1999-04-16 01:35:26 +00:00
|
|
|
|
/* Support routines for building symbol tables in GDB's internal format.
|
2001-03-06 08:22:02 +00:00
|
|
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
|
|
|
|
1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This file is part of GDB.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
1999-07-07 20:19:36 +00:00
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* This module provides subroutines used for creating and adding to
|
|
|
|
|
the symbol table. These routines are called from various symbol-
|
|
|
|
|
file-reading routines.
|
|
|
|
|
|
|
|
|
|
Routines to support specific debugging information formats (stabs,
|
|
|
|
|
DWARF, etc) belong somewhere else. */
|
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
#include "obstack.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "symfile.h" /* Needed for "struct complaint" */
|
|
|
|
|
#include "objfiles.h"
|
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
|
#include "complaints.h"
|
|
|
|
|
#include "gdb_string.h"
|
2000-02-21 03:04:19 +00:00
|
|
|
|
#include "expression.h" /* For "enum exp_opcode" used by... */
|
2000-02-21 02:51:07 +00:00
|
|
|
|
#include "language.h" /* For "longest_local_hex_string_custom" */
|
2000-06-05 20:49:53 +00:00
|
|
|
|
#include "bcache.h"
|
2001-04-30 10:30:27 +00:00
|
|
|
|
#include "filenames.h" /* For DOSish file names */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Ask buildsym.h to define the vars it normally declares `extern'. */
|
1999-07-07 20:19:36 +00:00
|
|
|
|
#define EXTERN
|
|
|
|
|
/**/
|
1999-04-16 01:35:26 +00:00
|
|
|
|
#include "buildsym.h" /* Our own declarations */
|
|
|
|
|
#undef EXTERN
|
|
|
|
|
|
|
|
|
|
/* For cleanup_undefined_types and finish_global_stabs (somewhat
|
|
|
|
|
questionable--see comment where we call them). */
|
|
|
|
|
|
|
|
|
|
#include "stabsread.h"
|
|
|
|
|
|
|
|
|
|
/* List of free `struct pending' structures for reuse. */
|
|
|
|
|
|
|
|
|
|
static struct pending *free_pendings;
|
|
|
|
|
|
|
|
|
|
/* Non-zero if symtab has line number info. This prevents an
|
|
|
|
|
otherwise empty symtab from being tossed. */
|
|
|
|
|
|
|
|
|
|
static int have_line_numbers;
|
|
|
|
|
|
|
|
|
|
static int compare_line_numbers (const void *ln1p, const void *ln2p);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Initial sizes of data structures. These are realloc'd larger if
|
|
|
|
|
needed, and realloc'd down to the size actually used, when
|
|
|
|
|
completed. */
|
|
|
|
|
|
|
|
|
|
#define INITIAL_CONTEXT_STACK_SIZE 10
|
|
|
|
|
#define INITIAL_LINE_VECTOR_LENGTH 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Complaints about the symbols we have encountered. */
|
|
|
|
|
|
|
|
|
|
struct complaint block_end_complaint =
|
|
|
|
|
{"block end address less than block start address in %s (patched it)", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint anon_block_end_complaint =
|
|
|
|
|
{"block end address 0x%lx less than block start address 0x%lx (patched it)", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint innerblock_complaint =
|
|
|
|
|
{"inner block not inside outer block in %s", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint innerblock_anon_complaint =
|
|
|
|
|
{"inner block (0x%lx-0x%lx) not inside outer block (0x%lx-0x%lx)", 0, 0};
|
|
|
|
|
|
|
|
|
|
struct complaint blockvector_complaint =
|
2000-02-18 22:15:46 +00:00
|
|
|
|
{"block at %s out of order", 0, 0};
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* maintain the lists of symbols and blocks */
|
|
|
|
|
|
2000-02-18 22:15:46 +00:00
|
|
|
|
/* Add a pending list to free_pendings. */
|
|
|
|
|
void
|
|
|
|
|
add_free_pendings (struct pending *list)
|
|
|
|
|
{
|
|
|
|
|
register struct pending *link = list;
|
|
|
|
|
|
|
|
|
|
if (list)
|
|
|
|
|
{
|
|
|
|
|
while (link->next) link = link->next;
|
|
|
|
|
link->next = free_pendings;
|
|
|
|
|
free_pendings = list;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Add a symbol to one of the lists of symbols. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
|
|
|
|
|
{
|
|
|
|
|
register struct pending *link;
|
|
|
|
|
|
|
|
|
|
/* If this is an alias for another symbol, don't add it. */
|
|
|
|
|
if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We keep PENDINGSIZE symbols in each link of the list. If we
|
|
|
|
|
don't have a link with room in it, add a new link. */
|
|
|
|
|
if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
|
|
|
|
|
{
|
|
|
|
|
if (free_pendings)
|
|
|
|
|
{
|
|
|
|
|
link = free_pendings;
|
|
|
|
|
free_pendings = link->next;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
link = (struct pending *) xmalloc (sizeof (struct pending));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
link->next = *listhead;
|
|
|
|
|
*listhead = link;
|
|
|
|
|
link->nsyms = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
(*listhead)->symbol[(*listhead)->nsyms++] = symbol;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find a symbol named NAME on a LIST. NAME need not be
|
|
|
|
|
'\0'-terminated; LENGTH is the length of the name. */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
|
|
|
|
find_symbol_in_list (struct pending *list, char *name, int length)
|
|
|
|
|
{
|
|
|
|
|
int j;
|
|
|
|
|
char *pp;
|
|
|
|
|
|
|
|
|
|
while (list != NULL)
|
|
|
|
|
{
|
|
|
|
|
for (j = list->nsyms; --j >= 0;)
|
|
|
|
|
{
|
|
|
|
|
pp = SYMBOL_NAME (list->symbol[j]);
|
|
|
|
|
if (*pp == *name && strncmp (pp, name, length) == 0 &&
|
|
|
|
|
pp[length] == '\0')
|
|
|
|
|
{
|
|
|
|
|
return (list->symbol[j]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
list = list->next;
|
|
|
|
|
}
|
|
|
|
|
return (NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At end of reading syms, or in case of quit, really free as many
|
|
|
|
|
`struct pending's as we can easily find. */
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
void
|
1999-08-02 23:48:37 +00:00
|
|
|
|
really_free_pendings (PTR dummy)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
struct pending *next, *next1;
|
|
|
|
|
|
|
|
|
|
for (next = free_pendings; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) next);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
free_pendings = NULL;
|
|
|
|
|
|
|
|
|
|
free_pending_blocks ();
|
|
|
|
|
|
|
|
|
|
for (next = file_symbols; next != NULL; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) next);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
file_symbols = NULL;
|
|
|
|
|
|
|
|
|
|
for (next = global_symbols; next != NULL; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) next);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
global_symbols = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function is called to discard any pending blocks. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
free_pending_blocks (void)
|
|
|
|
|
{
|
|
|
|
|
#if 0 /* Now we make the links in the
|
|
|
|
|
symbol_obstack, so don't free
|
|
|
|
|
them. */
|
|
|
|
|
struct pending_block *bnext, *bnext1;
|
|
|
|
|
|
|
|
|
|
for (bnext = pending_blocks; bnext; bnext = bnext1)
|
|
|
|
|
{
|
|
|
|
|
bnext1 = bnext->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) bnext);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
pending_blocks = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Take one of the lists of symbols and make a block from it. Keep
|
|
|
|
|
the order the symbols have in the list (reversed from the input
|
|
|
|
|
file). Put the block on the list of pending blocks. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
finish_block (struct symbol *symbol, struct pending **listhead,
|
|
|
|
|
struct pending_block *old_blocks,
|
|
|
|
|
CORE_ADDR start, CORE_ADDR end,
|
|
|
|
|
struct objfile *objfile)
|
|
|
|
|
{
|
|
|
|
|
register struct pending *next, *next1;
|
|
|
|
|
register struct block *block;
|
|
|
|
|
register struct pending_block *pblock;
|
|
|
|
|
struct pending_block *opblock;
|
|
|
|
|
register int i;
|
|
|
|
|
register int j;
|
|
|
|
|
|
|
|
|
|
/* Count the length of the list of symbols. */
|
|
|
|
|
|
|
|
|
|
for (next = *listhead, i = 0;
|
|
|
|
|
next;
|
|
|
|
|
i += next->nsyms, next = next->next)
|
|
|
|
|
{
|
|
|
|
|
/* EMPTY */ ;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
block = (struct block *) obstack_alloc (&objfile->symbol_obstack,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
(sizeof (struct block) + ((i - 1) * sizeof (struct symbol *))));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Copy the symbols into the block. */
|
|
|
|
|
|
|
|
|
|
BLOCK_NSYMS (block) = i;
|
|
|
|
|
for (next = *listhead; next; next = next->next)
|
|
|
|
|
{
|
|
|
|
|
for (j = next->nsyms - 1; j >= 0; j--)
|
|
|
|
|
{
|
|
|
|
|
BLOCK_SYM (block, --i) = next->symbol[j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BLOCK_START (block) = start;
|
|
|
|
|
BLOCK_END (block) = end;
|
|
|
|
|
/* Superblock filled in when containing block is made */
|
|
|
|
|
BLOCK_SUPERBLOCK (block) = NULL;
|
|
|
|
|
|
|
|
|
|
BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
|
|
|
|
|
|
|
|
|
|
/* Put the block in as the value of the symbol that names it. */
|
|
|
|
|
|
|
|
|
|
if (symbol)
|
|
|
|
|
{
|
|
|
|
|
struct type *ftype = SYMBOL_TYPE (symbol);
|
|
|
|
|
SYMBOL_BLOCK_VALUE (symbol) = block;
|
|
|
|
|
BLOCK_FUNCTION (block) = symbol;
|
|
|
|
|
|
|
|
|
|
if (TYPE_NFIELDS (ftype) <= 0)
|
|
|
|
|
{
|
|
|
|
|
/* No parameter type information is recorded with the
|
|
|
|
|
function's type. Set that from the type of the
|
|
|
|
|
parameter symbols. */
|
|
|
|
|
int nparams = 0, iparams;
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (block); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (block, i);
|
|
|
|
|
switch (SYMBOL_CLASS (sym))
|
|
|
|
|
{
|
|
|
|
|
case LOC_ARG:
|
|
|
|
|
case LOC_REF_ARG:
|
|
|
|
|
case LOC_REGPARM:
|
|
|
|
|
case LOC_REGPARM_ADDR:
|
|
|
|
|
case LOC_BASEREG_ARG:
|
|
|
|
|
case LOC_LOCAL_ARG:
|
|
|
|
|
nparams++;
|
|
|
|
|
break;
|
|
|
|
|
case LOC_UNDEF:
|
|
|
|
|
case LOC_CONST:
|
|
|
|
|
case LOC_STATIC:
|
|
|
|
|
case LOC_INDIRECT:
|
|
|
|
|
case LOC_REGISTER:
|
|
|
|
|
case LOC_LOCAL:
|
|
|
|
|
case LOC_TYPEDEF:
|
|
|
|
|
case LOC_LABEL:
|
|
|
|
|
case LOC_BLOCK:
|
|
|
|
|
case LOC_CONST_BYTES:
|
|
|
|
|
case LOC_BASEREG:
|
|
|
|
|
case LOC_UNRESOLVED:
|
|
|
|
|
case LOC_OPTIMIZED_OUT:
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (nparams > 0)
|
|
|
|
|
{
|
|
|
|
|
TYPE_NFIELDS (ftype) = nparams;
|
|
|
|
|
TYPE_FIELDS (ftype) = (struct field *)
|
|
|
|
|
TYPE_ALLOC (ftype, nparams * sizeof (struct field));
|
|
|
|
|
|
|
|
|
|
for (i = iparams = 0; iparams < nparams; i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (block, i);
|
|
|
|
|
switch (SYMBOL_CLASS (sym))
|
|
|
|
|
{
|
|
|
|
|
case LOC_ARG:
|
|
|
|
|
case LOC_REF_ARG:
|
|
|
|
|
case LOC_REGPARM:
|
|
|
|
|
case LOC_REGPARM_ADDR:
|
|
|
|
|
case LOC_BASEREG_ARG:
|
|
|
|
|
case LOC_LOCAL_ARG:
|
|
|
|
|
TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
|
|
|
|
|
iparams++;
|
|
|
|
|
break;
|
|
|
|
|
case LOC_UNDEF:
|
|
|
|
|
case LOC_CONST:
|
|
|
|
|
case LOC_STATIC:
|
|
|
|
|
case LOC_INDIRECT:
|
|
|
|
|
case LOC_REGISTER:
|
|
|
|
|
case LOC_LOCAL:
|
|
|
|
|
case LOC_TYPEDEF:
|
|
|
|
|
case LOC_LABEL:
|
|
|
|
|
case LOC_BLOCK:
|
|
|
|
|
case LOC_CONST_BYTES:
|
|
|
|
|
case LOC_BASEREG:
|
|
|
|
|
case LOC_UNRESOLVED:
|
|
|
|
|
case LOC_OPTIMIZED_OUT:
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
BLOCK_FUNCTION (block) = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now "free" the links of the list, and empty the list. */
|
|
|
|
|
|
|
|
|
|
for (next = *listhead; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
|
|
|
|
next->next = free_pendings;
|
|
|
|
|
free_pendings = next;
|
|
|
|
|
}
|
|
|
|
|
*listhead = NULL;
|
|
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
|
/* Check to be sure that the blocks have an end address that is
|
|
|
|
|
greater than starting address */
|
|
|
|
|
|
|
|
|
|
if (BLOCK_END (block) < BLOCK_START (block))
|
|
|
|
|
{
|
|
|
|
|
if (symbol)
|
|
|
|
|
{
|
|
|
|
|
complain (&block_end_complaint, SYMBOL_SOURCE_NAME (symbol));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
complain (&anon_block_end_complaint, BLOCK_END (block), BLOCK_START (block));
|
|
|
|
|
}
|
|
|
|
|
/* Better than nothing */
|
|
|
|
|
BLOCK_END (block) = BLOCK_START (block);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Install this block as the superblock of all blocks made since the
|
|
|
|
|
start of this scope that don't have superblocks yet. */
|
|
|
|
|
|
|
|
|
|
opblock = NULL;
|
|
|
|
|
for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
|
|
|
|
|
{
|
|
|
|
|
if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
|
|
|
|
|
{
|
|
|
|
|
#if 1
|
|
|
|
|
/* Check to be sure the blocks are nested as we receive
|
|
|
|
|
them. If the compiler/assembler/linker work, this just
|
|
|
|
|
burns a small amount of time. */
|
|
|
|
|
if (BLOCK_START (pblock->block) < BLOCK_START (block) ||
|
|
|
|
|
BLOCK_END (pblock->block) > BLOCK_END (block))
|
|
|
|
|
{
|
|
|
|
|
if (symbol)
|
|
|
|
|
{
|
|
|
|
|
complain (&innerblock_complaint,
|
|
|
|
|
SYMBOL_SOURCE_NAME (symbol));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
complain (&innerblock_anon_complaint, BLOCK_START (pblock->block),
|
1999-07-07 20:19:36 +00:00
|
|
|
|
BLOCK_END (pblock->block), BLOCK_START (block),
|
1999-04-16 01:35:26 +00:00
|
|
|
|
BLOCK_END (block));
|
|
|
|
|
}
|
|
|
|
|
if (BLOCK_START (pblock->block) < BLOCK_START (block))
|
|
|
|
|
BLOCK_START (pblock->block) = BLOCK_START (block);
|
|
|
|
|
if (BLOCK_END (pblock->block) > BLOCK_END (block))
|
|
|
|
|
BLOCK_END (pblock->block) = BLOCK_END (block);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
BLOCK_SUPERBLOCK (pblock->block) = block;
|
|
|
|
|
}
|
|
|
|
|
opblock = pblock;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
record_pending_block (objfile, block, opblock);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record BLOCK on the list of all blocks in the file. Put it after
|
|
|
|
|
OPBLOCK, or at the beginning if opblock is NULL. This puts the
|
|
|
|
|
block in the list after all its subblocks.
|
|
|
|
|
|
|
|
|
|
Allocate the pending block struct in the symbol_obstack to save
|
|
|
|
|
time. This wastes a little space. FIXME: Is it worth it? */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
record_pending_block (struct objfile *objfile, struct block *block,
|
|
|
|
|
struct pending_block *opblock)
|
|
|
|
|
{
|
|
|
|
|
register struct pending_block *pblock;
|
|
|
|
|
|
|
|
|
|
pblock = (struct pending_block *)
|
|
|
|
|
obstack_alloc (&objfile->symbol_obstack, sizeof (struct pending_block));
|
|
|
|
|
pblock->block = block;
|
|
|
|
|
if (opblock)
|
|
|
|
|
{
|
|
|
|
|
pblock->next = opblock->next;
|
|
|
|
|
opblock->next = pblock;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
pblock->next = pending_blocks;
|
|
|
|
|
pending_blocks = pblock;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Note that this is only used in this file and in dstread.c, which
|
|
|
|
|
should be fixed to not need direct access to this function. When
|
|
|
|
|
that is done, it can be made static again. */
|
|
|
|
|
|
|
|
|
|
struct blockvector *
|
|
|
|
|
make_blockvector (struct objfile *objfile)
|
|
|
|
|
{
|
|
|
|
|
register struct pending_block *next;
|
|
|
|
|
register struct blockvector *blockvector;
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
/* Count the length of the list of blocks. */
|
|
|
|
|
|
|
|
|
|
for (next = pending_blocks, i = 0; next; next = next->next, i++)
|
|
|
|
|
{;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
blockvector = (struct blockvector *)
|
|
|
|
|
obstack_alloc (&objfile->symbol_obstack,
|
|
|
|
|
(sizeof (struct blockvector)
|
|
|
|
|
+ (i - 1) * sizeof (struct block *)));
|
|
|
|
|
|
|
|
|
|
/* Copy the blocks into the blockvector. This is done in reverse
|
|
|
|
|
order, which happens to put the blocks into the proper order
|
|
|
|
|
(ascending starting address). finish_block has hair to insert
|
|
|
|
|
each block into the list after its subblocks in order to make
|
|
|
|
|
sure this is true. */
|
|
|
|
|
|
|
|
|
|
BLOCKVECTOR_NBLOCKS (blockvector) = i;
|
|
|
|
|
for (next = pending_blocks; next; next = next->next)
|
|
|
|
|
{
|
|
|
|
|
BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0 /* Now we make the links in the
|
|
|
|
|
obstack, so don't free them. */
|
|
|
|
|
/* Now free the links of the list, and empty the list. */
|
|
|
|
|
|
|
|
|
|
for (next = pending_blocks; next; next = next1)
|
|
|
|
|
{
|
|
|
|
|
next1 = next->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree (next);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
pending_blocks = NULL;
|
|
|
|
|
|
|
|
|
|
#if 1 /* FIXME, shut this off after a while
|
|
|
|
|
to speed up symbol reading. */
|
|
|
|
|
/* Some compilers output blocks in the wrong order, but we depend on
|
|
|
|
|
their being in the right order so we can binary search. Check the
|
|
|
|
|
order and moan about it. FIXME. */
|
|
|
|
|
if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
|
|
|
|
|
{
|
|
|
|
|
for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
|
|
|
|
|
{
|
|
|
|
|
if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
|
|
|
|
|
> BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
|
|
|
|
|
{
|
2000-02-18 22:15:46 +00:00
|
|
|
|
CORE_ADDR start
|
|
|
|
|
= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
complain (&blockvector_complaint,
|
2000-02-18 22:15:46 +00:00
|
|
|
|
longest_local_hex_string ((LONGEST) start));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return (blockvector);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Start recording information about source code that came from an
|
|
|
|
|
included (or otherwise merged-in) source file with a different
|
|
|
|
|
name. NAME is the name of the file (cannot be NULL), DIRNAME is
|
|
|
|
|
the directory in which it resides (or NULL if not known). */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
start_subfile (char *name, char *dirname)
|
|
|
|
|
{
|
|
|
|
|
register struct subfile *subfile;
|
|
|
|
|
|
|
|
|
|
/* See if this subfile is already known as a subfile of the current
|
|
|
|
|
main source file. */
|
|
|
|
|
|
|
|
|
|
for (subfile = subfiles; subfile; subfile = subfile->next)
|
|
|
|
|
{
|
2001-04-30 10:30:27 +00:00
|
|
|
|
if (FILENAME_CMP (subfile->name, name) == 0)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
current_subfile = subfile;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This subfile is not known. Add an entry for it. Make an entry
|
|
|
|
|
for this subfile in the list of all subfiles of the current main
|
|
|
|
|
source file. */
|
|
|
|
|
|
|
|
|
|
subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
|
2000-02-18 22:15:46 +00:00
|
|
|
|
memset ((char *) subfile, 0, sizeof (struct subfile));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
subfile->next = subfiles;
|
|
|
|
|
subfiles = subfile;
|
|
|
|
|
current_subfile = subfile;
|
|
|
|
|
|
|
|
|
|
/* Save its name and compilation directory name */
|
|
|
|
|
subfile->name = (name == NULL) ? NULL : savestring (name, strlen (name));
|
|
|
|
|
subfile->dirname =
|
|
|
|
|
(dirname == NULL) ? NULL : savestring (dirname, strlen (dirname));
|
|
|
|
|
|
|
|
|
|
/* Initialize line-number recording for this subfile. */
|
|
|
|
|
subfile->line_vector = NULL;
|
|
|
|
|
|
|
|
|
|
/* Default the source language to whatever can be deduced from the
|
|
|
|
|
filename. If nothing can be deduced (such as for a C/C++ include
|
|
|
|
|
file with a ".h" extension), then inherit whatever language the
|
|
|
|
|
previous subfile had. This kludgery is necessary because there
|
|
|
|
|
is no standard way in some object formats to record the source
|
|
|
|
|
language. Also, when symtabs are allocated we try to deduce a
|
|
|
|
|
language then as well, but it is too late for us to use that
|
|
|
|
|
information while reading symbols, since symtabs aren't allocated
|
|
|
|
|
until after all the symbols have been processed for a given
|
|
|
|
|
source file. */
|
|
|
|
|
|
|
|
|
|
subfile->language = deduce_language_from_filename (subfile->name);
|
|
|
|
|
if (subfile->language == language_unknown &&
|
|
|
|
|
subfile->next != NULL)
|
|
|
|
|
{
|
|
|
|
|
subfile->language = subfile->next->language;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize the debug format string to NULL. We may supply it
|
|
|
|
|
later via a call to record_debugformat. */
|
|
|
|
|
subfile->debugformat = NULL;
|
|
|
|
|
|
|
|
|
|
/* cfront output is a C program, so in most ways it looks like a C
|
|
|
|
|
program. But to demangle we need to set the language to C++. We
|
|
|
|
|
can distinguish cfront code by the fact that it has #line
|
|
|
|
|
directives which specify a file name ending in .C.
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
So if the filename of this subfile ends in .C, then change the
|
|
|
|
|
language of any pending subfiles from C to C++. We also accept
|
|
|
|
|
any other C++ suffixes accepted by deduce_language_from_filename
|
|
|
|
|
(in particular, some people use .cxx with cfront). */
|
|
|
|
|
/* Likewise for f2c. */
|
|
|
|
|
|
|
|
|
|
if (subfile->name)
|
|
|
|
|
{
|
|
|
|
|
struct subfile *s;
|
|
|
|
|
enum language sublang = deduce_language_from_filename (subfile->name);
|
|
|
|
|
|
|
|
|
|
if (sublang == language_cplus || sublang == language_fortran)
|
|
|
|
|
for (s = subfiles; s != NULL; s = s->next)
|
|
|
|
|
if (s->language == language_c)
|
|
|
|
|
s->language = sublang;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* And patch up this file if necessary. */
|
|
|
|
|
if (subfile->language == language_c
|
|
|
|
|
&& subfile->next != NULL
|
|
|
|
|
&& (subfile->next->language == language_cplus
|
|
|
|
|
|| subfile->next->language == language_fortran))
|
|
|
|
|
{
|
|
|
|
|
subfile->language = subfile->next->language;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* For stabs readers, the first N_SO symbol is assumed to be the
|
|
|
|
|
source file name, and the subfile struct is initialized using that
|
|
|
|
|
assumption. If another N_SO symbol is later seen, immediately
|
|
|
|
|
following the first one, then the first one is assumed to be the
|
|
|
|
|
directory name and the second one is really the source file name.
|
|
|
|
|
|
|
|
|
|
So we have to patch up the subfile struct by moving the old name
|
|
|
|
|
value to dirname and remembering the new name. Some sanity
|
|
|
|
|
checking is performed to ensure that the state of the subfile
|
|
|
|
|
struct is reasonable and that the old name we are assuming to be a
|
|
|
|
|
directory name actually is (by checking for a trailing '/'). */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
patch_subfile_names (struct subfile *subfile, char *name)
|
|
|
|
|
{
|
|
|
|
|
if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
|
|
|
|
|
&& subfile->name[strlen (subfile->name) - 1] == '/')
|
|
|
|
|
{
|
|
|
|
|
subfile->dirname = subfile->name;
|
|
|
|
|
subfile->name = savestring (name, strlen (name));
|
|
|
|
|
last_source_file = name;
|
|
|
|
|
|
|
|
|
|
/* Default the source language to whatever can be deduced from
|
|
|
|
|
the filename. If nothing can be deduced (such as for a C/C++
|
|
|
|
|
include file with a ".h" extension), then inherit whatever
|
|
|
|
|
language the previous subfile had. This kludgery is
|
|
|
|
|
necessary because there is no standard way in some object
|
|
|
|
|
formats to record the source language. Also, when symtabs
|
|
|
|
|
are allocated we try to deduce a language then as well, but
|
|
|
|
|
it is too late for us to use that information while reading
|
|
|
|
|
symbols, since symtabs aren't allocated until after all the
|
|
|
|
|
symbols have been processed for a given source file. */
|
|
|
|
|
|
|
|
|
|
subfile->language = deduce_language_from_filename (subfile->name);
|
|
|
|
|
if (subfile->language == language_unknown &&
|
|
|
|
|
subfile->next != NULL)
|
|
|
|
|
{
|
|
|
|
|
subfile->language = subfile->next->language;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
|
|
|
|
|
switching source files (different subfiles, as we call them) within
|
|
|
|
|
one object file, but using a stack rather than in an arbitrary
|
|
|
|
|
order. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
push_subfile (void)
|
|
|
|
|
{
|
|
|
|
|
register struct subfile_stack *tem
|
|
|
|
|
= (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
|
|
|
|
|
|
|
|
|
|
tem->next = subfile_stack;
|
|
|
|
|
subfile_stack = tem;
|
|
|
|
|
if (current_subfile == NULL || current_subfile->name == NULL)
|
|
|
|
|
{
|
2001-02-25 04:45:12 +00:00
|
|
|
|
internal_error (__FILE__, __LINE__, "failed internal consistency check");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
tem->name = current_subfile->name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char *
|
|
|
|
|
pop_subfile (void)
|
|
|
|
|
{
|
|
|
|
|
register char *name;
|
|
|
|
|
register struct subfile_stack *link = subfile_stack;
|
|
|
|
|
|
|
|
|
|
if (link == NULL)
|
|
|
|
|
{
|
2001-02-25 04:45:12 +00:00
|
|
|
|
internal_error (__FILE__, __LINE__, "failed internal consistency check");
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
name = link->name;
|
|
|
|
|
subfile_stack = link->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) link);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
return (name);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add a linetable entry for line number LINE and address PC to the
|
|
|
|
|
line vector for SUBFILE. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
record_line (register struct subfile *subfile, int line, CORE_ADDR pc)
|
|
|
|
|
{
|
|
|
|
|
struct linetable_entry *e;
|
|
|
|
|
/* Ignore the dummy line number in libg.o */
|
|
|
|
|
|
|
|
|
|
if (line == 0xffff)
|
|
|
|
|
{
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure line vector exists and is big enough. */
|
|
|
|
|
if (!subfile->line_vector)
|
|
|
|
|
{
|
|
|
|
|
subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
|
|
|
|
|
subfile->line_vector = (struct linetable *)
|
|
|
|
|
xmalloc (sizeof (struct linetable)
|
1999-07-07 20:19:36 +00:00
|
|
|
|
+ subfile->line_vector_length * sizeof (struct linetable_entry));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
subfile->line_vector->nitems = 0;
|
|
|
|
|
have_line_numbers = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
|
|
|
|
|
{
|
|
|
|
|
subfile->line_vector_length *= 2;
|
|
|
|
|
subfile->line_vector = (struct linetable *)
|
|
|
|
|
xrealloc ((char *) subfile->line_vector,
|
|
|
|
|
(sizeof (struct linetable)
|
|
|
|
|
+ (subfile->line_vector_length
|
|
|
|
|
* sizeof (struct linetable_entry))));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
e = subfile->line_vector->item + subfile->line_vector->nitems++;
|
|
|
|
|
e->line = line;
|
2001-04-06 13:14:55 +00:00
|
|
|
|
e->pc = ADDR_BITS_REMOVE(pc);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Needed in order to sort line tables from IBM xcoff files. Sigh! */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
compare_line_numbers (const void *ln1p, const void *ln2p)
|
|
|
|
|
{
|
|
|
|
|
struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
|
|
|
|
|
struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
|
|
|
|
|
|
|
|
|
|
/* Note: this code does not assume that CORE_ADDRs can fit in ints.
|
|
|
|
|
Please keep it that way. */
|
|
|
|
|
if (ln1->pc < ln2->pc)
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
if (ln1->pc > ln2->pc)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* If pc equal, sort by line. I'm not sure whether this is optimum
|
|
|
|
|
behavior (see comment at struct linetable in symtab.h). */
|
|
|
|
|
return ln1->line - ln2->line;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Start a new symtab for a new source file. Called, for example,
|
|
|
|
|
when a stabs symbol of type N_SO is seen, or when a DWARF
|
|
|
|
|
TAG_compile_unit DIE is seen. It indicates the start of data for
|
|
|
|
|
one original source file. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
last_source_file = name;
|
|
|
|
|
last_source_start_addr = start_addr;
|
|
|
|
|
file_symbols = NULL;
|
|
|
|
|
global_symbols = NULL;
|
|
|
|
|
within_function = 0;
|
|
|
|
|
have_line_numbers = 0;
|
|
|
|
|
|
|
|
|
|
/* Context stack is initially empty. Allocate first one with room
|
|
|
|
|
for 10 levels; reuse it forever afterward. */
|
|
|
|
|
if (context_stack == NULL)
|
|
|
|
|
{
|
|
|
|
|
context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
|
|
|
|
|
context_stack = (struct context_stack *)
|
|
|
|
|
xmalloc (context_stack_size * sizeof (struct context_stack));
|
|
|
|
|
}
|
|
|
|
|
context_stack_depth = 0;
|
|
|
|
|
|
|
|
|
|
/* Initialize the list of sub source files with one entry for this
|
|
|
|
|
file (the top-level source file). */
|
|
|
|
|
|
|
|
|
|
subfiles = NULL;
|
|
|
|
|
current_subfile = NULL;
|
|
|
|
|
start_subfile (name, dirname);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish the symbol definitions for one main source file, close off
|
|
|
|
|
all the lexical contexts for that file (creating struct block's for
|
|
|
|
|
them), then make the struct symtab for that file and put it in the
|
|
|
|
|
list of all such.
|
|
|
|
|
|
|
|
|
|
END_ADDR is the address of the end of the file's text. SECTION is
|
|
|
|
|
the section number (in objfile->section_offsets) of the blockvector
|
|
|
|
|
and linetable.
|
|
|
|
|
|
|
|
|
|
Note that it is possible for end_symtab() to return NULL. In
|
|
|
|
|
particular, for the DWARF case at least, it will return NULL when
|
|
|
|
|
it finds a compilation unit that has exactly one DIE, a
|
|
|
|
|
TAG_compile_unit DIE. This can happen when we link in an object
|
|
|
|
|
file that was compiled from an empty source file. Returning NULL
|
|
|
|
|
is probably not the correct thing to do, because then gdb will
|
|
|
|
|
never know about this empty file (FIXME). */
|
|
|
|
|
|
|
|
|
|
struct symtab *
|
|
|
|
|
end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *symtab = NULL;
|
|
|
|
|
register struct blockvector *blockvector;
|
|
|
|
|
register struct subfile *subfile;
|
|
|
|
|
register struct context_stack *cstk;
|
|
|
|
|
struct subfile *nextsub;
|
|
|
|
|
|
|
|
|
|
/* Finish the lexical context of the last function in the file; pop
|
|
|
|
|
the context stack. */
|
|
|
|
|
|
|
|
|
|
if (context_stack_depth > 0)
|
|
|
|
|
{
|
|
|
|
|
cstk = pop_context ();
|
|
|
|
|
/* Make a block for the local symbols within. */
|
|
|
|
|
finish_block (cstk->name, &local_symbols, cstk->old_blocks,
|
|
|
|
|
cstk->start_addr, end_addr, objfile);
|
|
|
|
|
|
|
|
|
|
if (context_stack_depth > 0)
|
|
|
|
|
{
|
|
|
|
|
/* This is said to happen with SCO. The old coffread.c
|
|
|
|
|
code simply emptied the context stack, so we do the
|
|
|
|
|
same. FIXME: Find out why it is happening. This is not
|
|
|
|
|
believed to happen in most cases (even for coffread.c);
|
|
|
|
|
it used to be an abort(). */
|
|
|
|
|
static struct complaint msg =
|
|
|
|
|
{"Context stack not empty in end_symtab", 0, 0};
|
|
|
|
|
complain (&msg);
|
|
|
|
|
context_stack_depth = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Reordered executables may have out of order pending blocks; if
|
|
|
|
|
OBJF_REORDERED is true, then sort the pending blocks. */
|
|
|
|
|
if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME! Remove this horrid bubble sort and use merge sort!!! */
|
|
|
|
|
int swapped;
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
struct pending_block *pb, *pbnext;
|
|
|
|
|
|
|
|
|
|
pb = pending_blocks;
|
|
|
|
|
pbnext = pb->next;
|
|
|
|
|
swapped = 0;
|
|
|
|
|
|
|
|
|
|
while (pbnext)
|
|
|
|
|
{
|
|
|
|
|
/* swap blocks if unordered! */
|
|
|
|
|
|
|
|
|
|
if (BLOCK_START (pb->block) < BLOCK_START (pbnext->block))
|
|
|
|
|
{
|
|
|
|
|
struct block *tmp = pb->block;
|
|
|
|
|
pb->block = pbnext->block;
|
|
|
|
|
pbnext->block = tmp;
|
|
|
|
|
swapped = 1;
|
|
|
|
|
}
|
|
|
|
|
pb = pbnext;
|
|
|
|
|
pbnext = pbnext->next;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
while (swapped);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Cleanup any undefined types that have been left hanging around
|
|
|
|
|
(this needs to be done before the finish_blocks so that
|
|
|
|
|
file_symbols is still good).
|
1999-07-07 20:19:36 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
Both cleanup_undefined_types and finish_global_stabs are stabs
|
|
|
|
|
specific, but harmless for other symbol readers, since on gdb
|
|
|
|
|
startup or when finished reading stabs, the state is set so these
|
|
|
|
|
are no-ops. FIXME: Is this handled right in case of QUIT? Can
|
|
|
|
|
we make this cleaner? */
|
|
|
|
|
|
|
|
|
|
cleanup_undefined_types ();
|
|
|
|
|
finish_global_stabs (objfile);
|
|
|
|
|
|
|
|
|
|
if (pending_blocks == NULL
|
|
|
|
|
&& file_symbols == NULL
|
|
|
|
|
&& global_symbols == NULL
|
|
|
|
|
&& have_line_numbers == 0)
|
|
|
|
|
{
|
|
|
|
|
/* Ignore symtabs that have no functions with real debugging
|
|
|
|
|
info. */
|
|
|
|
|
blockvector = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
|
|
|
|
|
blockvector. */
|
|
|
|
|
finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
|
|
|
|
|
objfile);
|
|
|
|
|
finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
|
|
|
|
|
objfile);
|
|
|
|
|
blockvector = make_blockvector (objfile);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifndef PROCESS_LINENUMBER_HOOK
|
|
|
|
|
#define PROCESS_LINENUMBER_HOOK()
|
|
|
|
|
#endif
|
|
|
|
|
PROCESS_LINENUMBER_HOOK (); /* Needed for xcoff. */
|
|
|
|
|
|
|
|
|
|
/* Now create the symtab objects proper, one for each subfile. */
|
|
|
|
|
/* (The main file is the last one on the chain.) */
|
|
|
|
|
|
|
|
|
|
for (subfile = subfiles; subfile; subfile = nextsub)
|
|
|
|
|
{
|
|
|
|
|
int linetablesize = 0;
|
|
|
|
|
symtab = NULL;
|
|
|
|
|
|
|
|
|
|
/* If we have blocks of symbols, make a symtab. Otherwise, just
|
|
|
|
|
ignore this file and any line number info in it. */
|
|
|
|
|
if (blockvector)
|
|
|
|
|
{
|
|
|
|
|
if (subfile->line_vector)
|
|
|
|
|
{
|
|
|
|
|
linetablesize = sizeof (struct linetable) +
|
|
|
|
|
subfile->line_vector->nitems * sizeof (struct linetable_entry);
|
|
|
|
|
#if 0
|
|
|
|
|
/* I think this is artifact from before it went on the
|
|
|
|
|
obstack. I doubt we'll need the memory between now
|
|
|
|
|
and when we free it later in this function. */
|
|
|
|
|
/* First, shrink the linetable to make more memory. */
|
|
|
|
|
subfile->line_vector = (struct linetable *)
|
|
|
|
|
xrealloc ((char *) subfile->line_vector, linetablesize);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Like the pending blocks, the line table may be
|
|
|
|
|
scrambled in reordered executables. Sort it if
|
|
|
|
|
OBJF_REORDERED is true. */
|
|
|
|
|
if (objfile->flags & OBJF_REORDERED)
|
|
|
|
|
qsort (subfile->line_vector->item,
|
|
|
|
|
subfile->line_vector->nitems,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
sizeof (struct linetable_entry), compare_line_numbers);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now, allocate a symbol table. */
|
|
|
|
|
symtab = allocate_symtab (subfile->name, objfile);
|
|
|
|
|
|
|
|
|
|
/* Fill in its components. */
|
|
|
|
|
symtab->blockvector = blockvector;
|
|
|
|
|
if (subfile->line_vector)
|
|
|
|
|
{
|
|
|
|
|
/* Reallocate the line table on the symbol obstack */
|
|
|
|
|
symtab->linetable = (struct linetable *)
|
|
|
|
|
obstack_alloc (&objfile->symbol_obstack, linetablesize);
|
|
|
|
|
memcpy (symtab->linetable, subfile->line_vector, linetablesize);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
symtab->linetable = NULL;
|
|
|
|
|
}
|
|
|
|
|
symtab->block_line_section = section;
|
|
|
|
|
if (subfile->dirname)
|
|
|
|
|
{
|
|
|
|
|
/* Reallocate the dirname on the symbol obstack */
|
|
|
|
|
symtab->dirname = (char *)
|
|
|
|
|
obstack_alloc (&objfile->symbol_obstack,
|
|
|
|
|
strlen (subfile->dirname) + 1);
|
|
|
|
|
strcpy (symtab->dirname, subfile->dirname);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
symtab->dirname = NULL;
|
|
|
|
|
}
|
|
|
|
|
symtab->free_code = free_linetable;
|
|
|
|
|
symtab->free_ptr = NULL;
|
|
|
|
|
|
|
|
|
|
/* Use whatever language we have been using for this
|
|
|
|
|
subfile, not the one that was deduced in allocate_symtab
|
|
|
|
|
from the filename. We already did our own deducing when
|
|
|
|
|
we created the subfile, and we may have altered our
|
|
|
|
|
opinion of what language it is from things we found in
|
|
|
|
|
the symbols. */
|
|
|
|
|
symtab->language = subfile->language;
|
|
|
|
|
|
|
|
|
|
/* Save the debug format string (if any) in the symtab */
|
|
|
|
|
if (subfile->debugformat != NULL)
|
|
|
|
|
{
|
|
|
|
|
symtab->debugformat = obsavestring (subfile->debugformat,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
strlen (subfile->debugformat),
|
|
|
|
|
&objfile->symbol_obstack);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* All symtabs for the main file and the subfiles share a
|
|
|
|
|
blockvector, so we need to clear primary for everything
|
|
|
|
|
but the main file. */
|
|
|
|
|
|
|
|
|
|
symtab->primary = 0;
|
|
|
|
|
}
|
|
|
|
|
if (subfile->name != NULL)
|
|
|
|
|
{
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) subfile->name);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
if (subfile->dirname != NULL)
|
|
|
|
|
{
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) subfile->dirname);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
if (subfile->line_vector != NULL)
|
|
|
|
|
{
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) subfile->line_vector);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
if (subfile->debugformat != NULL)
|
|
|
|
|
{
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) subfile->debugformat);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nextsub = subfile->next;
|
2000-12-15 01:01:51 +00:00
|
|
|
|
xfree ((void *) subfile);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set this for the main source file. */
|
|
|
|
|
if (symtab)
|
|
|
|
|
{
|
|
|
|
|
symtab->primary = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
last_source_file = NULL;
|
|
|
|
|
current_subfile = NULL;
|
|
|
|
|
|
|
|
|
|
return symtab;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Push a context block. Args are an identifying nesting level
|
|
|
|
|
(checkable when you pop it), and the starting PC address of this
|
|
|
|
|
context. */
|
|
|
|
|
|
|
|
|
|
struct context_stack *
|
|
|
|
|
push_context (int desc, CORE_ADDR valu)
|
|
|
|
|
{
|
|
|
|
|
register struct context_stack *new;
|
|
|
|
|
|
|
|
|
|
if (context_stack_depth == context_stack_size)
|
|
|
|
|
{
|
|
|
|
|
context_stack_size *= 2;
|
|
|
|
|
context_stack = (struct context_stack *)
|
|
|
|
|
xrealloc ((char *) context_stack,
|
1999-07-07 20:19:36 +00:00
|
|
|
|
(context_stack_size * sizeof (struct context_stack)));
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
new = &context_stack[context_stack_depth++];
|
|
|
|
|
new->depth = desc;
|
|
|
|
|
new->locals = local_symbols;
|
|
|
|
|
new->params = param_symbols;
|
|
|
|
|
new->old_blocks = pending_blocks;
|
|
|
|
|
new->start_addr = valu;
|
|
|
|
|
new->name = NULL;
|
|
|
|
|
|
|
|
|
|
local_symbols = NULL;
|
|
|
|
|
param_symbols = NULL;
|
|
|
|
|
|
|
|
|
|
return new;
|
|
|
|
|
}
|
|
|
|
|
|
2000-06-05 20:49:53 +00:00
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Compute a small integer hash code for the given name. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
hashname (char *name)
|
|
|
|
|
{
|
2000-06-05 20:49:53 +00:00
|
|
|
|
return (hash(name,strlen(name)) % HASHSIZE);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
record_debugformat (char *format)
|
|
|
|
|
{
|
|
|
|
|
current_subfile->debugformat = savestring (format, strlen (format));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Merge the first symbol list SRCLIST into the second symbol list
|
|
|
|
|
TARGETLIST by repeated calls to add_symbol_to_list(). This
|
|
|
|
|
procedure "frees" each link of SRCLIST by adding it to the
|
|
|
|
|
free_pendings list. Caller must set SRCLIST to a null list after
|
|
|
|
|
calling this function.
|
|
|
|
|
|
|
|
|
|
Void return. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
if (!srclist || !*srclist)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Merge in elements from current link. */
|
|
|
|
|
for (i = 0; i < (*srclist)->nsyms; i++)
|
|
|
|
|
add_symbol_to_list ((*srclist)->symbol[i], targetlist);
|
|
|
|
|
|
|
|
|
|
/* Recurse on next. */
|
|
|
|
|
merge_symbol_lists (&(*srclist)->next, targetlist);
|
|
|
|
|
|
|
|
|
|
/* "Free" the current link. */
|
|
|
|
|
(*srclist)->next = free_pendings;
|
|
|
|
|
free_pendings = (*srclist);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize anything that needs initializing when starting to read a
|
|
|
|
|
fresh piece of a symbol file, e.g. reading in the stuff
|
|
|
|
|
corresponding to a psymtab. */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
buildsym_init (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
free_pendings = NULL;
|
|
|
|
|
file_symbols = NULL;
|
|
|
|
|
global_symbols = NULL;
|
|
|
|
|
pending_blocks = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize anything that needs initializing when a completely new
|
|
|
|
|
symbol file is specified (not just adding some symbols from another
|
|
|
|
|
file, e.g. a shared library). */
|
|
|
|
|
|
|
|
|
|
void
|
2000-07-30 01:48:28 +00:00
|
|
|
|
buildsym_new_init (void)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
buildsym_init ();
|
|
|
|
|
}
|