(_bfd_coff_final_link): Likewise.
* ecoff.c (_bfd_ecoff_write_object_contents): Likewise.
(ecoff_final_link_debug_accumulate): Likewise.
(ecoff_indirect_link_order): Likewise, for memcpy and malloc.
(ecoff_reloc_link_order): Likewise, for malloc.
* ecofflink.c (ecoff_align_debug): Likewise, for memset.
(ecoff_write_symhdr): Likewise, for malloc.
* elf32-hppa.c (elf32_hppa_read_symext_info): Likewise.
* elf.c (assign_file_positions_except_relocs): Likewise, for
qsort.
* elf32-mips.c (mips_elf_read_ecoff_info): Likewise, for malloc.
* elfcode.h (elf_slurp_reloc_table): Likewise.
* elfcore.h (elf_corefile_note): Likewise.
* elflink.h (elf_link_add_object_symbols): Likewise.
(elf_link_read_relocs): Likewise.
(NAME(bfd_elf,size_dynamic_sections)): Likewise, for memset.
* i386linux.c (bfd_linux_size_dynamic_sections): Likewise.
* ieee.c (do_with_relocs): Likewise.
* linker.c (default_indirect_link_order): Likewise, for malloc.
* nlmcode.h (nlm_object_p): Likewise.
(nlm_write_object_contents): Likewise.
* oasys.c (oasys_set_section_contents): Likewise, for memcpy.
* reloc.c (bfd_generic_get_relocated_section_contents): Likewise,
for malloc.
* section.c (bfd_get_section_contents): Likewise, for memcpy.
* srec.c (srec_get_section_contents): Likewise.
(srec_set_section_contents): Likewise.
* sunos.c (bfd_sunos_size_dynamic_sections): Likewise, for
realloc and memset.
(sunos_scan_relocs): Likewise, for malloc.
(sunos_scan_dynamic_symbol): Likewise, for realloc.
* syms.c (_bfd_generic_read_minisymbols): Likewise, for malloc.
* versados.c (versados_get_section_contents): Likewise, for
memcpy.
1995-07-13 18:14:45 +00:00
|
|
|
|
dynbuf = (Elf_External_Dyn *) malloc ((size_t) s->_raw_size);
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
if (dynbuf == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
|
|
|
|
|
(file_ptr) 0, s->_raw_size))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
|
|
|
|
if (elfsec == -1)
|
|
|
|
|
goto error_return;
|
|
|
|
|
link = elf_elfsections (abfd)[elfsec]->sh_link;
|
|
|
|
|
|
|
|
|
|
extdyn = dynbuf;
|
|
|
|
|
extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
|
|
|
|
|
for (; extdyn < extdynend; extdyn++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Dyn dyn;
|
|
|
|
|
|
|
|
|
|
elf_swap_dyn_in (abfd, extdyn, &dyn);
|
|
|
|
|
if (add_needed && dyn.d_tag == DT_SONAME)
|
|
|
|
|
{
|
|
|
|
|
name = bfd_elf_string_from_elf_section (abfd, link,
|
|
|
|
|
dyn.d_un.d_val);
|
|
|
|
|
if (name == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
if (dyn.d_tag == DT_NEEDED)
|
|
|
|
|
{
|
|
|
|
|
struct bfd_elf_link_needed_list *n, **pn;
|
|
|
|
|
char *fnm, *anm;
|
|
|
|
|
|
1995-07-12 22:00:57 +00:00
|
|
|
|
n = (struct bfd_elf_link_needed_list *)
|
|
|
|
|
bfd_alloc (abfd,
|
|
|
|
|
sizeof (struct bfd_elf_link_needed_list));
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
fnm = bfd_elf_string_from_elf_section (abfd, link,
|
|
|
|
|
dyn.d_un.d_val);
|
|
|
|
|
if (n == NULL || fnm == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
anm = bfd_alloc (abfd, strlen (fnm) + 1);
|
|
|
|
|
if (anm == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
strcpy (anm, fnm);
|
|
|
|
|
n->name = anm;
|
|
|
|
|
n->by = abfd;
|
|
|
|
|
n->next = NULL;
|
|
|
|
|
for (pn = &elf_hash_table (info)->needed;
|
|
|
|
|
*pn != NULL;
|
|
|
|
|
pn = &(*pn)->next)
|
|
|
|
|
;
|
|
|
|
|
*pn = n;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
free (dynbuf);
|
|
|
|
|
dynbuf = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We do not want to include any of the sections in a dynamic
|
|
|
|
|
object in the output file. We hack by simply clobbering the
|
|
|
|
|
list of sections in the BFD. This could be handled more
|
|
|
|
|
cleanly by, say, a new section flag; the existing
|
|
|
|
|
SEC_NEVER_LOAD flag is not the one we want, because that one
|
|
|
|
|
still implies that the section takes up space in the output
|
|
|
|
|
file. */
|
|
|
|
|
abfd->sections = NULL;
|
|
|
|
|
|
|
|
|
|
/* If this is the first dynamic object found in the link, create
|
|
|
|
|
the special sections required for dynamic linking. */
|
|
|
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_link_create_dynamic_sections (abfd, info))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (add_needed)
|
|
|
|
|
{
|
|
|
|
|
/* Add a DT_NEEDED entry for this dynamic object. */
|
|
|
|
|
oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
|
|
|
|
strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
|
|
|
|
|
true, false);
|
|
|
|
|
if (strindex == (bfd_size_type) -1)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
|
|
|
|
|
{
|
|
|
|
|
asection *sdyn;
|
|
|
|
|
Elf_External_Dyn *dyncon, *dynconend;
|
|
|
|
|
|
|
|
|
|
/* The hash table size did not change, which means that
|
|
|
|
|
the dynamic object name was already entered. If we
|
|
|
|
|
have already included this dynamic object in the
|
|
|
|
|
link, just ignore it. There is no reason to include
|
|
|
|
|
a particular dynamic object more than once. */
|
|
|
|
|
sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
|
|
|
|
|
".dynamic");
|
|
|
|
|
BFD_ASSERT (sdyn != NULL);
|
|
|
|
|
|
|
|
|
|
dyncon = (Elf_External_Dyn *) sdyn->contents;
|
|
|
|
|
dynconend = (Elf_External_Dyn *) (sdyn->contents +
|
|
|
|
|
sdyn->_raw_size);
|
|
|
|
|
for (; dyncon < dynconend; dyncon++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Dyn dyn;
|
|
|
|
|
|
|
|
|
|
elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
|
|
|
|
|
&dyn);
|
|
|
|
|
if (dyn.d_tag == DT_NEEDED
|
|
|
|
|
&& dyn.d_un.d_val == strindex)
|
|
|
|
|
{
|
|
|
|
|
if (buf != NULL)
|
|
|
|
|
free (buf);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (abfd,
|
|
|
|
|
hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
|
|
|
|
|
SEEK_SET) != 0
|
|
|
|
|
|| (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
|
|
|
|
|
!= extsymcount * sizeof (Elf_External_Sym)))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
weaks = NULL;
|
|
|
|
|
|
|
|
|
|
esymend = buf + extsymcount;
|
|
|
|
|
for (esym = buf; esym < esymend; esym++, sym_hash++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Sym sym;
|
|
|
|
|
int bind;
|
|
|
|
|
bfd_vma value;
|
|
|
|
|
asection *sec;
|
|
|
|
|
flagword flags;
|
|
|
|
|
const char *name;
|
1995-09-01 18:08:28 +00:00
|
|
|
|
struct elf_link_hash_entry *h;
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
boolean definition;
|
1995-08-14 15:57:17 +00:00
|
|
|
|
boolean new_weakdef;
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
|
|
|
|
|
elf_swap_symbol_in (abfd, esym, &sym);
|
|
|
|
|
|
|
|
|
|
flags = BSF_NO_FLAGS;
|
|
|
|
|
sec = NULL;
|
|
|
|
|
value = sym.st_value;
|
|
|
|
|
*sym_hash = NULL;
|
|
|
|
|
|
|
|
|
|
bind = ELF_ST_BIND (sym.st_info);
|
|
|
|
|
if (bind == STB_LOCAL)
|
|
|
|
|
{
|
|
|
|
|
/* This should be impossible, since ELF requires that all
|
|
|
|
|
global symbols follow all local symbols, and that sh_info
|
|
|
|
|
point to the first global symbol. Unfortunatealy, Irix 5
|
|
|
|
|
screws this up. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else if (bind == STB_GLOBAL)
|
|
|
|
|
{
|
|
|
|
|
if (sym.st_shndx != SHN_UNDEF
|
|
|
|
|
&& sym.st_shndx != SHN_COMMON)
|
|
|
|
|
flags = BSF_GLOBAL;
|
|
|
|
|
else
|
|
|
|
|
flags = 0;
|
|
|
|
|
}
|
|
|
|
|
else if (bind == STB_WEAK)
|
|
|
|
|
flags = BSF_WEAK;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Leave it up to the processor backend. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sym.st_shndx == SHN_UNDEF)
|
|
|
|
|
sec = bfd_und_section_ptr;
|
|
|
|
|
else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
|
|
|
|
|
{
|
|
|
|
|
sec = section_from_elf_index (abfd, sym.st_shndx);
|
|
|
|
|
if (sec != NULL)
|
|
|
|
|
value -= sec->vma;
|
|
|
|
|
else
|
|
|
|
|
sec = bfd_abs_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
else if (sym.st_shndx == SHN_ABS)
|
|
|
|
|
sec = bfd_abs_section_ptr;
|
|
|
|
|
else if (sym.st_shndx == SHN_COMMON)
|
|
|
|
|
{
|
|
|
|
|
sec = bfd_com_section_ptr;
|
|
|
|
|
/* What ELF calls the size we call the value. What ELF
|
|
|
|
|
calls the value we call the alignment. */
|
|
|
|
|
value = sym.st_size;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Leave it up to the processor backend. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
|
|
|
|
|
if (name == (const char *) NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
if (add_symbol_hook)
|
|
|
|
|
{
|
|
|
|
|
if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
|
|
|
|
|
&value))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* The hook function sets the name to NULL if this symbol
|
|
|
|
|
should be skipped for some reason. */
|
|
|
|
|
if (name == (const char *) NULL)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Sanity check that all possibilities were handled. */
|
|
|
|
|
if (sec == (asection *) NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bfd_is_und_section (sec)
|
|
|
|
|
|| bfd_is_com_section (sec))
|
|
|
|
|
definition = false;
|
|
|
|
|
else
|
|
|
|
|
definition = true;
|
|
|
|
|
|
|
|
|
|
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
|
|
|
|
{
|
|
|
|
|
/* We need to look up the symbol now in order to get some of
|
|
|
|
|
the dynamic object handling right. We pass the hash
|
|
|
|
|
table entry in to _bfd_generic_link_add_one_symbol so
|
|
|
|
|
that it does not have to look it up again. */
|
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
|
|
|
|
true, false, false);
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
*sym_hash = h;
|
|
|
|
|
|
1995-09-01 18:08:28 +00:00
|
|
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
|
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
|
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
/* If we are looking at a dynamic object, and this is a
|
|
|
|
|
definition, we need to see if it has already been defined
|
|
|
|
|
by some other object. If it has, we want to use the
|
|
|
|
|
existing definition, and we do not want to report a
|
|
|
|
|
multiple symbol definition error; we do this by
|
|
|
|
|
clobbering sec to be bfd_und_section_ptr. */
|
|
|
|
|
if (dynamic && definition)
|
|
|
|
|
{
|
|
|
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
|
|
|
sec = bfd_und_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Similarly, if we are not looking at a dynamic object, and
|
|
|
|
|
we have a definition, we want to override any definition
|
|
|
|
|
we may have from a dynamic object. Symbols from regular
|
|
|
|
|
files always take precedence over symbols from dynamic
|
|
|
|
|
objects, even if they are defined after the dynamic
|
|
|
|
|
object in the link. */
|
|
|
|
|
if (! dynamic
|
|
|
|
|
&& definition
|
|
|
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
|
|
|
|
&& (bfd_get_flavour (h->root.u.def.section->owner)
|
|
|
|
|
== bfd_target_elf_flavour)
|
|
|
|
|
&& (elf_elfheader (h->root.u.def.section->owner)->e_type
|
|
|
|
|
== ET_DYN))
|
|
|
|
|
{
|
|
|
|
|
/* Change the hash table entry to undefined, and let
|
|
|
|
|
_bfd_generic_link_add_one_symbol do the right thing
|
|
|
|
|
with the new definition. */
|
|
|
|
|
h->root.type = bfd_link_hash_undefined;
|
|
|
|
|
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! (_bfd_generic_link_add_one_symbol
|
|
|
|
|
(info, abfd, name, flags, sec, value, (const char *) NULL,
|
|
|
|
|
false, collect, (struct bfd_link_hash_entry **) sym_hash)))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
1995-09-01 18:08:28 +00:00
|
|
|
|
h = *sym_hash;
|
|
|
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
|
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
|
*sym_hash = h;
|
|
|
|
|
|
1995-08-14 15:57:17 +00:00
|
|
|
|
new_weakdef = false;
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
if (dynamic
|
|
|
|
|
&& definition
|
|
|
|
|
&& (flags & BSF_WEAK) != 0
|
|
|
|
|
&& ELF_ST_TYPE (sym.st_info) != STT_FUNC
|
|
|
|
|
&& info->hash->creator->flavour == bfd_target_elf_flavour
|
1995-09-01 18:08:28 +00:00
|
|
|
|
&& h->weakdef == NULL)
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
{
|
|
|
|
|
/* Keep a list of all weak defined non function symbols from
|
|
|
|
|
a dynamic object, using the weakdef field. Later in this
|
|
|
|
|
function we will set the weakdef field to the correct
|
|
|
|
|
value. We only put non-function symbols from dynamic
|
|
|
|
|
objects on this list, because that happens to be the only
|
|
|
|
|
time we need to know the normal symbol corresponding to a
|
|
|
|
|
weak symbol, and the information is time consuming to
|
|
|
|
|
figure out. If the weakdef field is not already NULL,
|
|
|
|
|
then this symbol was already defined by some previous
|
|
|
|
|
dynamic object, and we will be using that previous
|
|
|
|
|
definition anyhow. */
|
|
|
|
|
|
1995-09-01 18:08:28 +00:00
|
|
|
|
h->weakdef = weaks;
|
|
|
|
|
weaks = h;
|
1995-08-14 15:57:17 +00:00
|
|
|
|
new_weakdef = true;
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the alignment of a common symbol. */
|
|
|
|
|
if (sym.st_shndx == SHN_COMMON
|
1995-09-01 18:08:28 +00:00
|
|
|
|
&& h->root.type == bfd_link_hash_common)
|
|
|
|
|
h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value);
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
|
|
|
|
|
if (info->hash->creator->flavour == bfd_target_elf_flavour)
|
|
|
|
|
{
|
|
|
|
|
int old_flags;
|
|
|
|
|
boolean dynsym;
|
|
|
|
|
int new_flag;
|
|
|
|
|
|
|
|
|
|
/* Remember the symbol size and type. */
|
|
|
|
|
if (sym.st_size != 0)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: We should probably somehow give a warning if
|
|
|
|
|
the symbol size changes. */
|
|
|
|
|
h->size = sym.st_size;
|
|
|
|
|
}
|
|
|
|
|
if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: We should probably somehow give a warning if
|
|
|
|
|
the symbol type changes. */
|
|
|
|
|
h->type = ELF_ST_TYPE (sym.st_info);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set a flag in the hash table entry indicating the type of
|
|
|
|
|
reference or definition we just found. Keep a count of
|
|
|
|
|
the number of dynamic symbols we find. A dynamic symbol
|
|
|
|
|
is one which is referenced or defined by both a regular
|
|
|
|
|
object and a shared object, or one which is referenced or
|
|
|
|
|
defined by more than one shared object. */
|
|
|
|
|
old_flags = h->elf_link_hash_flags;
|
|
|
|
|
dynsym = false;
|
|
|
|
|
if (! dynamic)
|
|
|
|
|
{
|
|
|
|
|
if (! definition)
|
|
|
|
|
new_flag = ELF_LINK_HASH_REF_REGULAR;
|
|
|
|
|
else
|
|
|
|
|
new_flag = ELF_LINK_HASH_DEF_REGULAR;
|
|
|
|
|
if (info->shared
|
|
|
|
|
|| (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
|
|
|
|
| ELF_LINK_HASH_REF_DYNAMIC)) != 0)
|
|
|
|
|
dynsym = true;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (! definition)
|
|
|
|
|
new_flag = ELF_LINK_HASH_REF_DYNAMIC;
|
|
|
|
|
else
|
|
|
|
|
new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
|
|
|
|
|
if ((old_flags & new_flag) != 0
|
|
|
|
|
|| (old_flags & (ELF_LINK_HASH_DEF_REGULAR
|
1995-08-14 15:57:17 +00:00
|
|
|
|
| ELF_LINK_HASH_REF_REGULAR)) != 0
|
|
|
|
|
|| (h->weakdef != NULL
|
|
|
|
|
&& (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
|
|
|
|
| ELF_LINK_HASH_REF_DYNAMIC)) != 0))
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
dynsym = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
h->elf_link_hash_flags |= new_flag;
|
|
|
|
|
if (dynsym && h->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
|
|
|
|
goto error_return;
|
1995-08-14 15:57:17 +00:00
|
|
|
|
if (h->weakdef != NULL
|
|
|
|
|
&& ! new_weakdef
|
|
|
|
|
&& h->weakdef->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info,
|
|
|
|
|
h->weakdef))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now set the weakdefs field correctly for all the weak defined
|
|
|
|
|
symbols we found. The only way to do this is to search all the
|
|
|
|
|
symbols. Since we only need the information for non functions in
|
|
|
|
|
dynamic objects, that's the only time we actually put anything on
|
|
|
|
|
the list WEAKS. We need this information so that if a regular
|
|
|
|
|
object refers to a symbol defined weakly in a dynamic object, the
|
|
|
|
|
real symbol in the dynamic object is also put in the dynamic
|
|
|
|
|
symbols; we also must arrange for both symbols to point to the
|
|
|
|
|
same memory location. We could handle the general case of symbol
|
|
|
|
|
aliasing, but a general symbol alias can only be generated in
|
|
|
|
|
assembler code, handling it correctly would be very time
|
|
|
|
|
consuming, and other ELF linkers don't handle general aliasing
|
|
|
|
|
either. */
|
|
|
|
|
while (weaks != NULL)
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *hlook;
|
|
|
|
|
asection *slook;
|
|
|
|
|
bfd_vma vlook;
|
|
|
|
|
struct elf_link_hash_entry **hpp;
|
|
|
|
|
struct elf_link_hash_entry **hppend;
|
|
|
|
|
|
|
|
|
|
hlook = weaks;
|
|
|
|
|
weaks = hlook->weakdef;
|
|
|
|
|
hlook->weakdef = NULL;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
|
|
|
|
|
|| hlook->root.type == bfd_link_hash_defweak
|
|
|
|
|
|| hlook->root.type == bfd_link_hash_common
|
|
|
|
|
|| hlook->root.type == bfd_link_hash_indirect);
|
|
|
|
|
slook = hlook->root.u.def.section;
|
|
|
|
|
vlook = hlook->root.u.def.value;
|
|
|
|
|
|
|
|
|
|
hpp = elf_sym_hashes (abfd);
|
|
|
|
|
hppend = hpp + extsymcount;
|
|
|
|
|
for (; hpp < hppend; hpp++)
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
h = *hpp;
|
|
|
|
|
if (h != NULL && h != hlook
|
|
|
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
|
|
|
&& h->root.u.def.section == slook
|
|
|
|
|
&& h->root.u.def.value == vlook)
|
|
|
|
|
{
|
|
|
|
|
hlook->weakdef = h;
|
|
|
|
|
|
|
|
|
|
/* If the weak definition is in the list of dynamic
|
|
|
|
|
symbols, make sure the real definition is put there
|
|
|
|
|
as well. */
|
|
|
|
|
if (hlook->dynindx != -1
|
|
|
|
|
&& h->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (buf != NULL)
|
|
|
|
|
{
|
|
|
|
|
free (buf);
|
|
|
|
|
buf = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this object is the same format as the output object, and it is
|
|
|
|
|
not a shared library, then let the backend look through the
|
|
|
|
|
relocs.
|
|
|
|
|
|
|
|
|
|
This is required to build global offset table entries and to
|
|
|
|
|
arrange for dynamic relocs. It is not required for the
|
|
|
|
|
particular common case of linking non PIC code, even when linking
|
|
|
|
|
against shared libraries, but unfortunately there is no way of
|
|
|
|
|
knowing whether an object file has been compiled PIC or not.
|
|
|
|
|
Looking through the relocs is not particularly time consuming.
|
|
|
|
|
The problem is that we must either (1) keep the relocs in memory,
|
|
|
|
|
which causes the linker to require additional runtime memory or
|
|
|
|
|
(2) read the relocs twice from the input file, which wastes time.
|
|
|
|
|
This would be a good case for using mmap.
|
|
|
|
|
|
|
|
|
|
I have no idea how to handle linking PIC code into a file of a
|
|
|
|
|
different format. It probably can't be done. */
|
|
|
|
|
check_relocs = get_elf_backend_data (abfd)->check_relocs;
|
|
|
|
|
if (! dynamic
|
|
|
|
|
&& abfd->xvec == info->hash->creator
|
|
|
|
|
&& check_relocs != NULL)
|
|
|
|
|
{
|
|
|
|
|
asection *o;
|
|
|
|
|
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rela *internal_relocs;
|
|
|
|
|
boolean ok;
|
|
|
|
|
|
|
|
|
|
if ((o->flags & SEC_RELOC) == 0
|
|
|
|
|
|| o->reloc_count == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* I believe we can ignore the relocs for any section which
|
|
|
|
|
does not form part of the final process image, such as a
|
|
|
|
|
debugging section. */
|
|
|
|
|
if ((o->flags & SEC_ALLOC) == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL,
|
|
|
|
|
(Elf_Internal_Rela *) NULL,
|
|
|
|
|
info->keep_memory);
|
|
|
|
|
if (internal_relocs == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
ok = (*check_relocs) (abfd, info, o, internal_relocs);
|
|
|
|
|
|
|
|
|
|
if (! info->keep_memory)
|
|
|
|
|
free (internal_relocs);
|
|
|
|
|
|
|
|
|
|
if (! ok)
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
if (buf != NULL)
|
|
|
|
|
free (buf);
|
|
|
|
|
if (dynbuf != NULL)
|
|
|
|
|
free (dynbuf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create some sections which will be filled in with dynamic linking
|
|
|
|
|
information. ABFD is an input file which requires dynamic sections
|
|
|
|
|
to be created. The dynamic sections take up virtual memory space
|
|
|
|
|
when the final executable is run, so we need to create them before
|
|
|
|
|
addresses are assigned to the output sections. We work out the
|
|
|
|
|
actual contents and size of these sections later. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
elf_link_create_dynamic_sections (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
flagword flags;
|
|
|
|
|
register asection *s;
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
struct elf_backend_data *bed;
|
|
|
|
|
|
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* Make sure that all dynamic sections use the same input BFD. */
|
|
|
|
|
if (elf_hash_table (info)->dynobj == NULL)
|
|
|
|
|
elf_hash_table (info)->dynobj = abfd;
|
|
|
|
|
else
|
|
|
|
|
abfd = elf_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
/* Note that we set the SEC_IN_MEMORY flag for all of these
|
|
|
|
|
sections. */
|
|
|
|
|
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
|
|
|
|
|
|
|
|
|
|
/* A dynamically linked executable has a .interp section, but a
|
|
|
|
|
shared library does not. */
|
|
|
|
|
if (! info->shared)
|
|
|
|
|
{
|
|
|
|
|
s = bfd_make_section (abfd, ".interp");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
s = bfd_make_section (abfd, ".dynsym");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
s = bfd_make_section (abfd, ".dynstr");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Create a strtab to hold the dynamic symbol names. */
|
|
|
|
|
if (elf_hash_table (info)->dynstr == NULL)
|
|
|
|
|
{
|
|
|
|
|
elf_hash_table (info)->dynstr = elf_stringtab_init ();
|
|
|
|
|
if (elf_hash_table (info)->dynstr == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
s = bfd_make_section (abfd, ".dynamic");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The special symbol _DYNAMIC is always set to the start of the
|
|
|
|
|
.dynamic section. This call occurs before we have processed the
|
|
|
|
|
symbols for any dynamic object, so we don't have to worry about
|
|
|
|
|
overriding a dynamic definition. We could set _DYNAMIC in a
|
|
|
|
|
linker script, but we only want to define it if we are, in fact,
|
|
|
|
|
creating a .dynamic section. We don't want to define it if there
|
|
|
|
|
is no .dynamic section, since on some ELF platforms the start up
|
|
|
|
|
code examines it to decide how to initialize the process. */
|
|
|
|
|
h = NULL;
|
|
|
|
|
if (! (_bfd_generic_link_add_one_symbol
|
|
|
|
|
(info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
|
|
|
|
|
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
|
|
|
|
|
(struct bfd_link_hash_entry **) &h)))
|
|
|
|
|
return false;
|
|
|
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
|
|
|
|
h->type = STT_OBJECT;
|
|
|
|
|
|
|
|
|
|
if (info->shared
|
|
|
|
|
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
s = bfd_make_section (abfd, ".hash");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Let the backend create the rest of the sections. This lets the
|
|
|
|
|
backend set the right flags. The backend will normally create
|
|
|
|
|
the .got and .plt sections. */
|
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
|
|
|
if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
elf_hash_table (info)->dynamic_sections_created = true;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add an entry to the .dynamic table. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
elf_add_dynamic_entry (info, tag, val)
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd_vma tag;
|
|
|
|
|
bfd_vma val;
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Dyn dyn;
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
asection *s;
|
|
|
|
|
size_t newsize;
|
|
|
|
|
bfd_byte *newcontents;
|
|
|
|
|
|
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
|
|
|
|
|
newsize = s->_raw_size + sizeof (Elf_External_Dyn);
|
|
|
|
|
if (s->contents == NULL)
|
|
|
|
|
newcontents = (bfd_byte *) malloc (newsize);
|
|
|
|
|
else
|
|
|
|
|
newcontents = (bfd_byte *) realloc (s->contents, newsize);
|
|
|
|
|
if (newcontents == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dyn.d_tag = tag;
|
|
|
|
|
dyn.d_un.d_val = val;
|
|
|
|
|
elf_swap_dyn_out (dynobj, &dyn,
|
|
|
|
|
(Elf_External_Dyn *) (newcontents + s->_raw_size));
|
|
|
|
|
|
|
|
|
|
s->_raw_size = newsize;
|
|
|
|
|
s->contents = newcontents;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read and swap the relocs for a section. They may have been cached.
|
|
|
|
|
If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
|
|
|
|
|
they are used as buffers to read into. They are known to be large
|
|
|
|
|
enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
|
|
|
|
|
value is allocated using either malloc or bfd_alloc, according to
|
|
|
|
|
the KEEP_MEMORY argument. */
|
|
|
|
|
|
|
|
|
|
static Elf_Internal_Rela *
|
|
|
|
|
elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asection *o;
|
|
|
|
|
PTR external_relocs;
|
|
|
|
|
Elf_Internal_Rela *internal_relocs;
|
|
|
|
|
boolean keep_memory;
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Shdr *rel_hdr;
|
|
|
|
|
PTR alloc1 = NULL;
|
|
|
|
|
Elf_Internal_Rela *alloc2 = NULL;
|
|
|
|
|
|
|
|
|
|
if (elf_section_data (o)->relocs != NULL)
|
|
|
|
|
return elf_section_data (o)->relocs;
|
|
|
|
|
|
|
|
|
|
if (o->reloc_count == 0)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
rel_hdr = &elf_section_data (o)->rel_hdr;
|
|
|
|
|
|
|
|
|
|
if (internal_relocs == NULL)
|
|
|
|
|
{
|
|
|
|
|
size_t size;
|
|
|
|
|
|
|
|
|
|
size = o->reloc_count * sizeof (Elf_Internal_Rela);
|
|
|
|
|
if (keep_memory)
|
|
|
|
|
internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
|
|
|
|
|
else
|
|
|
|
|
internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size);
|
|
|
|
|
if (internal_relocs == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (external_relocs == NULL)
|
|
|
|
|
{
|
* aoutx.h (NAME(aout,slurp_reloc_table)): Cast argument to size_t
for malloc.
* coff-mips.c (mips_relocate_section): Likewise, for memmove.
(mips_relax_section): Likewise, for malloc.
* cofflink.c (process_embedded_commands): Likewise.
(_bfd_coff_final_link): Likewise.
* ecoff.c (_bfd_ecoff_write_object_contents): Likewise.
(ecoff_final_link_debug_accumulate): Likewise.
(ecoff_indirect_link_order): Likewise, for memcpy and malloc.
(ecoff_reloc_link_order): Likewise, for malloc.
* ecofflink.c (ecoff_align_debug): Likewise, for memset.
(ecoff_write_symhdr): Likewise, for malloc.
* elf32-hppa.c (elf32_hppa_read_symext_info): Likewise.
* elf.c (assign_file_positions_except_relocs): Likewise, for
qsort.
* elf32-mips.c (mips_elf_read_ecoff_info): Likewise, for malloc.
* elfcode.h (elf_slurp_reloc_table): Likewise.
* elfcore.h (elf_corefile_note): Likewise.
* elflink.h (elf_link_add_object_symbols): Likewise.
(elf_link_read_relocs): Likewise.
(NAME(bfd_elf,size_dynamic_sections)): Likewise, for memset.
* i386linux.c (bfd_linux_size_dynamic_sections): Likewise.
* ieee.c (do_with_relocs): Likewise.
* linker.c (default_indirect_link_order): Likewise, for malloc.
* nlmcode.h (nlm_object_p): Likewise.
(nlm_write_object_contents): Likewise.
* oasys.c (oasys_set_section_contents): Likewise, for memcpy.
* reloc.c (bfd_generic_get_relocated_section_contents): Likewise,
for malloc.
* section.c (bfd_get_section_contents): Likewise, for memcpy.
* srec.c (srec_get_section_contents): Likewise.
(srec_set_section_contents): Likewise.
* sunos.c (bfd_sunos_size_dynamic_sections): Likewise, for
realloc and memset.
(sunos_scan_relocs): Likewise, for malloc.
(sunos_scan_dynamic_symbol): Likewise, for realloc.
* syms.c (_bfd_generic_read_minisymbols): Likewise, for malloc.
* versados.c (versados_get_section_contents): Likewise, for
memcpy.
1995-07-13 18:14:45 +00:00
|
|
|
|
alloc1 = (PTR) malloc ((size_t) rel_hdr->sh_size);
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
if (alloc1 == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
external_relocs = alloc1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
|
|
|
|
|
|| (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
|
|
|
|
|
!= rel_hdr->sh_size))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* Swap in the relocs. For convenience, we always produce an
|
|
|
|
|
Elf_Internal_Rela array; if the relocs are Rel, we set the addend
|
|
|
|
|
to 0. */
|
|
|
|
|
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Rel *erel;
|
|
|
|
|
Elf_External_Rel *erelend;
|
|
|
|
|
Elf_Internal_Rela *irela;
|
|
|
|
|
|
|
|
|
|
erel = (Elf_External_Rel *) external_relocs;
|
|
|
|
|
erelend = erel + o->reloc_count;
|
|
|
|
|
irela = internal_relocs;
|
|
|
|
|
for (; erel < erelend; erel++, irela++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rel irel;
|
|
|
|
|
|
|
|
|
|
elf_swap_reloc_in (abfd, erel, &irel);
|
|
|
|
|
irela->r_offset = irel.r_offset;
|
|
|
|
|
irela->r_info = irel.r_info;
|
|
|
|
|
irela->r_addend = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Rela *erela;
|
|
|
|
|
Elf_External_Rela *erelaend;
|
|
|
|
|
Elf_Internal_Rela *irela;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
|
|
|
|
|
|
|
|
|
|
erela = (Elf_External_Rela *) external_relocs;
|
|
|
|
|
erelaend = erela + o->reloc_count;
|
|
|
|
|
irela = internal_relocs;
|
|
|
|
|
for (; erela < erelaend; erela++, irela++)
|
|
|
|
|
elf_swap_reloca_in (abfd, erela, irela);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Cache the results for next time, if we can. */
|
|
|
|
|
if (keep_memory)
|
|
|
|
|
elf_section_data (o)->relocs = internal_relocs;
|
|
|
|
|
|
|
|
|
|
if (alloc1 != NULL)
|
|
|
|
|
free (alloc1);
|
|
|
|
|
|
|
|
|
|
/* Don't free alloc2, since if it was allocated we are passing it
|
|
|
|
|
back (under the name of internal_relocs). */
|
|
|
|
|
|
|
|
|
|
return internal_relocs;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
if (alloc1 != NULL)
|
|
|
|
|
free (alloc1);
|
|
|
|
|
if (alloc2 != NULL)
|
|
|
|
|
free (alloc2);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record an assignment to a symbol made by a linker script. We need
|
|
|
|
|
this in case some dynamic object refers to this symbol. */
|
|
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
|
boolean
|
|
|
|
|
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
const char *name;
|
|
|
|
|
boolean provide;
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* If this symbol is being provided by the linker script, and it is
|
|
|
|
|
currently defined by a dynamic object, but not by a regular
|
|
|
|
|
object, then mark it as undefined so that the generic linker will
|
|
|
|
|
force the correct value. */
|
|
|
|
|
if (provide
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
|
|
|
|
h->root.type = bfd_link_hash_undefined;
|
|
|
|
|
|
|
|
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
|
|
|
|
|
h->type = STT_OBJECT;
|
|
|
|
|
|
|
|
|
|
if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
|
|
|
|
|
| ELF_LINK_HASH_REF_DYNAMIC)) != 0
|
|
|
|
|
|| info->shared)
|
|
|
|
|
&& h->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* If this is a weak defined symbol, and we know a corresponding
|
|
|
|
|
real symbol from the same dynamic object, make sure the real
|
|
|
|
|
symbol is also made into a dynamic symbol. */
|
|
|
|
|
if (h->weakdef != NULL
|
|
|
|
|
&& h->weakdef->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Array used to determine the number of hash table buckets to use
|
|
|
|
|
based on the number of symbols there are. If there are fewer than
|
|
|
|
|
3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
|
|
|
|
|
fewer than 37 we use 17 buckets, and so forth. We never use more
|
|
|
|
|
than 521 buckets. */
|
|
|
|
|
|
|
|
|
|
static const size_t elf_buckets[] =
|
|
|
|
|
{
|
|
|
|
|
1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Set up the sizes and contents of the ELF dynamic sections. This is
|
|
|
|
|
called by the ELF linker emulation before_allocation routine. We
|
|
|
|
|
must set the sizes of the sections before the linker sets the
|
|
|
|
|
addresses of the various sections. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
|
|
|
|
|
export_dynamic, info, sinterpptr)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
const char *soname;
|
|
|
|
|
const char *rpath;
|
|
|
|
|
boolean export_dynamic;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
asection **sinterpptr;
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
struct elf_backend_data *bed;
|
|
|
|
|
|
|
|
|
|
*sinterpptr = NULL;
|
|
|
|
|
|
|
|
|
|
if (info->hash->creator->flavour != bfd_target_elf_flavour)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
/* If there were no dynamic objects in the link, there is nothing to
|
|
|
|
|
do here. */
|
|
|
|
|
if (dynobj == NULL)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* If we are supposed to export all symbols into the dynamic symbol
|
|
|
|
|
table (this is not the normal case), then do so. */
|
|
|
|
|
if (export_dynamic)
|
|
|
|
|
{
|
|
|
|
|
struct elf_info_failed eif;
|
|
|
|
|
|
|
|
|
|
eif.failed = false;
|
|
|
|
|
eif.info = info;
|
|
|
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
|
|
|
|
|
(PTR) &eif);
|
|
|
|
|
if (eif.failed)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
|
|
|
{
|
|
|
|
|
struct elf_info_failed eif;
|
|
|
|
|
bfd_size_type strsize;
|
|
|
|
|
|
|
|
|
|
*sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
|
|
|
|
|
BFD_ASSERT (*sinterpptr != NULL || info->shared);
|
|
|
|
|
|
|
|
|
|
if (soname != NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type indx;
|
|
|
|
|
|
|
|
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname,
|
|
|
|
|
true, true);
|
|
|
|
|
if (indx == (bfd_size_type) -1
|
|
|
|
|
|| ! elf_add_dynamic_entry (info, DT_SONAME, indx))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
Based on patches from Eric Youngdale <eric@aib.com>:
* elflink.h (NAME(bfd_elf,size_dynamic_sections)): If -Bsymbolic,
output a DT_SYMBOLIC dynamic entry.
(elf_adjust_dynamic_symbol): If -Bsymbolic, don't require a PLT
entry for a locally defined symbol.
* elf32-i386.c (elf_i386_relocate_section): If -Bsymbolic, do warn
about undefined symbols, and fill in the GOT entry for a symbol
defined in a regular object file.
(elf_i386_finish_dynamic_symbol): If -Bsymbolic, output a RELATIVE
reloc rather than a GLOB_DAT reloc for a symbol defined in a
regular object file.
* elf32-m68k.c (elf_m68k_relocate_section): If -Bsymbolic, do warn
about undefined symbols, and fill in the GOT entry for a symbol
defined in a regular object file.
(elf_m68k_finish_dynamic_symbol): If -Bsymbolic, output a RELATIVE
reloc rather than a GLOB_DAT reloc for a symbol defined in a
regular object file.
* elf32-sparc.c (elf32_sparc_relocate_section): If -Bsymbolic, do
warn about undefined symbols, and fill in the GOT entry for a
symbol defined in a regular object file.
(elf32_sparc_finish_dynamic_symbol): If -Bsymbolic, output a
RELATIVE reloc rather than a GLOB_DAT reloc for a symbol defined
in a regular object file.
1995-07-10 17:31:31 +00:00
|
|
|
|
if (info->symbolic)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
if (rpath != NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type indx;
|
|
|
|
|
|
|
|
|
|
indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
|
|
|
|
|
true, true);
|
|
|
|
|
if (indx == (bfd_size_type) -1
|
|
|
|
|
|| ! elf_add_dynamic_entry (info, DT_RPATH, indx))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find all symbols which were defined in a dynamic object and make
|
|
|
|
|
the backend pick a reasonable value for them. */
|
|
|
|
|
eif.failed = false;
|
|
|
|
|
eif.info = info;
|
|
|
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
|
|
|
|
elf_adjust_dynamic_symbol,
|
|
|
|
|
(PTR) &eif);
|
|
|
|
|
if (eif.failed)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Add some entries to the .dynamic section. We fill in some of the
|
|
|
|
|
values later, in elf_bfd_final_link, but we must add the entries
|
|
|
|
|
now so that we know the final size of the .dynamic section. */
|
|
|
|
|
if (elf_link_hash_lookup (elf_hash_table (info), "_init", false,
|
|
|
|
|
false, false) != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_add_dynamic_entry (info, DT_INIT, 0))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
if (elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
|
|
|
|
|
false, false) != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_add_dynamic_entry (info, DT_FINI, 0))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
|
|
|
|
if (! elf_add_dynamic_entry (info, DT_HASH, 0)
|
|
|
|
|
|| ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
|
|
|
|
|
|| ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
|
|
|
|
|
|| ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
|
|
|
|
|
|| ! elf_add_dynamic_entry (info, DT_SYMENT,
|
|
|
|
|
sizeof (Elf_External_Sym)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The backend must work out the sizes of all the other dynamic
|
|
|
|
|
sections. */
|
|
|
|
|
bed = get_elf_backend_data (output_bfd);
|
|
|
|
|
if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
|
|
|
{
|
|
|
|
|
size_t dynsymcount;
|
|
|
|
|
asection *s;
|
|
|
|
|
size_t i;
|
|
|
|
|
size_t bucketcount = 0;
|
|
|
|
|
Elf_Internal_Sym isym;
|
|
|
|
|
|
|
|
|
|
/* Set the size of the .dynsym and .hash sections. We counted
|
|
|
|
|
the number of dynamic symbols in elf_link_add_object_symbols.
|
|
|
|
|
We will build the contents of .dynsym and .hash when we build
|
|
|
|
|
the final symbol table, because until then we do not know the
|
|
|
|
|
correct value to give the symbols. We built the .dynstr
|
|
|
|
|
section as we went along in elf_link_add_object_symbols. */
|
|
|
|
|
dynsymcount = elf_hash_table (info)->dynsymcount;
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
|
|
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The first entry in .dynsym is a dummy symbol. */
|
|
|
|
|
isym.st_value = 0;
|
|
|
|
|
isym.st_size = 0;
|
|
|
|
|
isym.st_name = 0;
|
|
|
|
|
isym.st_info = 0;
|
|
|
|
|
isym.st_other = 0;
|
|
|
|
|
isym.st_shndx = 0;
|
|
|
|
|
elf_swap_symbol_out (output_bfd, &isym,
|
1995-07-11 19:24:46 +00:00
|
|
|
|
(PTR) (Elf_External_Sym *) s->contents);
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
|
|
|
|
|
for (i = 0; elf_buckets[i] != 0; i++)
|
|
|
|
|
{
|
|
|
|
|
bucketcount = elf_buckets[i];
|
|
|
|
|
if (dynsymcount < elf_buckets[i + 1])
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".hash");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
|
|
|
|
if (s->contents == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
* aoutx.h (NAME(aout,slurp_reloc_table)): Cast argument to size_t
for malloc.
* coff-mips.c (mips_relocate_section): Likewise, for memmove.
(mips_relax_section): Likewise, for malloc.
* cofflink.c (process_embedded_commands): Likewise.
(_bfd_coff_final_link): Likewise.
* ecoff.c (_bfd_ecoff_write_object_contents): Likewise.
(ecoff_final_link_debug_accumulate): Likewise.
(ecoff_indirect_link_order): Likewise, for memcpy and malloc.
(ecoff_reloc_link_order): Likewise, for malloc.
* ecofflink.c (ecoff_align_debug): Likewise, for memset.
(ecoff_write_symhdr): Likewise, for malloc.
* elf32-hppa.c (elf32_hppa_read_symext_info): Likewise.
* elf.c (assign_file_positions_except_relocs): Likewise, for
qsort.
* elf32-mips.c (mips_elf_read_ecoff_info): Likewise, for malloc.
* elfcode.h (elf_slurp_reloc_table): Likewise.
* elfcore.h (elf_corefile_note): Likewise.
* elflink.h (elf_link_add_object_symbols): Likewise.
(elf_link_read_relocs): Likewise.
(NAME(bfd_elf,size_dynamic_sections)): Likewise, for memset.
* i386linux.c (bfd_linux_size_dynamic_sections): Likewise.
* ieee.c (do_with_relocs): Likewise.
* linker.c (default_indirect_link_order): Likewise, for malloc.
* nlmcode.h (nlm_object_p): Likewise.
(nlm_write_object_contents): Likewise.
* oasys.c (oasys_set_section_contents): Likewise, for memcpy.
* reloc.c (bfd_generic_get_relocated_section_contents): Likewise,
for malloc.
* section.c (bfd_get_section_contents): Likewise, for memcpy.
* srec.c (srec_get_section_contents): Likewise.
(srec_set_section_contents): Likewise.
* sunos.c (bfd_sunos_size_dynamic_sections): Likewise, for
realloc and memset.
(sunos_scan_relocs): Likewise, for malloc.
(sunos_scan_dynamic_symbol): Likewise, for realloc.
* syms.c (_bfd_generic_read_minisymbols): Likewise, for malloc.
* versados.c (versados_get_section_contents): Likewise, for
memcpy.
1995-07-13 18:14:45 +00:00
|
|
|
|
memset (s->contents, 0, (size_t) s->_raw_size);
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
|
|
|
|
|
put_word (output_bfd, bucketcount, s->contents);
|
|
|
|
|
put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
|
|
|
|
|
|
|
|
|
|
elf_hash_table (info)->bucketcount = bucketcount;
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
|
|
|
|
|
|
|
|
|
|
if (! elf_add_dynamic_entry (info, DT_NULL, 0))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This routine is used to export all defined symbols into the dynamic
|
|
|
|
|
symbol table. It is called via elf_link_hash_traverse. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_export_symbol (h, data)
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
PTR data;
|
|
|
|
|
{
|
|
|
|
|
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
|
|
|
|
|
|
|
|
|
if (h->dynindx == -1
|
|
|
|
|
&& (h->elf_link_hash_flags
|
|
|
|
|
& (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
|
|
|
|
{
|
|
|
|
|
eif->failed = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make the backend pick a good value for a dynamic symbol. This is
|
|
|
|
|
called via elf_link_hash_traverse, and also calls itself
|
|
|
|
|
recursively. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_adjust_dynamic_symbol (h, data)
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
PTR data;
|
|
|
|
|
{
|
|
|
|
|
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
struct elf_backend_data *bed;
|
|
|
|
|
|
Based on patches from Eric Youngdale <eric@aib.com>:
* elflink.h (NAME(bfd_elf,size_dynamic_sections)): If -Bsymbolic,
output a DT_SYMBOLIC dynamic entry.
(elf_adjust_dynamic_symbol): If -Bsymbolic, don't require a PLT
entry for a locally defined symbol.
* elf32-i386.c (elf_i386_relocate_section): If -Bsymbolic, do warn
about undefined symbols, and fill in the GOT entry for a symbol
defined in a regular object file.
(elf_i386_finish_dynamic_symbol): If -Bsymbolic, output a RELATIVE
reloc rather than a GLOB_DAT reloc for a symbol defined in a
regular object file.
* elf32-m68k.c (elf_m68k_relocate_section): If -Bsymbolic, do warn
about undefined symbols, and fill in the GOT entry for a symbol
defined in a regular object file.
(elf_m68k_finish_dynamic_symbol): If -Bsymbolic, output a RELATIVE
reloc rather than a GLOB_DAT reloc for a symbol defined in a
regular object file.
* elf32-sparc.c (elf32_sparc_relocate_section): If -Bsymbolic, do
warn about undefined symbols, and fill in the GOT entry for a
symbol defined in a regular object file.
(elf32_sparc_finish_dynamic_symbol): If -Bsymbolic, output a
RELATIVE reloc rather than a GLOB_DAT reloc for a symbol defined
in a regular object file.
1995-07-10 17:31:31 +00:00
|
|
|
|
/* If -Bsymbolic was used (which means to bind references to global
|
|
|
|
|
symbols to the definition within the shared object), and this
|
|
|
|
|
symbol was defined in a regular object, then it actually doesn't
|
|
|
|
|
need a PLT entry. */
|
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
|
|
|
|
|
&& eif->info->shared
|
|
|
|
|
&& eif->info->symbolic
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
|
|
|
|
h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
|
|
|
|
|
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
/* If this symbol does not require a PLT entry, and it is not
|
|
|
|
|
defined by a dynamic object, or is not referenced by a regular
|
1995-08-14 15:57:17 +00:00
|
|
|
|
object, ignore it. We do have to handle a weak defined symbol,
|
|
|
|
|
even if no regular object refers to it, if we decided to add it
|
|
|
|
|
to the dynamic symbol table. FIXME: Do we normally need to worry
|
|
|
|
|
about symbols which are defined by one dynamic object and
|
|
|
|
|
referenced by another one? */
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
|
|
|
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
|
|
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
1995-08-14 15:57:17 +00:00
|
|
|
|
|| ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
|
|
|
|
|
&& (h->weakdef == NULL || h->weakdef->dynindx == -1))))
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* If we've already adjusted this symbol, don't do it again. This
|
|
|
|
|
can happen via a recursive call. */
|
|
|
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* Don't look at this symbol again. Note that we must set this
|
|
|
|
|
after checking the above conditions, because we may look at a
|
|
|
|
|
symbol once, decide not to do anything, and then get called
|
|
|
|
|
recursively later after REF_REGULAR is set below. */
|
|
|
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
|
|
|
|
|
|
|
|
|
|
/* If this is a weak definition, and we know a real definition, and
|
|
|
|
|
the real symbol is not itself defined by a regular object file,
|
|
|
|
|
then get a good value for the real definition. We handle the
|
|
|
|
|
real symbol first, for the convenience of the backend routine.
|
|
|
|
|
|
|
|
|
|
Note that there is a confusing case here. If the real definition
|
|
|
|
|
is defined by a regular object file, we don't get the real symbol
|
|
|
|
|
from the dynamic object, but we do get the weak symbol. If the
|
|
|
|
|
processor backend uses a COPY reloc, then if some routine in the
|
|
|
|
|
dynamic object changes the real symbol, we will not see that
|
|
|
|
|
change in the corresponding weak symbol. This is the way other
|
|
|
|
|
ELF linkers work as well, and seems to be a result of the shared
|
|
|
|
|
library model.
|
|
|
|
|
|
|
|
|
|
I will clarify this issue. Most SVR4 shared libraries define the
|
|
|
|
|
variable _timezone and define timezone as a weak synonym. The
|
|
|
|
|
tzset call changes _timezone. If you write
|
|
|
|
|
extern int timezone;
|
|
|
|
|
int _timezone = 5;
|
|
|
|
|
int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
|
|
|
|
|
you might expect that, since timezone is a synonym for _timezone,
|
|
|
|
|
the same number will print both times. However, if the processor
|
|
|
|
|
backend uses a COPY reloc, then actually timezone will be copied
|
|
|
|
|
into your process image, and, since you define _timezone
|
|
|
|
|
yourself, _timezone will not. Thus timezone and _timezone will
|
|
|
|
|
wind up at different memory locations. The tzset call will set
|
|
|
|
|
_timezone, leaving timezone unchanged. */
|
|
|
|
|
|
|
|
|
|
if (h->weakdef != NULL)
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *weakdef;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak);
|
|
|
|
|
weakdef = h->weakdef;
|
|
|
|
|
BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
|
|
|
|
|
|| weakdef->root.type == bfd_link_hash_defweak);
|
|
|
|
|
BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
|
|
|
|
|
if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* This symbol is defined by a regular object file, so we
|
|
|
|
|
will not do anything special. Clear weakdef for the
|
|
|
|
|
convenience of the processor backend. */
|
|
|
|
|
h->weakdef = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* There is an implicit reference by a regular object file
|
|
|
|
|
via the weak symbol. */
|
|
|
|
|
weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
|
|
|
|
if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dynobj = elf_hash_table (eif->info)->dynobj;
|
|
|
|
|
bed = get_elf_backend_data (dynobj);
|
|
|
|
|
if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
|
|
|
|
|
{
|
|
|
|
|
eif->failed = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Final phase of ELF linker. */
|
|
|
|
|
|
|
|
|
|
/* A structure we use to avoid passing large numbers of arguments. */
|
|
|
|
|
|
|
|
|
|
struct elf_final_link_info
|
|
|
|
|
{
|
|
|
|
|
/* General link information. */
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
/* Output BFD. */
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
/* Symbol string table. */
|
|
|
|
|
struct bfd_strtab_hash *symstrtab;
|
|
|
|
|
/* .dynsym section. */
|
|
|
|
|
asection *dynsym_sec;
|
|
|
|
|
/* .hash section. */
|
|
|
|
|
asection *hash_sec;
|
|
|
|
|
/* Buffer large enough to hold contents of any section. */
|
|
|
|
|
bfd_byte *contents;
|
|
|
|
|
/* Buffer large enough to hold external relocs of any section. */
|
|
|
|
|
PTR external_relocs;
|
|
|
|
|
/* Buffer large enough to hold internal relocs of any section. */
|
|
|
|
|
Elf_Internal_Rela *internal_relocs;
|
|
|
|
|
/* Buffer large enough to hold external local symbols of any input
|
|
|
|
|
BFD. */
|
|
|
|
|
Elf_External_Sym *external_syms;
|
|
|
|
|
/* Buffer large enough to hold internal local symbols of any input
|
|
|
|
|
BFD. */
|
|
|
|
|
Elf_Internal_Sym *internal_syms;
|
|
|
|
|
/* Array large enough to hold a symbol index for each local symbol
|
|
|
|
|
of any input BFD. */
|
|
|
|
|
long *indices;
|
|
|
|
|
/* Array large enough to hold a section pointer for each local
|
|
|
|
|
symbol of any input BFD. */
|
|
|
|
|
asection **sections;
|
|
|
|
|
/* Buffer to hold swapped out symbols. */
|
|
|
|
|
Elf_External_Sym *symbuf;
|
|
|
|
|
/* Number of swapped out symbols in buffer. */
|
|
|
|
|
size_t symbuf_count;
|
|
|
|
|
/* Number of symbols which fit in symbuf. */
|
|
|
|
|
size_t symbuf_size;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static boolean elf_link_output_sym
|
|
|
|
|
PARAMS ((struct elf_final_link_info *, const char *,
|
|
|
|
|
Elf_Internal_Sym *, asection *));
|
|
|
|
|
static boolean elf_link_flush_output_syms
|
|
|
|
|
PARAMS ((struct elf_final_link_info *));
|
|
|
|
|
static boolean elf_link_output_extsym
|
|
|
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
|
|
|
|
static boolean elf_link_input_bfd
|
|
|
|
|
PARAMS ((struct elf_final_link_info *, bfd *));
|
|
|
|
|
static boolean elf_reloc_link_order
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
|
|
|
|
struct bfd_link_order *));
|
|
|
|
|
|
|
|
|
|
/* This struct is used to pass information to routines called via
|
|
|
|
|
elf_link_hash_traverse which must return failure. */
|
|
|
|
|
|
|
|
|
|
struct elf_finfo_failed
|
|
|
|
|
{
|
|
|
|
|
boolean failed;
|
|
|
|
|
struct elf_final_link_info *finfo;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Do the final step of an ELF link. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
elf_bfd_final_link (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
boolean dynamic;
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
struct elf_final_link_info finfo;
|
|
|
|
|
register asection *o;
|
|
|
|
|
register struct bfd_link_order *p;
|
|
|
|
|
register bfd *sub;
|
|
|
|
|
size_t max_contents_size;
|
|
|
|
|
size_t max_external_reloc_size;
|
|
|
|
|
size_t max_internal_reloc_count;
|
|
|
|
|
size_t max_sym_count;
|
|
|
|
|
file_ptr off;
|
|
|
|
|
Elf_Internal_Sym elfsym;
|
|
|
|
|
unsigned int i;
|
|
|
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
|
Elf_Internal_Shdr *symstrtab_hdr;
|
|
|
|
|
struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
|
|
|
|
struct elf_finfo_failed eif;
|
|
|
|
|
|
|
|
|
|
if (info->shared)
|
|
|
|
|
abfd->flags |= DYNAMIC;
|
|
|
|
|
|
|
|
|
|
dynamic = elf_hash_table (info)->dynamic_sections_created;
|
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
finfo.info = info;
|
|
|
|
|
finfo.output_bfd = abfd;
|
|
|
|
|
finfo.symstrtab = elf_stringtab_init ();
|
|
|
|
|
if (finfo.symstrtab == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
if (! dynamic)
|
|
|
|
|
{
|
|
|
|
|
finfo.dynsym_sec = NULL;
|
|
|
|
|
finfo.hash_sec = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
|
|
|
|
|
finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
|
|
|
|
|
BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
|
|
|
|
|
}
|
|
|
|
|
finfo.contents = NULL;
|
|
|
|
|
finfo.external_relocs = NULL;
|
|
|
|
|
finfo.internal_relocs = NULL;
|
|
|
|
|
finfo.external_syms = NULL;
|
|
|
|
|
finfo.internal_syms = NULL;
|
|
|
|
|
finfo.indices = NULL;
|
|
|
|
|
finfo.sections = NULL;
|
|
|
|
|
finfo.symbuf = NULL;
|
|
|
|
|
finfo.symbuf_count = 0;
|
|
|
|
|
|
|
|
|
|
/* Count up the number of relocations we will output for each output
|
|
|
|
|
section, so that we know the sizes of the reloc sections. We
|
|
|
|
|
also figure out some maximum sizes. */
|
|
|
|
|
max_contents_size = 0;
|
|
|
|
|
max_external_reloc_size = 0;
|
|
|
|
|
max_internal_reloc_count = 0;
|
|
|
|
|
max_sym_count = 0;
|
|
|
|
|
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
o->reloc_count = 0;
|
|
|
|
|
|
|
|
|
|
for (p = o->link_order_head; p != NULL; p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->type == bfd_section_reloc_link_order
|
|
|
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
|
|
|
|
++o->reloc_count;
|
|
|
|
|
else if (p->type == bfd_indirect_link_order)
|
|
|
|
|
{
|
|
|
|
|
asection *sec;
|
|
|
|
|
|
|
|
|
|
sec = p->u.indirect.section;
|
|
|
|
|
|
|
|
|
|
if (info->relocateable)
|
|
|
|
|
o->reloc_count += sec->reloc_count;
|
|
|
|
|
|
|
|
|
|
if (sec->_raw_size > max_contents_size)
|
|
|
|
|
max_contents_size = sec->_raw_size;
|
|
|
|
|
if (sec->_cooked_size > max_contents_size)
|
|
|
|
|
max_contents_size = sec->_cooked_size;
|
|
|
|
|
|
|
|
|
|
/* We are interested in just local symbols, not all
|
|
|
|
|
symbols. */
|
|
|
|
|
if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
|
|
|
|
|
{
|
|
|
|
|
size_t sym_count;
|
|
|
|
|
|
|
|
|
|
if (elf_bad_symtab (sec->owner))
|
|
|
|
|
sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
|
|
|
|
|
/ sizeof (Elf_External_Sym));
|
|
|
|
|
else
|
|
|
|
|
sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
|
|
|
|
|
|
|
|
|
|
if (sym_count > max_sym_count)
|
|
|
|
|
max_sym_count = sym_count;
|
|
|
|
|
|
|
|
|
|
if ((sec->flags & SEC_RELOC) != 0)
|
|
|
|
|
{
|
|
|
|
|
size_t ext_size;
|
|
|
|
|
|
|
|
|
|
ext_size = elf_section_data (sec)->rel_hdr.sh_size;
|
|
|
|
|
if (ext_size > max_external_reloc_size)
|
|
|
|
|
max_external_reloc_size = ext_size;
|
|
|
|
|
if (sec->reloc_count > max_internal_reloc_count)
|
|
|
|
|
max_internal_reloc_count = sec->reloc_count;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (o->reloc_count > 0)
|
|
|
|
|
o->flags |= SEC_RELOC;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Explicitly clear the SEC_RELOC flag. The linker tends to
|
|
|
|
|
set it (this is probably a bug) and if it is set
|
|
|
|
|
assign_section_numbers will create a reloc section. */
|
|
|
|
|
o->flags &=~ SEC_RELOC;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the SEC_ALLOC flag is not set, force the section VMA to
|
|
|
|
|
zero. This is done in elf_fake_sections as well, but forcing
|
|
|
|
|
the VMA to 0 here will ensure that relocs against these
|
|
|
|
|
sections are handled correctly. */
|
|
|
|
|
if ((o->flags & SEC_ALLOC) == 0)
|
|
|
|
|
o->vma = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Figure out the file positions for everything but the symbol table
|
|
|
|
|
and the relocs. We set symcount to force assign_section_numbers
|
|
|
|
|
to create a symbol table. */
|
|
|
|
|
abfd->symcount = info->strip == strip_all ? 0 : 1;
|
|
|
|
|
BFD_ASSERT (! abfd->output_has_begun);
|
|
|
|
|
if (! _bfd_elf_compute_section_file_positions (abfd, info))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* That created the reloc sections. Set their sizes, and assign
|
|
|
|
|
them file positions, and allocate some buffers. */
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
if ((o->flags & SEC_RELOC) != 0)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Shdr *rel_hdr;
|
|
|
|
|
register struct elf_link_hash_entry **p, **pend;
|
|
|
|
|
|
|
|
|
|
rel_hdr = &elf_section_data (o)->rel_hdr;
|
|
|
|
|
|
|
|
|
|
rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
|
|
|
|
|
|
|
|
|
|
/* The contents field must last into write_object_contents,
|
|
|
|
|
so we allocate it with bfd_alloc rather than malloc. */
|
|
|
|
|
rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
|
|
|
|
|
if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
p = ((struct elf_link_hash_entry **)
|
|
|
|
|
malloc (o->reloc_count
|
|
|
|
|
* sizeof (struct elf_link_hash_entry *)));
|
|
|
|
|
if (p == NULL && o->reloc_count != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
elf_section_data (o)->rel_hashes = p;
|
|
|
|
|
pend = p + o->reloc_count;
|
|
|
|
|
for (; p < pend; p++)
|
|
|
|
|
*p = NULL;
|
|
|
|
|
|
|
|
|
|
/* Use the reloc_count field as an index when outputting the
|
|
|
|
|
relocs. */
|
|
|
|
|
o->reloc_count = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
_bfd_elf_assign_file_positions_for_relocs (abfd);
|
|
|
|
|
|
|
|
|
|
/* We have now assigned file positions for all the sections except
|
|
|
|
|
.symtab and .strtab. We start the .symtab section at the current
|
|
|
|
|
file position, and write directly to it. We build the .strtab
|
|
|
|
|
section in memory. When we add .dynsym support, we will build
|
|
|
|
|
that in memory as well (.dynsym is smaller than .symtab). */
|
|
|
|
|
abfd->symcount = 0;
|
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
|
|
|
/* sh_name is set in prep_headers. */
|
|
|
|
|
symtab_hdr->sh_type = SHT_SYMTAB;
|
|
|
|
|
symtab_hdr->sh_flags = 0;
|
|
|
|
|
symtab_hdr->sh_addr = 0;
|
|
|
|
|
symtab_hdr->sh_size = 0;
|
|
|
|
|
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
|
|
|
|
/* sh_link is set in assign_section_numbers. */
|
|
|
|
|
/* sh_info is set below. */
|
|
|
|
|
/* sh_offset is set just below. */
|
|
|
|
|
symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
|
|
|
|
|
|
|
|
|
|
off = elf_tdata (abfd)->next_file_pos;
|
|
|
|
|
off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
|
|
|
|
|
|
|
|
|
|
/* Note that at this point elf_tdata (abfd)->next_file_pos is
|
|
|
|
|
incorrect. We do not yet know the size of the .symtab section.
|
|
|
|
|
We correct next_file_pos below, after we do know the size. */
|
|
|
|
|
|
|
|
|
|
/* Allocate a buffer to hold swapped out symbols. This is to avoid
|
|
|
|
|
continuously seeking to the right position in the file. */
|
|
|
|
|
if (! info->keep_memory || max_sym_count < 20)
|
|
|
|
|
finfo.symbuf_size = 20;
|
|
|
|
|
else
|
|
|
|
|
finfo.symbuf_size = max_sym_count;
|
|
|
|
|
finfo.symbuf = ((Elf_External_Sym *)
|
|
|
|
|
malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
|
|
|
|
|
if (finfo.symbuf == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Start writing out the symbol table. The first symbol is always a
|
|
|
|
|
dummy symbol. */
|
|
|
|
|
elfsym.st_value = 0;
|
|
|
|
|
elfsym.st_size = 0;
|
|
|
|
|
elfsym.st_info = 0;
|
|
|
|
|
elfsym.st_other = 0;
|
|
|
|
|
elfsym.st_shndx = SHN_UNDEF;
|
|
|
|
|
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
|
|
|
|
&elfsym, bfd_und_section_ptr))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* Some standard ELF linkers do this, but we don't because it causes
|
|
|
|
|
bootstrap comparison failures. */
|
|
|
|
|
/* Output a file symbol for the output file as the second symbol.
|
|
|
|
|
We output this even if we are discarding local symbols, although
|
|
|
|
|
I'm not sure if this is correct. */
|
|
|
|
|
elfsym.st_value = 0;
|
|
|
|
|
elfsym.st_size = 0;
|
|
|
|
|
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
|
|
|
|
elfsym.st_other = 0;
|
|
|
|
|
elfsym.st_shndx = SHN_ABS;
|
|
|
|
|
if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
|
|
|
|
|
&elfsym, bfd_abs_section_ptr))
|
|
|
|
|
goto error_return;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Output a symbol for each section. We output these even if we are
|
|
|
|
|
discarding local symbols, since they are used for relocs. These
|
|
|
|
|
symbols have no names. We store the index of each one in the
|
|
|
|
|
index field of the section, so that we can find it again when
|
|
|
|
|
outputting relocs. */
|
|
|
|
|
elfsym.st_value = 0;
|
|
|
|
|
elfsym.st_size = 0;
|
|
|
|
|
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
|
|
|
|
elfsym.st_other = 0;
|
|
|
|
|
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
|
|
|
|
{
|
|
|
|
|
o = section_from_elf_index (abfd, i);
|
|
|
|
|
if (o != NULL)
|
|
|
|
|
o->target_index = abfd->symcount;
|
|
|
|
|
elfsym.st_shndx = i;
|
|
|
|
|
if (! elf_link_output_sym (&finfo, (const char *) NULL,
|
|
|
|
|
&elfsym, o))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Allocate some memory to hold information read in from the input
|
|
|
|
|
files. */
|
|
|
|
|
finfo.contents = (bfd_byte *) malloc (max_contents_size);
|
|
|
|
|
finfo.external_relocs = (PTR) malloc (max_external_reloc_size);
|
|
|
|
|
finfo.internal_relocs = ((Elf_Internal_Rela *)
|
|
|
|
|
malloc (max_internal_reloc_count
|
|
|
|
|
* sizeof (Elf_Internal_Rela)));
|
|
|
|
|
finfo.external_syms = ((Elf_External_Sym *)
|
|
|
|
|
malloc (max_sym_count * sizeof (Elf_External_Sym)));
|
|
|
|
|
finfo.internal_syms = ((Elf_Internal_Sym *)
|
|
|
|
|
malloc (max_sym_count * sizeof (Elf_Internal_Sym)));
|
|
|
|
|
finfo.indices = (long *) malloc (max_sym_count * sizeof (long));
|
|
|
|
|
finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *));
|
|
|
|
|
if ((finfo.contents == NULL && max_contents_size != 0)
|
|
|
|
|
|| (finfo.external_relocs == NULL && max_external_reloc_size != 0)
|
|
|
|
|
|| (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
|
|
|
|
|
|| (finfo.external_syms == NULL && max_sym_count != 0)
|
|
|
|
|
|| (finfo.internal_syms == NULL && max_sym_count != 0)
|
|
|
|
|
|| (finfo.indices == NULL && max_sym_count != 0)
|
|
|
|
|
|| (finfo.sections == NULL && max_sym_count != 0))
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Since ELF permits relocations to be against local symbols, we
|
|
|
|
|
must have the local symbols available when we do the relocations.
|
|
|
|
|
Since we would rather only read the local symbols once, and we
|
|
|
|
|
would rather not keep them in memory, we handle all the
|
|
|
|
|
relocations for a single input file at the same time.
|
|
|
|
|
|
|
|
|
|
Unfortunately, there is no way to know the total number of local
|
|
|
|
|
symbols until we have seen all of them, and the local symbol
|
|
|
|
|
indices precede the global symbol indices. This means that when
|
|
|
|
|
we are generating relocateable output, and we see a reloc against
|
|
|
|
|
a global symbol, we can not know the symbol index until we have
|
|
|
|
|
finished examining all the local symbols to see which ones we are
|
|
|
|
|
going to output. To deal with this, we keep the relocations in
|
|
|
|
|
memory, and don't output them until the end of the link. This is
|
|
|
|
|
an unfortunate waste of memory, but I don't see a good way around
|
|
|
|
|
it. Fortunately, it only happens when performing a relocateable
|
|
|
|
|
link, which is not the common case. FIXME: If keep_memory is set
|
|
|
|
|
we could write the relocs out and then read them again; I don't
|
|
|
|
|
know how bad the memory loss will be. */
|
|
|
|
|
|
|
|
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->next)
|
|
|
|
|
sub->output_has_begun = false;
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
for (p = o->link_order_head; p != NULL; p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->type == bfd_indirect_link_order
|
|
|
|
|
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
|
|
|
|
== bfd_target_elf_flavour))
|
|
|
|
|
{
|
|
|
|
|
sub = p->u.indirect.section->owner;
|
|
|
|
|
if (! sub->output_has_begun)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_link_input_bfd (&finfo, sub))
|
|
|
|
|
goto error_return;
|
|
|
|
|
sub->output_has_begun = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (p->type == bfd_section_reloc_link_order
|
|
|
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_reloc_link_order (abfd, info, o, p))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_default_link_order (abfd, info, o, p))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* That wrote out all the local symbols. Finish up the symbol table
|
|
|
|
|
with the global symbols. */
|
|
|
|
|
|
|
|
|
|
/* The sh_info field records the index of the first non local
|
|
|
|
|
symbol. */
|
|
|
|
|
symtab_hdr->sh_info = abfd->symcount;
|
|
|
|
|
if (dynamic)
|
|
|
|
|
elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
|
|
|
|
|
|
|
|
|
|
/* We get the global symbols from the hash table. */
|
|
|
|
|
eif.failed = false;
|
|
|
|
|
eif.finfo = &finfo;
|
|
|
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
|
|
|
|
(PTR) &eif);
|
|
|
|
|
if (eif.failed)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Flush all symbols to the file. */
|
|
|
|
|
if (! elf_link_flush_output_syms (&finfo))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Now we know the size of the symtab section. */
|
|
|
|
|
off += symtab_hdr->sh_size;
|
|
|
|
|
|
|
|
|
|
/* Finish up and write out the symbol string table (.strtab)
|
|
|
|
|
section. */
|
|
|
|
|
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
|
|
|
|
/* sh_name was set in prep_headers. */
|
|
|
|
|
symstrtab_hdr->sh_type = SHT_STRTAB;
|
|
|
|
|
symstrtab_hdr->sh_flags = 0;
|
|
|
|
|
symstrtab_hdr->sh_addr = 0;
|
|
|
|
|
symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
|
|
|
|
|
symstrtab_hdr->sh_entsize = 0;
|
|
|
|
|
symstrtab_hdr->sh_link = 0;
|
|
|
|
|
symstrtab_hdr->sh_info = 0;
|
|
|
|
|
/* sh_offset is set just below. */
|
|
|
|
|
symstrtab_hdr->sh_addralign = 1;
|
|
|
|
|
|
|
|
|
|
off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
|
|
|
|
|
elf_tdata (abfd)->next_file_pos = off;
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
|
|
|
|
|
|| ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Adjust the relocs to have the correct symbol indices. */
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry **rel_hash;
|
|
|
|
|
Elf_Internal_Shdr *rel_hdr;
|
|
|
|
|
|
|
|
|
|
if ((o->flags & SEC_RELOC) == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
rel_hash = elf_section_data (o)->rel_hashes;
|
|
|
|
|
rel_hdr = &elf_section_data (o)->rel_hdr;
|
|
|
|
|
for (i = 0; i < o->reloc_count; i++, rel_hash++)
|
|
|
|
|
{
|
|
|
|
|
if (*rel_hash == NULL)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT ((*rel_hash)->indx >= 0);
|
|
|
|
|
|
|
|
|
|
if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Rel *erel;
|
|
|
|
|
Elf_Internal_Rel irel;
|
|
|
|
|
|
|
|
|
|
erel = (Elf_External_Rel *) rel_hdr->contents + i;
|
|
|
|
|
elf_swap_reloc_in (abfd, erel, &irel);
|
|
|
|
|
irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
|
|
|
|
ELF_R_TYPE (irel.r_info));
|
|
|
|
|
elf_swap_reloc_out (abfd, &irel, erel);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Rela *erela;
|
|
|
|
|
Elf_Internal_Rela irela;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (rel_hdr->sh_entsize
|
|
|
|
|
== sizeof (Elf_External_Rela));
|
|
|
|
|
|
|
|
|
|
erela = (Elf_External_Rela *) rel_hdr->contents + i;
|
|
|
|
|
elf_swap_reloca_in (abfd, erela, &irela);
|
|
|
|
|
irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
|
|
|
|
|
ELF_R_TYPE (irela.r_info));
|
|
|
|
|
elf_swap_reloca_out (abfd, &irela, erela);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set the reloc_count field to 0 to prevent write_relocs from
|
|
|
|
|
trying to swap the relocs out itself. */
|
|
|
|
|
o->reloc_count = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we are linking against a dynamic object, or generating a
|
|
|
|
|
shared library, finish up the dynamic linking information. */
|
|
|
|
|
if (dynamic)
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Dyn *dyncon, *dynconend;
|
|
|
|
|
|
|
|
|
|
/* Fix up .dynamic entries. */
|
|
|
|
|
o = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
|
BFD_ASSERT (o != NULL);
|
|
|
|
|
|
|
|
|
|
dyncon = (Elf_External_Dyn *) o->contents;
|
|
|
|
|
dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
|
|
|
|
|
for (; dyncon < dynconend; dyncon++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Dyn dyn;
|
|
|
|
|
const char *name;
|
|
|
|
|
unsigned int type;
|
|
|
|
|
|
|
|
|
|
elf_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
|
|
|
|
|
|
switch (dyn.d_tag)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
/* SVR4 linkers seem to set DT_INIT and DT_FINI based on
|
|
|
|
|
magic _init and _fini symbols. This is pretty ugly,
|
|
|
|
|
but we are compatible. */
|
|
|
|
|
case DT_INIT:
|
|
|
|
|
name = "_init";
|
|
|
|
|
goto get_sym;
|
|
|
|
|
case DT_FINI:
|
|
|
|
|
name = "_fini";
|
|
|
|
|
get_sym:
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
|
|
|
|
false, false, true);
|
1995-09-01 19:29:43 +00:00
|
|
|
|
if (h != NULL
|
|
|
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak))
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
{
|
|
|
|
|
dyn.d_un.d_val = h->root.u.def.value;
|
|
|
|
|
o = h->root.u.def.section;
|
|
|
|
|
if (o->output_section != NULL)
|
|
|
|
|
dyn.d_un.d_val += (o->output_section->vma
|
|
|
|
|
+ o->output_offset);
|
|
|
|
|
else
|
1995-09-01 19:29:43 +00:00
|
|
|
|
{
|
|
|
|
|
/* The symbol is imported from another shared
|
|
|
|
|
library and does not apply to this one. */
|
|
|
|
|
dyn.d_un.d_val = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case DT_HASH:
|
|
|
|
|
name = ".hash";
|
|
|
|
|
goto get_vma;
|
|
|
|
|
case DT_STRTAB:
|
|
|
|
|
name = ".dynstr";
|
|
|
|
|
goto get_vma;
|
|
|
|
|
case DT_SYMTAB:
|
|
|
|
|
name = ".dynsym";
|
|
|
|
|
get_vma:
|
|
|
|
|
o = bfd_get_section_by_name (abfd, name);
|
|
|
|
|
BFD_ASSERT (o != NULL);
|
|
|
|
|
dyn.d_un.d_ptr = o->vma;
|
|
|
|
|
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case DT_REL:
|
|
|
|
|
case DT_RELA:
|
|
|
|
|
case DT_RELSZ:
|
|
|
|
|
case DT_RELASZ:
|
|
|
|
|
if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
|
|
|
|
|
type = SHT_REL;
|
|
|
|
|
else
|
|
|
|
|
type = SHT_RELA;
|
|
|
|
|
dyn.d_un.d_val = 0;
|
|
|
|
|
for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
|
|
|
|
|
|
hdr = elf_elfsections (abfd)[i];
|
|
|
|
|
if (hdr->sh_type == type
|
|
|
|
|
&& (hdr->sh_flags & SHF_ALLOC) != 0)
|
|
|
|
|
{
|
|
|
|
|
if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
|
|
|
|
|
dyn.d_un.d_val += hdr->sh_size;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (dyn.d_un.d_val == 0
|
|
|
|
|
|| hdr->sh_addr < dyn.d_un.d_val)
|
|
|
|
|
dyn.d_un.d_val = hdr->sh_addr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
elf_swap_dyn_out (dynobj, &dyn, dyncon);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we have created any dynamic sections, then output them. */
|
|
|
|
|
if (dynobj != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
for (o = dynobj->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
|
|
|
|
|| o->_raw_size == 0)
|
|
|
|
|
continue;
|
|
|
|
|
if ((o->flags & SEC_IN_MEMORY) == 0)
|
|
|
|
|
{
|
|
|
|
|
/* At this point, we are only interested in sections
|
|
|
|
|
created by elf_link_create_dynamic_sections. FIXME:
|
|
|
|
|
This test is fragile. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
if ((elf_section_data (o->output_section)->this_hdr.sh_type
|
|
|
|
|
!= SHT_STRTAB)
|
|
|
|
|
|| strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
|
|
|
|
|
{
|
|
|
|
|
if (! bfd_set_section_contents (abfd, o->output_section,
|
|
|
|
|
o->contents, o->output_offset,
|
|
|
|
|
o->_raw_size))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
file_ptr off;
|
|
|
|
|
|
|
|
|
|
/* The contents of the .dynstr section are actually in a
|
|
|
|
|
stringtab. */
|
|
|
|
|
off = elf_section_data (o->output_section)->this_hdr.sh_offset;
|
|
|
|
|
if (bfd_seek (abfd, off, SEEK_SET) != 0
|
|
|
|
|
|| ! _bfd_stringtab_emit (abfd,
|
|
|
|
|
elf_hash_table (info)->dynstr))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (finfo.symstrtab != NULL)
|
|
|
|
|
_bfd_stringtab_free (finfo.symstrtab);
|
|
|
|
|
if (finfo.contents != NULL)
|
|
|
|
|
free (finfo.contents);
|
|
|
|
|
if (finfo.external_relocs != NULL)
|
|
|
|
|
free (finfo.external_relocs);
|
|
|
|
|
if (finfo.internal_relocs != NULL)
|
|
|
|
|
free (finfo.internal_relocs);
|
|
|
|
|
if (finfo.external_syms != NULL)
|
|
|
|
|
free (finfo.external_syms);
|
|
|
|
|
if (finfo.internal_syms != NULL)
|
|
|
|
|
free (finfo.internal_syms);
|
|
|
|
|
if (finfo.indices != NULL)
|
|
|
|
|
free (finfo.indices);
|
|
|
|
|
if (finfo.sections != NULL)
|
|
|
|
|
free (finfo.sections);
|
|
|
|
|
if (finfo.symbuf != NULL)
|
|
|
|
|
free (finfo.symbuf);
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
if ((o->flags & SEC_RELOC) != 0
|
|
|
|
|
&& elf_section_data (o)->rel_hashes != NULL)
|
|
|
|
|
free (elf_section_data (o)->rel_hashes);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
elf_tdata (abfd)->linker = true;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
if (finfo.symstrtab != NULL)
|
|
|
|
|
_bfd_stringtab_free (finfo.symstrtab);
|
|
|
|
|
if (finfo.contents != NULL)
|
|
|
|
|
free (finfo.contents);
|
|
|
|
|
if (finfo.external_relocs != NULL)
|
|
|
|
|
free (finfo.external_relocs);
|
|
|
|
|
if (finfo.internal_relocs != NULL)
|
|
|
|
|
free (finfo.internal_relocs);
|
|
|
|
|
if (finfo.external_syms != NULL)
|
|
|
|
|
free (finfo.external_syms);
|
|
|
|
|
if (finfo.internal_syms != NULL)
|
|
|
|
|
free (finfo.internal_syms);
|
|
|
|
|
if (finfo.indices != NULL)
|
|
|
|
|
free (finfo.indices);
|
|
|
|
|
if (finfo.sections != NULL)
|
|
|
|
|
free (finfo.sections);
|
|
|
|
|
if (finfo.symbuf != NULL)
|
|
|
|
|
free (finfo.symbuf);
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
if ((o->flags & SEC_RELOC) != 0
|
|
|
|
|
&& elf_section_data (o)->rel_hashes != NULL)
|
|
|
|
|
free (elf_section_data (o)->rel_hashes);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add a symbol to the output symbol table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_link_output_sym (finfo, name, elfsym, input_sec)
|
|
|
|
|
struct elf_final_link_info *finfo;
|
|
|
|
|
const char *name;
|
|
|
|
|
Elf_Internal_Sym *elfsym;
|
|
|
|
|
asection *input_sec;
|
|
|
|
|
{
|
|
|
|
|
boolean (*output_symbol_hook) PARAMS ((bfd *,
|
|
|
|
|
struct bfd_link_info *info,
|
|
|
|
|
const char *,
|
|
|
|
|
Elf_Internal_Sym *,
|
|
|
|
|
asection *));
|
|
|
|
|
|
|
|
|
|
output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
|
|
|
|
|
elf_backend_link_output_symbol_hook;
|
|
|
|
|
if (output_symbol_hook != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! ((*output_symbol_hook)
|
|
|
|
|
(finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (name == (const char *) NULL || *name == '\0')
|
|
|
|
|
elfsym->st_name = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
|
|
|
|
|
name, true,
|
|
|
|
|
false);
|
|
|
|
|
if (elfsym->st_name == (unsigned long) -1)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (finfo->symbuf_count >= finfo->symbuf_size)
|
|
|
|
|
{
|
|
|
|
|
if (! elf_link_flush_output_syms (finfo))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
elf_swap_symbol_out (finfo->output_bfd, elfsym,
|
1995-07-11 19:24:46 +00:00
|
|
|
|
(PTR) (finfo->symbuf + finfo->symbuf_count));
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
++finfo->symbuf_count;
|
|
|
|
|
|
|
|
|
|
++finfo->output_bfd->symcount;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Flush the output symbols to the file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_link_flush_output_syms (finfo)
|
|
|
|
|
struct elf_final_link_info *finfo;
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Shdr *symtab;
|
|
|
|
|
|
|
|
|
|
symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
|
|
|
|
|
SEEK_SET) != 0
|
|
|
|
|
|| (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
|
|
|
|
|
sizeof (Elf_External_Sym), finfo->output_bfd)
|
|
|
|
|
!= finfo->symbuf_count * sizeof (Elf_External_Sym)))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
|
|
|
|
|
|
|
|
|
|
finfo->symbuf_count = 0;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add an external symbol to the symbol table. This is called from
|
|
|
|
|
the hash table traversal routine. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_link_output_extsym (h, data)
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
PTR data;
|
|
|
|
|
{
|
|
|
|
|
struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data;
|
|
|
|
|
struct elf_final_link_info *finfo = eif->finfo;
|
|
|
|
|
boolean strip;
|
|
|
|
|
Elf_Internal_Sym sym;
|
|
|
|
|
asection *input_sec;
|
|
|
|
|
|
|
|
|
|
/* If we are not creating a shared library, and this symbol is
|
|
|
|
|
referenced by a shared library but is not defined anywhere, then
|
|
|
|
|
warn that it is undefined. If we do not do this, the runtime
|
|
|
|
|
linker will complain that the symbol is undefined when the
|
|
|
|
|
program is run. We don't have to worry about symbols that are
|
|
|
|
|
referenced by regular files, because we will already have issued
|
|
|
|
|
warnings for them. */
|
|
|
|
|
if (! finfo->info->relocateable
|
|
|
|
|
&& ! finfo->info->shared
|
|
|
|
|
&& h->root.type == bfd_link_hash_undefined
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
if (! ((*finfo->info->callbacks->undefined_symbol)
|
|
|
|
|
(finfo->info, h->root.root.string, h->root.u.undef.abfd,
|
|
|
|
|
(asection *) NULL, 0)))
|
|
|
|
|
{
|
|
|
|
|
eif->failed = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We don't want to output symbols that have never been mentioned by
|
|
|
|
|
a regular file, or that we have been told to strip. However, if
|
|
|
|
|
h->indx is set to -2, the symbol is used by a reloc and we must
|
|
|
|
|
output it. */
|
|
|
|
|
if (h->indx == -2)
|
|
|
|
|
strip = false;
|
|
|
|
|
else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
|
|
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
|
|
|
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
|
|
|
|
|
strip = true;
|
|
|
|
|
else if (finfo->info->strip == strip_all
|
|
|
|
|
|| (finfo->info->strip == strip_some
|
|
|
|
|
&& bfd_hash_lookup (finfo->info->keep_hash,
|
|
|
|
|
h->root.root.string,
|
|
|
|
|
false, false) == NULL))
|
|
|
|
|
strip = true;
|
|
|
|
|
else
|
|
|
|
|
strip = false;
|
|
|
|
|
|
|
|
|
|
/* If we're stripping it, and it's not a dynamic symbol, there's
|
|
|
|
|
nothing else to do. */
|
|
|
|
|
if (strip && h->dynindx == -1)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
sym.st_value = 0;
|
|
|
|
|
sym.st_size = h->size;
|
|
|
|
|
sym.st_other = 0;
|
|
|
|
|
if (h->root.type == bfd_link_hash_undefweak
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
|
|
|
sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
|
|
|
|
|
else
|
|
|
|
|
sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
|
|
|
|
|
|
|
|
|
|
switch (h->root.type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case bfd_link_hash_new:
|
|
|
|
|
abort ();
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
case bfd_link_hash_undefined:
|
|
|
|
|
input_sec = bfd_und_section_ptr;
|
|
|
|
|
sym.st_shndx = SHN_UNDEF;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_link_hash_undefweak:
|
|
|
|
|
input_sec = bfd_und_section_ptr;
|
|
|
|
|
sym.st_shndx = SHN_UNDEF;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_link_hash_defined:
|
|
|
|
|
case bfd_link_hash_defweak:
|
|
|
|
|
{
|
|
|
|
|
input_sec = h->root.u.def.section;
|
|
|
|
|
if (input_sec->output_section != NULL)
|
|
|
|
|
{
|
|
|
|
|
sym.st_shndx =
|
|
|
|
|
_bfd_elf_section_from_bfd_section (finfo->output_bfd,
|
|
|
|
|
input_sec->output_section);
|
|
|
|
|
if (sym.st_shndx == (unsigned short) -1)
|
|
|
|
|
{
|
|
|
|
|
eif->failed = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ELF symbols in relocateable files are section relative,
|
|
|
|
|
but in nonrelocateable files they are virtual
|
|
|
|
|
addresses. */
|
|
|
|
|
sym.st_value = h->root.u.def.value + input_sec->output_offset;
|
|
|
|
|
if (! finfo->info->relocateable)
|
|
|
|
|
sym.st_value += input_sec->output_section->vma;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
BFD_ASSERT ((bfd_get_flavour (input_sec->owner)
|
|
|
|
|
== bfd_target_elf_flavour)
|
|
|
|
|
&& elf_elfheader (input_sec->owner)->e_type == ET_DYN);
|
|
|
|
|
sym.st_shndx = SHN_UNDEF;
|
|
|
|
|
input_sec = bfd_und_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_link_hash_common:
|
|
|
|
|
input_sec = bfd_com_section_ptr;
|
|
|
|
|
sym.st_shndx = SHN_COMMON;
|
|
|
|
|
sym.st_value = 1 << h->root.u.c.p->alignment_power;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_link_hash_indirect:
|
|
|
|
|
case bfd_link_hash_warning:
|
1995-09-01 18:08:28 +00:00
|
|
|
|
return (elf_link_output_extsym
|
|
|
|
|
((struct elf_link_hash_entry *) h->root.u.i.link, data));
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this symbol should be put in the .dynsym section, then put it
|
|
|
|
|
there now. We have already know the symbol index. We also fill
|
|
|
|
|
in the entry in the .hash section. */
|
|
|
|
|
if (h->dynindx != -1
|
|
|
|
|
&& elf_hash_table (finfo->info)->dynamic_sections_created)
|
|
|
|
|
{
|
|
|
|
|
struct elf_backend_data *bed;
|
|
|
|
|
size_t bucketcount;
|
|
|
|
|
size_t bucket;
|
|
|
|
|
bfd_byte *bucketpos;
|
|
|
|
|
bfd_vma chain;
|
|
|
|
|
|
|
|
|
|
sym.st_name = h->dynstr_index;
|
|
|
|
|
|
|
|
|
|
/* Give the processor backend a chance to tweak the symbol
|
|
|
|
|
value, and also to finish up anything that needs to be done
|
|
|
|
|
for this symbol. */
|
|
|
|
|
bed = get_elf_backend_data (finfo->output_bfd);
|
|
|
|
|
if (! ((*bed->elf_backend_finish_dynamic_symbol)
|
|
|
|
|
(finfo->output_bfd, finfo->info, h, &sym)))
|
|
|
|
|
{
|
|
|
|
|
eif->failed = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
elf_swap_symbol_out (finfo->output_bfd, &sym,
|
1995-07-11 19:24:46 +00:00
|
|
|
|
(PTR) (((Elf_External_Sym *)
|
|
|
|
|
finfo->dynsym_sec->contents)
|
|
|
|
|
+ h->dynindx));
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
|
|
|
|
|
bucketcount = elf_hash_table (finfo->info)->bucketcount;
|
|
|
|
|
bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string)
|
|
|
|
|
% bucketcount);
|
|
|
|
|
bucketpos = ((bfd_byte *) finfo->hash_sec->contents
|
|
|
|
|
+ (bucket + 2) * (ARCH_SIZE / 8));
|
|
|
|
|
chain = get_word (finfo->output_bfd, bucketpos);
|
|
|
|
|
put_word (finfo->output_bfd, h->dynindx, bucketpos);
|
|
|
|
|
put_word (finfo->output_bfd, chain,
|
|
|
|
|
((bfd_byte *) finfo->hash_sec->contents
|
|
|
|
|
+ (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we're stripping it, then it was just a dynamic symbol, and
|
|
|
|
|
there's nothing else to do. */
|
|
|
|
|
if (strip)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
h->indx = finfo->output_bfd->symcount;
|
|
|
|
|
|
|
|
|
|
if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
|
|
|
|
|
{
|
|
|
|
|
eif->failed = true;
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Link an input file into the linker output file. This function
|
|
|
|
|
handles all the sections and relocations of the input file at once.
|
|
|
|
|
This is so that we only have to read the local symbols once, and
|
|
|
|
|
don't have to keep them in memory. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_link_input_bfd (finfo, input_bfd)
|
|
|
|
|
struct elf_final_link_info *finfo;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
{
|
|
|
|
|
boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
|
|
|
|
|
bfd *, asection *, bfd_byte *,
|
|
|
|
|
Elf_Internal_Rela *,
|
|
|
|
|
Elf_Internal_Sym *, asection **));
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
|
size_t locsymcount;
|
|
|
|
|
size_t extsymoff;
|
|
|
|
|
Elf_External_Sym *esym;
|
|
|
|
|
Elf_External_Sym *esymend;
|
|
|
|
|
Elf_Internal_Sym *isym;
|
|
|
|
|
long *pindex;
|
|
|
|
|
asection **ppsection;
|
|
|
|
|
asection *o;
|
|
|
|
|
|
|
|
|
|
output_bfd = finfo->output_bfd;
|
|
|
|
|
relocate_section =
|
|
|
|
|
get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
|
|
|
|
|
|
|
|
|
|
/* If this is a dynamic object, we don't want to do anything here:
|
|
|
|
|
we don't want the local symbols, and we don't want the section
|
|
|
|
|
contents. */
|
|
|
|
|
if (elf_elfheader (input_bfd)->e_type == ET_DYN)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
|
|
|
if (elf_bad_symtab (input_bfd))
|
|
|
|
|
{
|
|
|
|
|
locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
|
|
|
|
|
extsymoff = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
locsymcount = symtab_hdr->sh_info;
|
|
|
|
|
extsymoff = symtab_hdr->sh_info;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the local symbols. */
|
|
|
|
|
if (locsymcount > 0
|
|
|
|
|
&& (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
|
|
|
|
|| (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym),
|
|
|
|
|
locsymcount, input_bfd)
|
|
|
|
|
!= locsymcount * sizeof (Elf_External_Sym))))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Swap in the local symbols and write out the ones which we know
|
|
|
|
|
are going into the output file. */
|
|
|
|
|
esym = finfo->external_syms;
|
|
|
|
|
esymend = esym + locsymcount;
|
|
|
|
|
isym = finfo->internal_syms;
|
|
|
|
|
pindex = finfo->indices;
|
|
|
|
|
ppsection = finfo->sections;
|
|
|
|
|
for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
|
|
|
|
|
{
|
|
|
|
|
asection *isec;
|
|
|
|
|
const char *name;
|
|
|
|
|
Elf_Internal_Sym osym;
|
|
|
|
|
|
|
|
|
|
elf_swap_symbol_in (input_bfd, esym, isym);
|
|
|
|
|
*pindex = -1;
|
|
|
|
|
|
|
|
|
|
if (elf_bad_symtab (input_bfd))
|
|
|
|
|
{
|
|
|
|
|
if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
|
|
|
|
|
{
|
|
|
|
|
*ppsection = NULL;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (isym->st_shndx == SHN_UNDEF)
|
|
|
|
|
isec = bfd_und_section_ptr;
|
|
|
|
|
else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
|
|
|
|
|
isec = section_from_elf_index (input_bfd, isym->st_shndx);
|
|
|
|
|
else if (isym->st_shndx == SHN_ABS)
|
|
|
|
|
isec = bfd_abs_section_ptr;
|
|
|
|
|
else if (isym->st_shndx == SHN_COMMON)
|
|
|
|
|
isec = bfd_com_section_ptr;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Who knows? */
|
|
|
|
|
isec = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*ppsection = isec;
|
|
|
|
|
|
|
|
|
|
/* Don't output the first, undefined, symbol. */
|
|
|
|
|
if (esym == finfo->external_syms)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* If we are stripping all symbols, we don't want to output this
|
|
|
|
|
one. */
|
|
|
|
|
if (finfo->info->strip == strip_all)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* We never output section symbols. Instead, we use the section
|
|
|
|
|
symbol of the corresponding section in the output file. */
|
|
|
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* If we are discarding all local symbols, we don't want to
|
|
|
|
|
output this one. If we are generating a relocateable output
|
|
|
|
|
file, then some of the local symbols may be required by
|
|
|
|
|
relocs; we output them below as we discover that they are
|
|
|
|
|
needed. */
|
|
|
|
|
if (finfo->info->discard == discard_all)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* Get the name of the symbol. */
|
|
|
|
|
name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
|
|
|
|
|
isym->st_name);
|
|
|
|
|
if (name == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* See if we are discarding symbols with this name. */
|
|
|
|
|
if ((finfo->info->strip == strip_some
|
|
|
|
|
&& (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
|
|
|
|
|
== NULL))
|
|
|
|
|
|| (finfo->info->discard == discard_l
|
|
|
|
|
&& strncmp (name, finfo->info->lprefix,
|
|
|
|
|
finfo->info->lprefix_len) == 0))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* If we get here, we are going to output this symbol. */
|
|
|
|
|
|
|
|
|
|
osym = *isym;
|
|
|
|
|
|
|
|
|
|
/* Adjust the section index for the output file. */
|
|
|
|
|
osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
|
|
|
|
isec->output_section);
|
|
|
|
|
if (osym.st_shndx == (unsigned short) -1)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
*pindex = output_bfd->symcount;
|
|
|
|
|
|
|
|
|
|
/* ELF symbols in relocateable files are section relative, but
|
|
|
|
|
in executable files they are virtual addresses. Note that
|
|
|
|
|
this code assumes that all ELF sections have an associated
|
|
|
|
|
BFD section with a reasonable value for output_offset; below
|
|
|
|
|
we assume that they also have a reasonable value for
|
|
|
|
|
output_section. Any special sections must be set up to meet
|
|
|
|
|
these requirements. */
|
|
|
|
|
osym.st_value += isec->output_offset;
|
|
|
|
|
if (! finfo->info->relocateable)
|
|
|
|
|
osym.st_value += isec->output_section->vma;
|
|
|
|
|
|
|
|
|
|
if (! elf_link_output_sym (finfo, name, &osym, isec))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Relocate the contents of each section. */
|
|
|
|
|
for (o = input_bfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
if ((o->flags & SEC_HAS_CONTENTS) == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if ((o->flags & SEC_IN_MEMORY) != 0
|
|
|
|
|
&& input_bfd == elf_hash_table (finfo->info)->dynobj)
|
|
|
|
|
{
|
|
|
|
|
/* Section was created by elf_link_create_dynamic_sections.
|
|
|
|
|
FIXME: This test is fragile. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the contents of the section. */
|
|
|
|
|
if (! bfd_get_section_contents (input_bfd, o, finfo->contents,
|
|
|
|
|
(file_ptr) 0, o->_raw_size))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if ((o->flags & SEC_RELOC) != 0)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rela *internal_relocs;
|
|
|
|
|
|
|
|
|
|
/* Get the swapped relocs. */
|
|
|
|
|
internal_relocs = elf_link_read_relocs (input_bfd, o,
|
|
|
|
|
finfo->external_relocs,
|
|
|
|
|
finfo->internal_relocs,
|
|
|
|
|
false);
|
|
|
|
|
if (internal_relocs == NULL
|
|
|
|
|
&& o->reloc_count > 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Relocate the section by invoking a back end routine.
|
|
|
|
|
|
|
|
|
|
The back end routine is responsible for adjusting the
|
|
|
|
|
section contents as necessary, and (if using Rela relocs
|
|
|
|
|
and generating a relocateable output file) adjusting the
|
|
|
|
|
reloc addend as necessary.
|
|
|
|
|
|
|
|
|
|
The back end routine does not have to worry about setting
|
|
|
|
|
the reloc address or the reloc symbol index.
|
|
|
|
|
|
|
|
|
|
The back end routine is given a pointer to the swapped in
|
|
|
|
|
internal symbols, and can access the hash table entries
|
|
|
|
|
for the external symbols via elf_sym_hashes (input_bfd).
|
|
|
|
|
|
|
|
|
|
When generating relocateable output, the back end routine
|
|
|
|
|
must handle STB_LOCAL/STT_SECTION symbols specially. The
|
|
|
|
|
output symbol is going to be a section symbol
|
|
|
|
|
corresponding to the output section, which will require
|
|
|
|
|
the addend to be adjusted. */
|
|
|
|
|
|
|
|
|
|
if (! (*relocate_section) (output_bfd, finfo->info,
|
|
|
|
|
input_bfd, o,
|
|
|
|
|
finfo->contents,
|
|
|
|
|
internal_relocs,
|
|
|
|
|
finfo->internal_syms,
|
|
|
|
|
finfo->sections))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (finfo->info->relocateable)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rela *irela;
|
|
|
|
|
Elf_Internal_Rela *irelaend;
|
|
|
|
|
struct elf_link_hash_entry **rel_hash;
|
|
|
|
|
Elf_Internal_Shdr *input_rel_hdr;
|
|
|
|
|
Elf_Internal_Shdr *output_rel_hdr;
|
|
|
|
|
|
|
|
|
|
/* Adjust the reloc addresses and symbol indices. */
|
|
|
|
|
|
|
|
|
|
irela = internal_relocs;
|
|
|
|
|
irelaend = irela + o->reloc_count;
|
|
|
|
|
rel_hash = (elf_section_data (o->output_section)->rel_hashes
|
|
|
|
|
+ o->output_section->reloc_count);
|
|
|
|
|
for (; irela < irelaend; irela++, rel_hash++)
|
|
|
|
|
{
|
1995-09-12 16:23:25 +00:00
|
|
|
|
unsigned long r_symndx;
|
Added new files elflink.c, elflink.h, elfcore.h.
Moved some mostly size-independent stuff from elfcode.h to elf.c, adding a data
structure to elfcode.h with some misc data and callback functions. Added a
pointer to that structure to the target back end data. More work can be done
here.
Renamed generic elf routines (not cpu-specific stuff) to start with bfd_elf or
_bfd_elf. Updated most call sites, sometimes defined some macros.
Moved some dynamic linking support code from m68k, sparc, i386 to common files,
using target back end flags to control behavior. More work can probably be
done here too.
Moved core- and linker-support code out of elfcode.h to elf.c, elfcore.h,
elflink.h, or elflink.c. Now elfcode.h contains only .o and executable
support, plus #includes of elfcore.h and elflink.h. Much of the contents of
these other header files can probably still be moved from the .h files to the
.c files, to get compiled only once.
Cleaned up some "gcc -Wall" warnings regarding unused or uninitialized
variables, in generic and cpu-specific code.
1995-07-06 02:22:00 +00:00
|
|
|
|
Elf_Internal_Sym *isym;
|
|
|
|
|
asection *sec;
|
|
|
|
|
|
|
|
|
|
irela->r_offset += o->output_offset;
|
|
|
|
|
|
|
|
|
|
r_symndx = ELF_R_SYM (irela->r_info);
|
|
|
|
|
|
|
|
|
|
if (r_symndx == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (r_symndx >= locsymcount
|
|
|
|
|
|| (elf_bad_symtab (input_bfd)
|
|
|
|
|
&& finfo->sections[r_symndx] == NULL))
|
|
|
|
|
{
|
|
|
|
|
long indx;
|
|
|
|
|
|
|
|
|
|
/* This is a reloc against a global symbol. We
|
|
|
|
|
have not yet output all the local symbols, so
|
|
|
|
|
we do not know the symbol index of any global
|
|
|
|
|
symbol. We set the rel_hash entry for this
|
|
|
|
|
reloc to point to the global hash table entry
|
|
|
|
|
for this symbol. The symbol index is then
|
|
|
|
|
set at the end of elf_bfd_final_link. */
|
|
|
|
|
indx = r_symndx - extsymoff;
|
|
|
|
|
*rel_hash = elf_sym_hashes (input_bfd)[indx];
|
|
|
|
|
|
|
|
|
|
/* Setting the index to -2 tells
|
|
|
|
|
elf_link_output_extsym that this symbol is
|
|
|
|
|
used by a reloc. */
|
|
|
|
|
BFD_ASSERT ((*rel_hash)->indx < 0);
|
|
|
|
|
(*rel_hash)->indx = -2;
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This is a reloc against a local symbol. */
|
|
|
|
|
|
|
|
|
|
*rel_hash = NULL;
|
|
|
|
|
isym = finfo->internal_syms + r_symndx;
|
|
|
|
|
sec = finfo->sections[r_symndx];
|
|
|
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
|
|
|
|
{
|
|
|
|
|
/* I suppose the backend ought to fill in the
|
|
|
|
|
section of any STT_SECTION symbol against a
|
|
|
|
|
processor specific section. */
|
|
|
|
|
if (sec != NULL && bfd_is_abs_section (sec))
|
|
|
|
|
r_symndx = 0;
|
|
|
|
|
else if (sec == NULL || sec->owner == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
r_symndx = sec->output_section->target_index;
|
|
|
|
|
BFD_ASSERT (r_symndx != 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (finfo->indices[r_symndx] == -1)
|
|
|
|
|
{
|
|
|
|
|
unsigned long link;
|
|
|
|
|
const char *name;
|
|
|
|
|
asection *osec;
|
|
|
|
|
|
|
|
|
|
if (finfo->info->strip == strip_all)
|
|
|
|
|
{
|
|
|
|
|
/* You can't do ld -r -s. */
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This symbol was skipped earlier, but
|
|
|
|
|
since it is needed by a reloc, we
|
|
|
|
|
must output it now. */
|
|
|
|
|
link = symtab_hdr->sh_link;
|
|
|
|
|
name = bfd_elf_string_from_elf_section (input_bfd,
|
|
|
|
|
link,
|
|
|
|
|
isym->st_name);
|
|
|
|
|
if (name == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
osec = sec->output_section;
|
|
|
|
|
isym->st_shndx =
|
|
|
|
|
_bfd_elf_section_from_bfd_section (output_bfd,
|
|
|
|
|
osec);
|
|
|
|
|
if (isym->st_shndx == (unsigned short) -1)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
isym->st_value += sec->output_offset;
|
|
|
|
|
if (! finfo->info->relocateable)
|
|
|
|
|
isym->st_value += osec->vma;
|
|
|
|
|
|
|
|
|
|
finfo->indices[r_symndx] = output_bfd->symcount;
|
|
|
|
|
|
|
|
|
|
if (! elf_link_output_sym (finfo, name, isym, sec))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
r_symndx = finfo->indices[r_symndx];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
irela->r_info = ELF_R_INFO (r_symndx,
|
|
|
|
|
ELF_R_TYPE (irela->r_info));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Swap out the relocs. */
|
|
|
|
|
input_rel_hdr = &elf_section_data (o)->rel_hdr;
|
|
|
|
|
output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
|
|
|
|
|
BFD_ASSERT (output_rel_hdr->sh_entsize
|
|
|
|
|
== input_rel_hdr->sh_entsize);
|
|
|
|
|
irela = internal_relocs;
|
|
|
|
|
irelaend = irela + o->reloc_count;
|
|
|
|
|
if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Rel *erel;
|
|
|
|
|
|
|
|
|
|
erel = ((Elf_External_Rel *) output_rel_hdr->contents
|
|
|
|
|
+ o->output_section->reloc_count);
|
|
|
|
|
for (; irela < irelaend; irela++, erel++)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rel irel;
|
|
|
|
|
|
|
|
|
|
irel.r_offset = irela->r_offset;
|
|
|
|
|
irel.r_info = irela->r_info;
|
|
|
|
|
BFD_ASSERT (irela->r_addend == 0);
|
|
|
|
|
elf_swap_reloc_out (output_bfd, &irel, erel);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
Elf_External_Rela *erela;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (input_rel_hdr->sh_entsize
|
|
|
|
|
== sizeof (Elf_External_Rela));
|
|
|
|
|
erela = ((Elf_External_Rela *) output_rel_hdr->contents
|
|
|
|
|
+ o->output_section->reloc_count);
|
|
|
|
|
for (; irela < irelaend; irela++, erela++)
|
|
|
|
|
elf_swap_reloca_out (output_bfd, irela, erela);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
o->output_section->reloc_count += o->reloc_count;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out the modified section contents. */
|
|
|
|
|
if (! bfd_set_section_contents (output_bfd, o->output_section,
|
|
|
|
|
finfo->contents, o->output_offset,
|
|
|
|
|
(o->_cooked_size != 0
|
|
|
|
|
? o->_cooked_size
|
|
|
|
|
: o->_raw_size)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate a reloc when linking an ELF file. This is a reloc
|
|
|
|
|
requested by the linker, and does come from any input file. This
|
|
|
|
|
is used to build constructor and destructor tables when linking
|
|
|
|
|
with -Ur. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
elf_reloc_link_order (output_bfd, info, output_section, link_order)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
asection *output_section;
|
|
|
|
|
struct bfd_link_order *link_order;
|
|
|
|
|
{
|
|
|
|
|
reloc_howto_type *howto;
|
|
|
|
|
long indx;
|
|
|
|
|
bfd_vma offset;
|
|
|
|
|
struct elf_link_hash_entry **rel_hash_ptr;
|
|
|
|
|
Elf_Internal_Shdr *rel_hdr;
|
|
|
|
|
|
|
|
|
|
howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
|
|
|
|
|
if (howto == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is an inplace reloc, we must write the addend into the
|
|
|
|
|
object file. */
|
|
|
|
|
if (howto->partial_inplace
|
|
|
|
|
&& link_order->u.reloc.p->addend != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type size;
|
|
|
|
|
bfd_reloc_status_type rstat;
|
|
|
|
|
bfd_byte *buf;
|
|
|
|
|
boolean ok;
|
|
|
|
|
|
|
|
|
|
size = bfd_get_reloc_size (howto);
|
|
|
|
|
buf = (bfd_byte *) bfd_zmalloc (size);
|
|
|
|
|
if (buf == (bfd_byte *) NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_memory);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
rstat = _bfd_relocate_contents (howto, output_bfd,
|
|
|
|
|
link_order->u.reloc.p->addend, buf);
|
|
|
|
|
switch (rstat)
|
|
|
|
|
{
|
|
|
|
|
case bfd_reloc_ok:
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
case bfd_reloc_outofrange:
|
|
|
|
|
abort ();
|
|
|
|
|
case bfd_reloc_overflow:
|
|
|
|
|
if (! ((*info->callbacks->reloc_overflow)
|
|
|
|
|
(info,
|
|
|
|
|
(link_order->type == bfd_section_reloc_link_order
|
|
|
|
|
? bfd_section_name (output_bfd,
|
|
|
|
|
link_order->u.reloc.p->u.section)
|
|
|
|
|
: link_order->u.reloc.p->u.name),
|
|
|
|
|
howto->name, link_order->u.reloc.p->addend,
|
|
|
|
|
(bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
|
|
|
|
|
{
|
|
|
|
|
free (buf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
|
|
|
|
|
(file_ptr) link_order->offset, size);
|
|
|
|
|
free (buf);
|
|
|
|
|
if (! ok)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Figure out the symbol index. */
|
|
|
|
|
rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
|
|
|
|
|
+ output_section->reloc_count);
|
|
|
|
|
if (link_order->type == bfd_section_reloc_link_order)
|
|
|
|
|
{
|
|
|
|
|
indx = link_order->u.reloc.p->u.section->target_index;
|
|
|
|
|
BFD_ASSERT (indx != 0);
|
|
|
|
|
*rel_hash_ptr = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
h = elf_link_hash_lookup (elf_hash_table (info),
|
|
|
|
|
link_order->u.reloc.p->u.name,
|
|
|
|
|
false, false, true);
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Setting the index to -2 tells elf_link_output_extsym that
|
|
|
|
|
this symbol is used by a reloc. */
|
|
|
|
|
h->indx = -2;
|
|
|
|
|
*rel_hash_ptr = h;
|
|
|
|
|
indx = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (! ((*info->callbacks->unattached_reloc)
|
|
|
|
|
(info, link_order->u.reloc.p->u.name, (bfd *) NULL,
|
|
|
|
|
(asection *) NULL, (bfd_vma) 0)))
|
|
|
|
|
return false;
|
|
|
|
|
indx = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The address of a reloc is relative to the section in a
|
|
|
|
|
relocateable file, and is a virtual address in an executable
|
|
|
|
|
file. */
|
|
|
|
|
offset = link_order->offset;
|
|
|
|
|
if (! info->relocateable)
|
|
|
|
|
offset += output_section->vma;
|
|
|
|
|
|
|
|
|
|
rel_hdr = &elf_section_data (output_section)->rel_hdr;
|
|
|
|
|
|
|
|
|
|
if (rel_hdr->sh_type == SHT_REL)
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rel irel;
|
|
|
|
|
Elf_External_Rel *erel;
|
|
|
|
|
|
|
|
|
|
irel.r_offset = offset;
|
|
|
|
|
irel.r_info = ELF_R_INFO (indx, howto->type);
|
|
|
|
|
erel = ((Elf_External_Rel *) rel_hdr->contents
|
|
|
|
|
+ output_section->reloc_count);
|
|
|
|
|
elf_swap_reloc_out (output_bfd, &irel, erel);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
Elf_Internal_Rela irela;
|
|
|
|
|
Elf_External_Rela *erela;
|
|
|
|
|
|
|
|
|
|
irela.r_offset = offset;
|
|
|
|
|
irela.r_info = ELF_R_INFO (indx, howto->type);
|
|
|
|
|
irela.r_addend = link_order->u.reloc.p->addend;
|
|
|
|
|
erela = ((Elf_External_Rela *) rel_hdr->contents
|
|
|
|
|
+ output_section->reloc_count);
|
|
|
|
|
elf_swap_reloca_out (output_bfd, &irela, erela);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
++output_section->reloc_count;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|