dwarf2read.c: Check type of string valued attributes prior to decoding.
This change introduces a new function, dwarf2_string_attr(), which is
a wrapper for dwarf2_attr(). dwarf2read.c has been updated to
call dwarf2_string_attr in most instances where a string-valued
attribute is decoded to produce a string value. In most cases, it
simplifies the code; in some instances, the complexity of the code
remains unchanged.
I performed this change by looking for instances where the
result of DW_STRING was used in an assignment. Many of these
had a pattern which (roughly) looks something like this:
struct attribute *attr = NULL;
attr = dwarf2_attr (die, name, cu);
if (attr != NULL && DW_STRING (attr))
{
const char *str;
...
str = DW_STRING (attr);
... /* Use str in some fashion. */
}
Code of this form is transformed to look like this instead:
const char *str;
str = dwarf2_string_attr (die, name, cu)
if (str != NULL)
{
...
/* Use str in some fashion. */
...
}
In addition to invoking dwarf2_attr() and DW_STRING(),
dwarf2_string_attr() checks to make sure that the attribute's
`form' field matches one of DW_FORM_strp, DW_FORM_string, or
DW_FORM_GNU_strp_alt. If it does not match one of these forms,
it will return a NULL value in addition to calling complaint().
An earlier version of this patch did this type checking for one
particular instance where a string attribute was being decoded.
The situation that I was attempting to handle in that earlier patch is
this:
The Texas Instruments compiler uses the encoding for
DW_AT_MIPS_linkage_name for other purposes. TI uses the encoding,
0x2007, for TI_AT_TI_end_line which, unlike DW_AT_MIPS_linkage_name,
does not have a string-typed value. In this instance, GDB was attempting
to use an integer value as a string pointer, with predictable results.
(GDB would die with a segmentation fault.)
I've added a test which reproduces the problem that I was orignally
wanting to fix. It uses DW_AT_MIPS_linkage name with an associate
value which is a string, and again, where the value is a small
integer.
My test case causes GDB to segfault in an unpatched GDB. There
will be two PASSes in a patched GDB.
Unpatched GDB:
(gdb) ptype f
ERROR: Process no longer exists
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ERROR: Couldn't send ptype g to GDB.
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
Patched GDB:
(gdb) ptype f
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ptype g
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
I see no regressions on an x86_64 native target.
gdb/ChangeLog:
* dwarf2read.c (dwarf2_string_attr): New function.
(lookup_dwo_unit, process_psymtab_comp_unit_reader)
(dwarf2_compute_name, dwarf2_physname, find_file_and_directory)
(read_call_site_scope, namespace_name, guess_full_die_structure_name)
(anonymous_struct_prefix, prepare_one_comp_unit): Use
dwarf2_string_attr in place of dwarf2_attr and DW_STRING.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-bad-mips-linkage-name.c: New file.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp: New file.
2015-08-03 21:17:17 +00:00
|
|
|
# Copyright 2015 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU General Public License as published by
|
|
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
load_lib dwarf.exp
|
|
|
|
|
|
|
|
# This test can only be run on targets which support DWARF-2 and use gas.
|
|
|
|
if {![dwarf2_support]} {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
standard_testfile dw2-bad-mips-linkage-name.c dw2-bad-mips-linkage-name.S
|
|
|
|
|
|
|
|
# Set up the DWARF for the test.
|
|
|
|
|
|
|
|
set asm_file [standard_output_file $srcfile2]
|
|
|
|
Dwarf::assemble $asm_file {
|
|
|
|
cu {} {
|
|
|
|
DW_TAG_compile_unit {
|
|
|
|
{DW_AT_language @DW_LANG_C}
|
|
|
|
{DW_AT_name dw2-bad-mips-linkage-name.c}
|
|
|
|
{DW_AT_comp_dir /tmp}
|
|
|
|
|
|
|
|
} {
|
|
|
|
declare_labels b_l
|
|
|
|
|
|
|
|
b_l: DW_TAG_base_type {
|
|
|
|
{DW_AT_byte_size 1 DW_FORM_sdata}
|
|
|
|
{DW_AT_encoding @DW_ATE_signed}
|
|
|
|
{DW_AT_name bool}
|
|
|
|
}
|
|
|
|
DW_TAG_subprogram {
|
|
|
|
{name f}
|
gdb.dwarf2: Define and use gdb_target_symbol for symbol prefixes
Some of the tests in gdb.dwarf2 which use Dwarf::assemble refer to
(minimal/linker) symbols created in the course of building a small
test program. Some targets use a prefix such as underscore ("_") on
these symbols. Many of the tests in gdb.dwarf2 do not take this into
account. As a consequence, these tests fail to build, resulting
either in failures or untested testcases.
Here is an example from gdb.dwarf2/dw2-regno-invalid.exp:
Dwarf::assemble $asm_file {
cu {} {
compile_unit {
{low_pc main DW_FORM_addr}
{high_pc main+0x10000 DW_FORM_addr}
} {
...
}
For targets which require an underscore prefix on linker symbols,
the two occurrences of "main" would have to have a prepended underscore,
i.e. _main instead of main.
For the above case, a call to the new proc gdb_target_symbol is used
prepend the correct prefix to the symbol. I.e. the above code is
rewritten (as shown in the patch) as follows:
Dwarf::assemble $asm_file {
cu {} {
compile_unit {
{low_pc [gdb_target_symbol main] DW_FORM_addr}
{high_pc [gdb_target_symbol main]+0x10000 DW_FORM_addr}
} {
...
}
I also found it necessary to make an adjustment to lib/dwarf.exp so that
expressions of more than just one list element can be used in DW_TAG_...
constructs. Both atomic-type.exp and dw2-bad-mips-linkage-name.exp require
this new functionality.
gdb/testsuite/ChangeLog:
* lib/gdb.exp (gdb_target_symbol_prefix, gdb_target_symbol):
New procs.
* lib/dwarf.exp (_handle_DW_TAG): Handle attribute values,
representing expressions, of more than one list element.
* gdb.dwarf2/atomic-type.exp (Dwarf::assemble): Use gdb_target_symbol
to prepend linker symbol prefix to f.
* gdb.dwarf2/data-loc.exp (Dwarf::assemble): Likewise, for
table_1 and table_2.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp (Dwarf::assemble):
Likewise, for f and g.
* gdb.dwarf2/dw2-ifort-parameter.exp (Dwarf::assemble): Likewise,
for ptr.
* gdb.dwarf2/dw2-regno-invalid.exp (Dwarf::assemble): Likewise,
for main.
* gdb.dwarf2/dynarr-ptr.exp (Dwarf::assemble): Likewise, for
table_1_ptr and table_2_ptr.
2015-10-28 18:36:06 +00:00
|
|
|
{low_pc [gdb_target_symbol f] addr}
|
dwarf2read.c: Check type of string valued attributes prior to decoding.
This change introduces a new function, dwarf2_string_attr(), which is
a wrapper for dwarf2_attr(). dwarf2read.c has been updated to
call dwarf2_string_attr in most instances where a string-valued
attribute is decoded to produce a string value. In most cases, it
simplifies the code; in some instances, the complexity of the code
remains unchanged.
I performed this change by looking for instances where the
result of DW_STRING was used in an assignment. Many of these
had a pattern which (roughly) looks something like this:
struct attribute *attr = NULL;
attr = dwarf2_attr (die, name, cu);
if (attr != NULL && DW_STRING (attr))
{
const char *str;
...
str = DW_STRING (attr);
... /* Use str in some fashion. */
}
Code of this form is transformed to look like this instead:
const char *str;
str = dwarf2_string_attr (die, name, cu)
if (str != NULL)
{
...
/* Use str in some fashion. */
...
}
In addition to invoking dwarf2_attr() and DW_STRING(),
dwarf2_string_attr() checks to make sure that the attribute's
`form' field matches one of DW_FORM_strp, DW_FORM_string, or
DW_FORM_GNU_strp_alt. If it does not match one of these forms,
it will return a NULL value in addition to calling complaint().
An earlier version of this patch did this type checking for one
particular instance where a string attribute was being decoded.
The situation that I was attempting to handle in that earlier patch is
this:
The Texas Instruments compiler uses the encoding for
DW_AT_MIPS_linkage_name for other purposes. TI uses the encoding,
0x2007, for TI_AT_TI_end_line which, unlike DW_AT_MIPS_linkage_name,
does not have a string-typed value. In this instance, GDB was attempting
to use an integer value as a string pointer, with predictable results.
(GDB would die with a segmentation fault.)
I've added a test which reproduces the problem that I was orignally
wanting to fix. It uses DW_AT_MIPS_linkage name with an associate
value which is a string, and again, where the value is a small
integer.
My test case causes GDB to segfault in an unpatched GDB. There
will be two PASSes in a patched GDB.
Unpatched GDB:
(gdb) ptype f
ERROR: Process no longer exists
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ERROR: Couldn't send ptype g to GDB.
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
Patched GDB:
(gdb) ptype f
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ptype g
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
I see no regressions on an x86_64 native target.
gdb/ChangeLog:
* dwarf2read.c (dwarf2_string_attr): New function.
(lookup_dwo_unit, process_psymtab_comp_unit_reader)
(dwarf2_compute_name, dwarf2_physname, find_file_and_directory)
(read_call_site_scope, namespace_name, guess_full_die_structure_name)
(anonymous_struct_prefix, prepare_one_comp_unit): Use
dwarf2_string_attr in place of dwarf2_attr and DW_STRING.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-bad-mips-linkage-name.c: New file.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp: New file.
2015-08-03 21:17:17 +00:00
|
|
|
{high_pc f_end_lbl addr}
|
|
|
|
{type :$b_l}
|
|
|
|
{DW_AT_MIPS_linkage_name _Z1fv}
|
|
|
|
}
|
|
|
|
DW_TAG_subprogram {
|
|
|
|
{name g}
|
gdb.dwarf2: Define and use gdb_target_symbol for symbol prefixes
Some of the tests in gdb.dwarf2 which use Dwarf::assemble refer to
(minimal/linker) symbols created in the course of building a small
test program. Some targets use a prefix such as underscore ("_") on
these symbols. Many of the tests in gdb.dwarf2 do not take this into
account. As a consequence, these tests fail to build, resulting
either in failures or untested testcases.
Here is an example from gdb.dwarf2/dw2-regno-invalid.exp:
Dwarf::assemble $asm_file {
cu {} {
compile_unit {
{low_pc main DW_FORM_addr}
{high_pc main+0x10000 DW_FORM_addr}
} {
...
}
For targets which require an underscore prefix on linker symbols,
the two occurrences of "main" would have to have a prepended underscore,
i.e. _main instead of main.
For the above case, a call to the new proc gdb_target_symbol is used
prepend the correct prefix to the symbol. I.e. the above code is
rewritten (as shown in the patch) as follows:
Dwarf::assemble $asm_file {
cu {} {
compile_unit {
{low_pc [gdb_target_symbol main] DW_FORM_addr}
{high_pc [gdb_target_symbol main]+0x10000 DW_FORM_addr}
} {
...
}
I also found it necessary to make an adjustment to lib/dwarf.exp so that
expressions of more than just one list element can be used in DW_TAG_...
constructs. Both atomic-type.exp and dw2-bad-mips-linkage-name.exp require
this new functionality.
gdb/testsuite/ChangeLog:
* lib/gdb.exp (gdb_target_symbol_prefix, gdb_target_symbol):
New procs.
* lib/dwarf.exp (_handle_DW_TAG): Handle attribute values,
representing expressions, of more than one list element.
* gdb.dwarf2/atomic-type.exp (Dwarf::assemble): Use gdb_target_symbol
to prepend linker symbol prefix to f.
* gdb.dwarf2/data-loc.exp (Dwarf::assemble): Likewise, for
table_1 and table_2.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp (Dwarf::assemble):
Likewise, for f and g.
* gdb.dwarf2/dw2-ifort-parameter.exp (Dwarf::assemble): Likewise,
for ptr.
* gdb.dwarf2/dw2-regno-invalid.exp (Dwarf::assemble): Likewise,
for main.
* gdb.dwarf2/dynarr-ptr.exp (Dwarf::assemble): Likewise, for
table_1_ptr and table_2_ptr.
2015-10-28 18:36:06 +00:00
|
|
|
{low_pc [gdb_target_symbol g] addr}
|
dwarf2read.c: Check type of string valued attributes prior to decoding.
This change introduces a new function, dwarf2_string_attr(), which is
a wrapper for dwarf2_attr(). dwarf2read.c has been updated to
call dwarf2_string_attr in most instances where a string-valued
attribute is decoded to produce a string value. In most cases, it
simplifies the code; in some instances, the complexity of the code
remains unchanged.
I performed this change by looking for instances where the
result of DW_STRING was used in an assignment. Many of these
had a pattern which (roughly) looks something like this:
struct attribute *attr = NULL;
attr = dwarf2_attr (die, name, cu);
if (attr != NULL && DW_STRING (attr))
{
const char *str;
...
str = DW_STRING (attr);
... /* Use str in some fashion. */
}
Code of this form is transformed to look like this instead:
const char *str;
str = dwarf2_string_attr (die, name, cu)
if (str != NULL)
{
...
/* Use str in some fashion. */
...
}
In addition to invoking dwarf2_attr() and DW_STRING(),
dwarf2_string_attr() checks to make sure that the attribute's
`form' field matches one of DW_FORM_strp, DW_FORM_string, or
DW_FORM_GNU_strp_alt. If it does not match one of these forms,
it will return a NULL value in addition to calling complaint().
An earlier version of this patch did this type checking for one
particular instance where a string attribute was being decoded.
The situation that I was attempting to handle in that earlier patch is
this:
The Texas Instruments compiler uses the encoding for
DW_AT_MIPS_linkage_name for other purposes. TI uses the encoding,
0x2007, for TI_AT_TI_end_line which, unlike DW_AT_MIPS_linkage_name,
does not have a string-typed value. In this instance, GDB was attempting
to use an integer value as a string pointer, with predictable results.
(GDB would die with a segmentation fault.)
I've added a test which reproduces the problem that I was orignally
wanting to fix. It uses DW_AT_MIPS_linkage name with an associate
value which is a string, and again, where the value is a small
integer.
My test case causes GDB to segfault in an unpatched GDB. There
will be two PASSes in a patched GDB.
Unpatched GDB:
(gdb) ptype f
ERROR: Process no longer exists
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ERROR: Couldn't send ptype g to GDB.
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
Patched GDB:
(gdb) ptype f
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ptype g
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
I see no regressions on an x86_64 native target.
gdb/ChangeLog:
* dwarf2read.c (dwarf2_string_attr): New function.
(lookup_dwo_unit, process_psymtab_comp_unit_reader)
(dwarf2_compute_name, dwarf2_physname, find_file_and_directory)
(read_call_site_scope, namespace_name, guess_full_die_structure_name)
(anonymous_struct_prefix, prepare_one_comp_unit): Use
dwarf2_string_attr in place of dwarf2_attr and DW_STRING.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-bad-mips-linkage-name.c: New file.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp: New file.
2015-08-03 21:17:17 +00:00
|
|
|
{high_pc g_end_lbl addr}
|
|
|
|
{type :$b_l}
|
|
|
|
{DW_AT_MIPS_linkage_name 42 DW_FORM_data1}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if { [prepare_for_testing ${testfile}.exp ${testfile} \
|
|
|
|
[list $srcfile $asm_file] {nodebug}] } {
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
|
|
|
|
# A successful run will have two PASSes. A GDB that's lacking
|
|
|
|
# attribute type checking will segfault at some point. It doesn't
|
|
|
|
# much matter what we test here, so long as we do something to make
|
|
|
|
# sure that the DWARF is read.
|
|
|
|
|
|
|
|
gdb_test "ptype f" " = bool \\(\\)"
|
|
|
|
gdb_test "ptype g" " = bool \\(\\)"
|