1999-05-03 07:29:11 +00:00
|
|
|
|
/* BFD backend for SunOS binaries.
|
2002-01-05 13:11:33 +00:00
|
|
|
|
Copyright 1990, 1991, 1992, 1994, 1995, 1996, 1997, 1998, 2000, 2001,
|
|
|
|
|
2002
|
1999-05-03 07:29:11 +00:00
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
Written by Cygnus Support.
|
|
|
|
|
|
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
|
|
|
|
#define TARGETNAME "a.out-sunos-big"
|
2001-10-02 05:58:41 +00:00
|
|
|
|
|
|
|
|
|
/* Do not "beautify" the CONCAT* macro args. Traditional C will not
|
|
|
|
|
remove whitespace added here, and thus will fail to concatenate
|
|
|
|
|
the tokens. */
|
|
|
|
|
#define MY(OP) CONCAT2 (sunos_big_,OP)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
#include "bfdlink.h"
|
|
|
|
|
#include "libaout.h"
|
|
|
|
|
|
|
|
|
|
/* Static routines defined in this file. */
|
|
|
|
|
|
|
|
|
|
static boolean sunos_read_dynamic_info PARAMS ((bfd *));
|
|
|
|
|
static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
|
|
|
|
|
static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
|
|
|
|
|
static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
|
|
|
|
|
static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
|
|
|
|
|
static long sunos_canonicalize_dynamic_reloc
|
|
|
|
|
PARAMS ((bfd *, arelent **, asymbol **));
|
|
|
|
|
static struct bfd_hash_entry *sunos_link_hash_newfunc
|
|
|
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
|
static struct bfd_link_hash_table *sunos_link_hash_table_create
|
|
|
|
|
PARAMS ((bfd *));
|
|
|
|
|
static boolean sunos_create_dynamic_sections
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, boolean));
|
|
|
|
|
static boolean sunos_add_dynamic_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
|
|
|
|
|
bfd_size_type *, char **));
|
|
|
|
|
static boolean sunos_add_one_symbol
|
|
|
|
|
PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
|
|
|
|
|
bfd_vma, const char *, boolean, boolean,
|
|
|
|
|
struct bfd_link_hash_entry **));
|
|
|
|
|
static boolean sunos_scan_relocs
|
|
|
|
|
PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
|
|
|
|
|
static boolean sunos_scan_std_relocs
|
|
|
|
|
PARAMS ((struct bfd_link_info *, bfd *, asection *,
|
|
|
|
|
const struct reloc_std_external *, bfd_size_type));
|
|
|
|
|
static boolean sunos_scan_ext_relocs
|
|
|
|
|
PARAMS ((struct bfd_link_info *, bfd *, asection *,
|
|
|
|
|
const struct reloc_ext_external *, bfd_size_type));
|
|
|
|
|
static boolean sunos_link_dynamic_object
|
|
|
|
|
PARAMS ((struct bfd_link_info *, bfd *));
|
|
|
|
|
static boolean sunos_write_dynamic_symbol
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
|
|
|
|
|
static boolean sunos_check_dynamic_reloc
|
|
|
|
|
PARAMS ((struct bfd_link_info *, bfd *, asection *,
|
|
|
|
|
struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
|
|
|
|
|
bfd_vma *));
|
|
|
|
|
static boolean sunos_finish_dynamic_link
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
|
|
|
|
|
|
#define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
|
|
|
|
|
#define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
|
|
|
|
|
#define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
|
|
|
|
|
#define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
|
|
|
|
|
#define MY_bfd_link_hash_table_create sunos_link_hash_table_create
|
|
|
|
|
#define MY_add_dynamic_symbols sunos_add_dynamic_symbols
|
|
|
|
|
#define MY_add_one_symbol sunos_add_one_symbol
|
|
|
|
|
#define MY_link_dynamic_object sunos_link_dynamic_object
|
|
|
|
|
#define MY_write_dynamic_symbol sunos_write_dynamic_symbol
|
|
|
|
|
#define MY_check_dynamic_reloc sunos_check_dynamic_reloc
|
|
|
|
|
#define MY_finish_dynamic_link sunos_finish_dynamic_link
|
|
|
|
|
|
|
|
|
|
/* ??? Where should this go? */
|
|
|
|
|
#define MACHTYPE_OK(mtype) \
|
|
|
|
|
(((mtype) == M_SPARC && bfd_lookup_arch (bfd_arch_sparc, 0) != NULL) \
|
|
|
|
|
|| ((mtype) == M_SPARCLET \
|
|
|
|
|
&& bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
|
|
|
|
|
|| ((mtype) == M_SPARCLITE_LE \
|
|
|
|
|
&& bfd_lookup_arch (bfd_arch_sparc, bfd_mach_sparc_sparclet) != NULL) \
|
|
|
|
|
|| (((mtype) == M_UNKNOWN || (mtype) == M_68010 || (mtype) == M_68020) \
|
|
|
|
|
&& bfd_lookup_arch (bfd_arch_m68k, 0) != NULL))
|
|
|
|
|
|
|
|
|
|
/* Include the usual a.out support. */
|
|
|
|
|
#include "aoutf1.h"
|
|
|
|
|
|
|
|
|
|
/* The SunOS 4.1.4 /usr/include/locale.h defines valid as a macro. */
|
|
|
|
|
#undef valid
|
|
|
|
|
|
|
|
|
|
/* SunOS shared library support. We store a pointer to this structure
|
|
|
|
|
in obj_aout_dynamic_info (abfd). */
|
|
|
|
|
|
|
|
|
|
struct sunos_dynamic_info
|
|
|
|
|
{
|
|
|
|
|
/* Whether we found any dynamic information. */
|
|
|
|
|
boolean valid;
|
|
|
|
|
/* Dynamic information. */
|
|
|
|
|
struct internal_sun4_dynamic_link dyninfo;
|
|
|
|
|
/* Number of dynamic symbols. */
|
|
|
|
|
unsigned long dynsym_count;
|
|
|
|
|
/* Read in nlists for dynamic symbols. */
|
|
|
|
|
struct external_nlist *dynsym;
|
|
|
|
|
/* asymbol structures for dynamic symbols. */
|
|
|
|
|
aout_symbol_type *canonical_dynsym;
|
|
|
|
|
/* Read in dynamic string table. */
|
|
|
|
|
char *dynstr;
|
|
|
|
|
/* Number of dynamic relocs. */
|
|
|
|
|
unsigned long dynrel_count;
|
|
|
|
|
/* Read in dynamic relocs. This may be reloc_std_external or
|
|
|
|
|
reloc_ext_external. */
|
|
|
|
|
PTR dynrel;
|
|
|
|
|
/* arelent structures for dynamic relocs. */
|
|
|
|
|
arelent *canonical_dynrel;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* The hash table of dynamic symbols is composed of two word entries.
|
|
|
|
|
See include/aout/sun4.h for details. */
|
|
|
|
|
|
|
|
|
|
#define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
|
|
|
|
|
|
|
|
|
|
/* Read in the basic dynamic information. This locates the __DYNAMIC
|
|
|
|
|
structure and uses it to find the dynamic_link structure. It
|
|
|
|
|
creates and saves a sunos_dynamic_info structure. If it can't find
|
|
|
|
|
__DYNAMIC, it sets the valid field of the sunos_dynamic_info
|
|
|
|
|
structure to false to avoid doing this work again. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_read_dynamic_info (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_dynamic_info *info;
|
|
|
|
|
asection *dynsec;
|
|
|
|
|
bfd_vma dynoff;
|
|
|
|
|
struct external_sun4_dynamic dyninfo;
|
|
|
|
|
unsigned long dynver;
|
|
|
|
|
struct external_sun4_dynamic_link linkinfo;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
if ((abfd->flags & DYNAMIC) == 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
amt = sizeof (struct sunos_dynamic_info);
|
|
|
|
|
info = (struct sunos_dynamic_info *) bfd_zalloc (abfd, amt);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (!info)
|
|
|
|
|
return false;
|
|
|
|
|
info->valid = false;
|
|
|
|
|
info->dynsym = NULL;
|
|
|
|
|
info->dynstr = NULL;
|
|
|
|
|
info->canonical_dynsym = NULL;
|
|
|
|
|
info->dynrel = NULL;
|
|
|
|
|
info->canonical_dynrel = NULL;
|
|
|
|
|
obj_aout_dynamic_info (abfd) = (PTR) info;
|
|
|
|
|
|
|
|
|
|
/* This code used to look for the __DYNAMIC symbol to locate the dynamic
|
|
|
|
|
linking information.
|
|
|
|
|
However this inhibits recovering the dynamic symbols from a
|
|
|
|
|
stripped object file, so blindly assume that the dynamic linking
|
|
|
|
|
information is located at the start of the data section.
|
|
|
|
|
We could verify this assumption later by looking through the dynamic
|
|
|
|
|
symbols for the __DYNAMIC symbol. */
|
|
|
|
|
if ((abfd->flags & DYNAMIC) == 0)
|
|
|
|
|
return true;
|
|
|
|
|
if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(file_ptr) 0,
|
|
|
|
|
(bfd_size_type) sizeof dyninfo))
|
1999-05-03 07:29:11 +00:00
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
dynver = GET_WORD (abfd, dyninfo.ld_version);
|
|
|
|
|
if (dynver != 2 && dynver != 3)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
dynoff = GET_WORD (abfd, dyninfo.ld);
|
|
|
|
|
|
|
|
|
|
/* dynoff is a virtual address. It is probably always in the .data
|
|
|
|
|
section, but this code should work even if it moves. */
|
|
|
|
|
if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
|
|
|
|
|
dynsec = obj_textsec (abfd);
|
|
|
|
|
else
|
|
|
|
|
dynsec = obj_datasec (abfd);
|
|
|
|
|
dynoff -= bfd_get_section_vma (abfd, dynsec);
|
|
|
|
|
if (dynoff > bfd_section_size (abfd, dynsec))
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* This executable appears to be dynamically linked in a way that we
|
|
|
|
|
can understand. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo,
|
|
|
|
|
(file_ptr) dynoff,
|
1999-05-03 07:29:11 +00:00
|
|
|
|
(bfd_size_type) sizeof linkinfo))
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* Swap in the dynamic link information. */
|
|
|
|
|
info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
|
|
|
|
|
info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
|
|
|
|
|
info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
|
|
|
|
|
info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
|
|
|
|
|
info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
|
|
|
|
|
info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
|
|
|
|
|
info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
|
|
|
|
|
info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
|
|
|
|
|
info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
|
|
|
|
|
info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
|
|
|
|
|
info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
|
|
|
|
|
info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
|
|
|
|
|
info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
|
|
|
|
|
info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
|
|
|
|
|
|
|
|
|
|
/* Reportedly the addresses need to be offset by the size of the
|
|
|
|
|
exec header in an NMAGIC file. */
|
|
|
|
|
if (adata (abfd).magic == n_magic)
|
|
|
|
|
{
|
|
|
|
|
unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
|
|
|
|
|
|
|
|
|
|
info->dyninfo.ld_need += exec_bytes_size;
|
|
|
|
|
info->dyninfo.ld_rules += exec_bytes_size;
|
|
|
|
|
info->dyninfo.ld_rel += exec_bytes_size;
|
|
|
|
|
info->dyninfo.ld_hash += exec_bytes_size;
|
|
|
|
|
info->dyninfo.ld_stab += exec_bytes_size;
|
|
|
|
|
info->dyninfo.ld_symbols += exec_bytes_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The only way to get the size of the symbol information appears to
|
|
|
|
|
be to determine the distance between it and the string table. */
|
|
|
|
|
info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
|
|
|
|
|
/ EXTERNAL_NLIST_SIZE);
|
|
|
|
|
BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
|
|
|
|
|
== (unsigned long) (info->dyninfo.ld_symbols
|
|
|
|
|
- info->dyninfo.ld_stab));
|
|
|
|
|
|
|
|
|
|
/* Similarly, the relocs end at the hash table. */
|
|
|
|
|
info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
|
|
|
|
|
/ obj_reloc_entry_size (abfd));
|
|
|
|
|
BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
|
|
|
|
|
== (unsigned long) (info->dyninfo.ld_hash
|
|
|
|
|
- info->dyninfo.ld_rel));
|
|
|
|
|
|
|
|
|
|
info->valid = true;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the amount of memory required for the dynamic symbols. */
|
|
|
|
|
|
|
|
|
|
static long
|
|
|
|
|
sunos_get_dynamic_symtab_upper_bound (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_dynamic_info *info;
|
|
|
|
|
|
|
|
|
|
if (! sunos_read_dynamic_info (abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
|
|
|
|
|
if (! info->valid)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_symbols);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (info->dynsym_count + 1) * sizeof (asymbol *);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the external dynamic symbols. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_slurp_dynamic_symtab (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_dynamic_info *info;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* Get the general dynamic information. */
|
|
|
|
|
if (obj_aout_dynamic_info (abfd) == NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_read_dynamic_info (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
|
|
|
|
|
if (! info->valid)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_symbols);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the dynamic nlist structures. */
|
|
|
|
|
if (info->dynsym == (struct external_nlist *) NULL)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
amt = (bfd_size_type) info->dynsym_count * EXTERNAL_NLIST_SIZE;
|
|
|
|
|
info->dynsym = (struct external_nlist *) bfd_alloc (abfd, amt);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (info->dynsym == NULL && info->dynsym_count != 0)
|
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_stab, SEEK_SET) != 0
|
|
|
|
|
|| bfd_bread ((PTR) info->dynsym, amt, abfd) != amt)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
if (info->dynsym != NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_release (abfd, info->dynsym);
|
|
|
|
|
info->dynsym = NULL;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the dynamic strings. */
|
|
|
|
|
if (info->dynstr == (char *) NULL)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
amt = info->dyninfo.ld_symb_size;
|
|
|
|
|
info->dynstr = (char *) bfd_alloc (abfd, amt);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
|
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_symbols, SEEK_SET) != 0
|
|
|
|
|
|| bfd_bread ((PTR) info->dynstr, amt, abfd) != amt)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
if (info->dynstr != NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_release (abfd, info->dynstr);
|
|
|
|
|
info->dynstr = NULL;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read in the dynamic symbols. */
|
|
|
|
|
|
|
|
|
|
static long
|
|
|
|
|
sunos_canonicalize_dynamic_symtab (abfd, storage)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asymbol **storage;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_dynamic_info *info;
|
|
|
|
|
unsigned long i;
|
|
|
|
|
|
|
|
|
|
if (! sunos_slurp_dynamic_symtab (abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
|
|
|
|
|
|
|
|
|
|
#ifdef CHECK_DYNAMIC_HASH
|
|
|
|
|
/* Check my understanding of the dynamic hash table by making sure
|
|
|
|
|
that each symbol can be located in the hash table. */
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type table_size;
|
|
|
|
|
bfd_byte *table;
|
|
|
|
|
bfd_size_type i;
|
|
|
|
|
|
|
|
|
|
if (info->dyninfo.ld_buckets > info->dynsym_count)
|
|
|
|
|
abort ();
|
|
|
|
|
table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
|
|
|
|
|
table = (bfd_byte *) bfd_malloc (table_size);
|
|
|
|
|
if (table == NULL && table_size != 0)
|
|
|
|
|
abort ();
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_hash, SEEK_SET) != 0
|
|
|
|
|
|| bfd_bread ((PTR) table, table_size, abfd) != table_size)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
abort ();
|
|
|
|
|
for (i = 0; i < info->dynsym_count; i++)
|
|
|
|
|
{
|
|
|
|
|
unsigned char *name;
|
|
|
|
|
unsigned long hash;
|
|
|
|
|
|
|
|
|
|
name = ((unsigned char *) info->dynstr
|
|
|
|
|
+ GET_WORD (abfd, info->dynsym[i].e_strx));
|
|
|
|
|
hash = 0;
|
|
|
|
|
while (*name != '\0')
|
|
|
|
|
hash = (hash << 1) + *name++;
|
|
|
|
|
hash &= 0x7fffffff;
|
|
|
|
|
hash %= info->dyninfo.ld_buckets;
|
|
|
|
|
while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
|
|
|
|
|
{
|
|
|
|
|
hash = GET_WORD (abfd,
|
|
|
|
|
table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
|
|
|
|
|
if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
free (table);
|
|
|
|
|
}
|
|
|
|
|
#endif /* CHECK_DYNAMIC_HASH */
|
|
|
|
|
|
|
|
|
|
/* Get the asymbol structures corresponding to the dynamic nlist
|
|
|
|
|
structures. */
|
|
|
|
|
if (info->canonical_dynsym == (aout_symbol_type *) NULL)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type size;
|
|
|
|
|
bfd_size_type strsize = info->dyninfo.ld_symb_size;
|
|
|
|
|
|
|
|
|
|
size = (bfd_size_type) info->dynsym_count * sizeof (aout_symbol_type);
|
|
|
|
|
info->canonical_dynsym = (aout_symbol_type *) bfd_alloc (abfd, size);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
info->dynsym,
|
|
|
|
|
(bfd_size_type) info->dynsym_count,
|
|
|
|
|
info->dynstr, strsize, true))
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
if (info->canonical_dynsym != NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_release (abfd, info->canonical_dynsym);
|
|
|
|
|
info->canonical_dynsym = NULL;
|
|
|
|
|
}
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return pointers to the dynamic asymbol structures. */
|
|
|
|
|
for (i = 0; i < info->dynsym_count; i++)
|
|
|
|
|
*storage++ = (asymbol *) (info->canonical_dynsym + i);
|
|
|
|
|
*storage = NULL;
|
|
|
|
|
|
|
|
|
|
return info->dynsym_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the amount of memory required for the dynamic relocs. */
|
|
|
|
|
|
|
|
|
|
static long
|
|
|
|
|
sunos_get_dynamic_reloc_upper_bound (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_dynamic_info *info;
|
|
|
|
|
|
|
|
|
|
if (! sunos_read_dynamic_info (abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
|
|
|
|
|
if (! info->valid)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_symbols);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (info->dynrel_count + 1) * sizeof (arelent *);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read in the dynamic relocs. */
|
|
|
|
|
|
|
|
|
|
static long
|
|
|
|
|
sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
arelent **storage;
|
|
|
|
|
asymbol **syms;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_dynamic_info *info;
|
|
|
|
|
unsigned long i;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type size;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* Get the general dynamic information. */
|
|
|
|
|
if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_read_dynamic_info (abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
|
|
|
|
|
if (! info->valid)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_symbols);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the dynamic reloc information. */
|
|
|
|
|
if (info->dynrel == NULL)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
size = (bfd_size_type) info->dynrel_count * obj_reloc_entry_size (abfd);
|
|
|
|
|
info->dynrel = (PTR) bfd_alloc (abfd, size);
|
|
|
|
|
if (info->dynrel == NULL && size != 0)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
return -1;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) info->dyninfo.ld_rel, SEEK_SET) != 0
|
|
|
|
|
|| bfd_bread ((PTR) info->dynrel, size, abfd) != size)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
if (info->dynrel != NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_release (abfd, info->dynrel);
|
|
|
|
|
info->dynrel = NULL;
|
|
|
|
|
}
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the arelent structures corresponding to the dynamic reloc
|
|
|
|
|
information. */
|
|
|
|
|
if (info->canonical_dynrel == (arelent *) NULL)
|
|
|
|
|
{
|
|
|
|
|
arelent *to;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
size = (bfd_size_type) info->dynrel_count * sizeof (arelent);
|
|
|
|
|
info->canonical_dynrel = (arelent *) bfd_alloc (abfd, size);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
|
|
|
|
|
return -1;
|
2000-12-20 00:21:57 +00:00
|
|
|
|
|
1999-05-03 07:29:11 +00:00
|
|
|
|
to = info->canonical_dynrel;
|
|
|
|
|
|
|
|
|
|
if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
|
|
|
|
|
{
|
|
|
|
|
register struct reloc_ext_external *p;
|
|
|
|
|
struct reloc_ext_external *pend;
|
|
|
|
|
|
|
|
|
|
p = (struct reloc_ext_external *) info->dynrel;
|
|
|
|
|
pend = p + info->dynrel_count;
|
|
|
|
|
for (; p < pend; p++, to++)
|
|
|
|
|
NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(bfd_size_type) info->dynsym_count);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
register struct reloc_std_external *p;
|
|
|
|
|
struct reloc_std_external *pend;
|
|
|
|
|
|
|
|
|
|
p = (struct reloc_std_external *) info->dynrel;
|
|
|
|
|
pend = p + info->dynrel_count;
|
|
|
|
|
for (; p < pend; p++, to++)
|
|
|
|
|
NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(bfd_size_type) info->dynsym_count);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return pointers to the dynamic arelent structures. */
|
|
|
|
|
for (i = 0; i < info->dynrel_count; i++)
|
|
|
|
|
*storage++ = info->canonical_dynrel + i;
|
|
|
|
|
*storage = NULL;
|
|
|
|
|
|
|
|
|
|
return info->dynrel_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Code to handle linking of SunOS shared libraries. */
|
|
|
|
|
|
|
|
|
|
/* A SPARC procedure linkage table entry is 12 bytes. The first entry
|
|
|
|
|
in the table is a jump which is filled in by the runtime linker.
|
|
|
|
|
The remaining entries are branches back to the first entry,
|
|
|
|
|
followed by an index into the relocation table encoded to look like
|
|
|
|
|
a sethi of %g0. */
|
|
|
|
|
|
|
|
|
|
#define SPARC_PLT_ENTRY_SIZE (12)
|
|
|
|
|
|
|
|
|
|
static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
|
|
|
|
|
{
|
|
|
|
|
/* sethi %hi(0),%g1; address filled in by runtime linker. */
|
|
|
|
|
0x3, 0, 0, 0,
|
|
|
|
|
/* jmp %g1; offset filled in by runtime linker. */
|
|
|
|
|
0x81, 0xc0, 0x60, 0,
|
|
|
|
|
/* nop */
|
|
|
|
|
0x1, 0, 0, 0
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* save %sp, -96, %sp */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define SPARC_PLT_ENTRY_WORD0 ((bfd_vma) 0x9de3bfa0)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* call; address filled in later. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define SPARC_PLT_ENTRY_WORD1 ((bfd_vma) 0x40000000)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* sethi; reloc index filled in later. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define SPARC_PLT_ENTRY_WORD2 ((bfd_vma) 0x01000000)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* This sequence is used when for the jump table entry to a defined
|
|
|
|
|
symbol in a complete executable. It is used when linking PIC
|
|
|
|
|
compiled code which is not being put into a shared library. */
|
|
|
|
|
/* sethi <address to be filled in later>, %g1 */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define SPARC_PLT_PIC_WORD0 ((bfd_vma) 0x03000000)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* jmp %g1 + <address to be filled in later> */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define SPARC_PLT_PIC_WORD1 ((bfd_vma) 0x81c06000)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* nop */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define SPARC_PLT_PIC_WORD2 ((bfd_vma) 0x01000000)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* An m68k procedure linkage table entry is 8 bytes. The first entry
|
|
|
|
|
in the table is a jump which is filled in the by the runtime
|
|
|
|
|
linker. The remaining entries are branches back to the first
|
|
|
|
|
entry, followed by a two byte index into the relocation table. */
|
|
|
|
|
|
|
|
|
|
#define M68K_PLT_ENTRY_SIZE (8)
|
|
|
|
|
|
|
|
|
|
static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
|
|
|
|
|
{
|
|
|
|
|
/* jmps @# */
|
|
|
|
|
0x4e, 0xf9,
|
|
|
|
|
/* Filled in by runtime linker with a magic address. */
|
|
|
|
|
0, 0, 0, 0,
|
|
|
|
|
/* Not used? */
|
|
|
|
|
0, 0
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* bsrl */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
#define M68K_PLT_ENTRY_WORD0 ((bfd_vma) 0x61ff)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* Remaining words filled in later. */
|
|
|
|
|
|
|
|
|
|
/* An entry in the SunOS linker hash table. */
|
|
|
|
|
|
|
|
|
|
struct sunos_link_hash_entry
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_entry root;
|
|
|
|
|
|
|
|
|
|
/* If this is a dynamic symbol, this is its index into the dynamic
|
|
|
|
|
symbol table. This is initialized to -1. As the linker looks at
|
|
|
|
|
the input files, it changes this to -2 if it will be added to the
|
|
|
|
|
dynamic symbol table. After all the input files have been seen,
|
|
|
|
|
the linker will know whether to build a dynamic symbol table; if
|
|
|
|
|
it does build one, this becomes the index into the table. */
|
|
|
|
|
long dynindx;
|
|
|
|
|
|
|
|
|
|
/* If this is a dynamic symbol, this is the index of the name in the
|
|
|
|
|
dynamic symbol string table. */
|
|
|
|
|
long dynstr_index;
|
|
|
|
|
|
|
|
|
|
/* The offset into the global offset table used for this symbol. If
|
|
|
|
|
the symbol does not require a GOT entry, this is 0. */
|
|
|
|
|
bfd_vma got_offset;
|
|
|
|
|
|
|
|
|
|
/* The offset into the procedure linkage table used for this symbol.
|
|
|
|
|
If the symbol does not require a PLT entry, this is 0. */
|
|
|
|
|
bfd_vma plt_offset;
|
|
|
|
|
|
|
|
|
|
/* Some linker flags. */
|
|
|
|
|
unsigned char flags;
|
|
|
|
|
/* Symbol is referenced by a regular object. */
|
|
|
|
|
#define SUNOS_REF_REGULAR 01
|
|
|
|
|
/* Symbol is defined by a regular object. */
|
|
|
|
|
#define SUNOS_DEF_REGULAR 02
|
|
|
|
|
/* Symbol is referenced by a dynamic object. */
|
|
|
|
|
#define SUNOS_REF_DYNAMIC 04
|
|
|
|
|
/* Symbol is defined by a dynamic object. */
|
|
|
|
|
#define SUNOS_DEF_DYNAMIC 010
|
|
|
|
|
/* Symbol is a constructor symbol in a regular object. */
|
|
|
|
|
#define SUNOS_CONSTRUCTOR 020
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* The SunOS linker hash table. */
|
|
|
|
|
|
|
|
|
|
struct sunos_link_hash_table
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_table root;
|
|
|
|
|
|
|
|
|
|
/* The object which holds the dynamic sections. */
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
|
|
|
|
|
/* Whether we have created the dynamic sections. */
|
|
|
|
|
boolean dynamic_sections_created;
|
|
|
|
|
|
|
|
|
|
/* Whether we need the dynamic sections. */
|
|
|
|
|
boolean dynamic_sections_needed;
|
|
|
|
|
|
|
|
|
|
/* Whether we need the .got table. */
|
|
|
|
|
boolean got_needed;
|
|
|
|
|
|
|
|
|
|
/* The number of dynamic symbols. */
|
|
|
|
|
size_t dynsymcount;
|
|
|
|
|
|
|
|
|
|
/* The number of buckets in the hash table. */
|
|
|
|
|
size_t bucketcount;
|
|
|
|
|
|
|
|
|
|
/* The list of dynamic objects needed by dynamic objects included in
|
|
|
|
|
the link. */
|
|
|
|
|
struct bfd_link_needed_list *needed;
|
|
|
|
|
|
|
|
|
|
/* The offset of __GLOBAL_OFFSET_TABLE_ into the .got section. */
|
|
|
|
|
bfd_vma got_base;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Routine to create an entry in an SunOS link hash table. */
|
|
|
|
|
|
|
|
|
|
static struct bfd_hash_entry *
|
|
|
|
|
sunos_link_hash_newfunc (entry, table, string)
|
|
|
|
|
struct bfd_hash_entry *entry;
|
|
|
|
|
struct bfd_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
|
|
|
|
|
|
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
|
|
|
subclass. */
|
|
|
|
|
if (ret == (struct sunos_link_hash_entry *) NULL)
|
|
|
|
|
ret = ((struct sunos_link_hash_entry *)
|
|
|
|
|
bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
|
|
|
|
|
if (ret == (struct sunos_link_hash_entry *) NULL)
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
|
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
|
|
|
ret = ((struct sunos_link_hash_entry *)
|
|
|
|
|
NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
|
|
|
|
|
table, string));
|
|
|
|
|
if (ret != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Set local fields. */
|
|
|
|
|
ret->dynindx = -1;
|
|
|
|
|
ret->dynstr_index = -1;
|
|
|
|
|
ret->got_offset = 0;
|
|
|
|
|
ret->plt_offset = 0;
|
|
|
|
|
ret->flags = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create a SunOS link hash table. */
|
|
|
|
|
|
|
|
|
|
static struct bfd_link_hash_table *
|
|
|
|
|
sunos_link_hash_table_create (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_link_hash_table *ret;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt = sizeof (struct sunos_link_hash_table);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
2002-04-04 19:53:38 +00:00
|
|
|
|
ret = (struct sunos_link_hash_table *) bfd_malloc (amt);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (ret == (struct sunos_link_hash_table *) NULL)
|
|
|
|
|
return (struct bfd_link_hash_table *) NULL;
|
|
|
|
|
if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
|
|
|
|
|
sunos_link_hash_newfunc))
|
|
|
|
|
{
|
2002-04-04 19:53:38 +00:00
|
|
|
|
free (ret);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
return (struct bfd_link_hash_table *) NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ret->dynobj = NULL;
|
|
|
|
|
ret->dynamic_sections_created = false;
|
|
|
|
|
ret->dynamic_sections_needed = false;
|
|
|
|
|
ret->got_needed = false;
|
|
|
|
|
ret->dynsymcount = 0;
|
|
|
|
|
ret->bucketcount = 0;
|
|
|
|
|
ret->needed = NULL;
|
|
|
|
|
ret->got_base = 0;
|
|
|
|
|
|
|
|
|
|
return &ret->root.root;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look up an entry in an SunOS link hash table. */
|
|
|
|
|
|
|
|
|
|
#define sunos_link_hash_lookup(table, string, create, copy, follow) \
|
|
|
|
|
((struct sunos_link_hash_entry *) \
|
|
|
|
|
aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
|
|
|
|
|
(follow)))
|
|
|
|
|
|
|
|
|
|
/* Traverse a SunOS link hash table. */
|
|
|
|
|
|
|
|
|
|
#define sunos_link_hash_traverse(table, func, info) \
|
|
|
|
|
(aout_link_hash_traverse \
|
|
|
|
|
(&(table)->root, \
|
|
|
|
|
(boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
|
|
|
|
|
(info)))
|
|
|
|
|
|
|
|
|
|
/* Get the SunOS link hash table from the info structure. This is
|
|
|
|
|
just a cast. */
|
|
|
|
|
|
|
|
|
|
#define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
|
|
|
|
|
|
|
|
|
|
static boolean sunos_scan_dynamic_symbol
|
|
|
|
|
PARAMS ((struct sunos_link_hash_entry *, PTR));
|
|
|
|
|
|
|
|
|
|
/* Create the dynamic sections needed if we are linking against a
|
|
|
|
|
dynamic object, or if we are linking PIC compiled code. ABFD is a
|
|
|
|
|
bfd we can attach the dynamic sections to. The linker script will
|
|
|
|
|
look for these special sections names and put them in the right
|
|
|
|
|
place in the output file. See include/aout/sun4.h for more details
|
|
|
|
|
of the dynamic linking information. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_create_dynamic_sections (abfd, info, needed)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
boolean needed;
|
|
|
|
|
{
|
|
|
|
|
asection *s;
|
|
|
|
|
|
|
|
|
|
if (! sunos_hash_table (info)->dynamic_sections_created)
|
|
|
|
|
{
|
|
|
|
|
flagword flags;
|
|
|
|
|
|
|
|
|
|
sunos_hash_table (info)->dynobj = abfd;
|
|
|
|
|
|
|
|
|
|
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
|
|
|
|
| SEC_LINKER_CREATED);
|
|
|
|
|
|
|
|
|
|
/* The .dynamic section holds the basic dynamic information: the
|
|
|
|
|
sun4_dynamic structure, the dynamic debugger information, and
|
|
|
|
|
the sun4_dynamic_link structure. */
|
|
|
|
|
s = bfd_make_section (abfd, ".dynamic");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The .got section holds the global offset table. The address
|
|
|
|
|
is put in the ld_got field. */
|
|
|
|
|
s = bfd_make_section (abfd, ".got");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The .plt section holds the procedure linkage table. The
|
|
|
|
|
address is put in the ld_plt field. */
|
|
|
|
|
s = bfd_make_section (abfd, ".plt");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The .dynrel section holds the dynamic relocs. The address is
|
|
|
|
|
put in the ld_rel field. */
|
|
|
|
|
s = bfd_make_section (abfd, ".dynrel");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The .hash section holds the dynamic hash table. The address
|
|
|
|
|
is put in the ld_hash field. */
|
|
|
|
|
s = bfd_make_section (abfd, ".hash");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The .dynsym section holds the dynamic symbols. The address
|
|
|
|
|
is put in the ld_stab field. */
|
|
|
|
|
s = bfd_make_section (abfd, ".dynsym");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* The .dynstr section holds the dynamic symbol string table.
|
|
|
|
|
The address is put in the ld_symbols field. */
|
|
|
|
|
s = bfd_make_section (abfd, ".dynstr");
|
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|
|
|
|
|
|| ! bfd_set_section_alignment (abfd, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
sunos_hash_table (info)->dynamic_sections_created = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((needed && ! sunos_hash_table (info)->dynamic_sections_needed)
|
|
|
|
|
|| info->shared)
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
if (s->_raw_size == 0)
|
|
|
|
|
s->_raw_size = BYTES_IN_WORD;
|
|
|
|
|
|
|
|
|
|
sunos_hash_table (info)->dynamic_sections_needed = true;
|
|
|
|
|
sunos_hash_table (info)->got_needed = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add dynamic symbols during a link. This is called by the a.out
|
|
|
|
|
backend linker for each object it encounters. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
struct external_nlist **symsp;
|
|
|
|
|
bfd_size_type *sym_countp;
|
|
|
|
|
char **stringsp;
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
struct sunos_dynamic_info *dinfo;
|
|
|
|
|
unsigned long need;
|
2002-01-05 13:11:33 +00:00
|
|
|
|
asection **ps;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* Make sure we have all the required sections. */
|
|
|
|
|
if (info->hash->creator == abfd->xvec)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_create_dynamic_sections (abfd, info,
|
|
|
|
|
(((abfd->flags & DYNAMIC) != 0
|
|
|
|
|
&& ! info->relocateable)
|
|
|
|
|
? true
|
|
|
|
|
: false)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* There is nothing else to do for a normal object. */
|
|
|
|
|
if ((abfd->flags & DYNAMIC) == 0)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
/* We do not want to include the sections in a dynamic object in the
|
|
|
|
|
output file. We hack by simply clobbering the list of sections
|
|
|
|
|
in the BFD. This could be handled more cleanly by, say, a new
|
|
|
|
|
section flag; the existing SEC_NEVER_LOAD flag is not the one we
|
|
|
|
|
want, because that one still implies that the section takes up
|
|
|
|
|
space in the output file. If this is the first object we have
|
|
|
|
|
seen, we must preserve the dynamic sections we just created. */
|
2002-01-05 13:11:33 +00:00
|
|
|
|
for (ps = &abfd->sections; *ps != NULL; )
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
2002-01-05 13:11:33 +00:00
|
|
|
|
if (abfd != dynobj || ((*ps)->flags & SEC_LINKER_CREATED) == 0)
|
|
|
|
|
bfd_section_list_remove (abfd, ps);
|
|
|
|
|
else
|
|
|
|
|
ps = &(*ps)->next;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The native linker seems to just ignore dynamic objects when -r is
|
|
|
|
|
used. */
|
|
|
|
|
if (info->relocateable)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* There's no hope of using a dynamic object which does not exactly
|
|
|
|
|
match the format of the output file. */
|
|
|
|
|
if (info->hash->creator != abfd->xvec)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure we have a .need and a .rules sections. These are only
|
|
|
|
|
needed if there really is a dynamic object in the link, so they
|
|
|
|
|
are not added by sunos_create_dynamic_sections. */
|
|
|
|
|
if (bfd_get_section_by_name (dynobj, ".need") == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* The .need section holds the list of names of shared objets
|
|
|
|
|
which must be included at runtime. The address of this
|
|
|
|
|
section is put in the ld_need field. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
asection *s = bfd_make_section (dynobj, ".need");
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (dynobj, s,
|
|
|
|
|
(SEC_ALLOC
|
|
|
|
|
| SEC_LOAD
|
|
|
|
|
| SEC_HAS_CONTENTS
|
|
|
|
|
| SEC_IN_MEMORY
|
|
|
|
|
| SEC_READONLY))
|
|
|
|
|
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* The .rules section holds the path to search for shared
|
|
|
|
|
objects. The address of this section is put in the ld_rules
|
|
|
|
|
field. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
asection *s = bfd_make_section (dynobj, ".rules");
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (s == NULL
|
|
|
|
|
|| ! bfd_set_section_flags (dynobj, s,
|
|
|
|
|
(SEC_ALLOC
|
|
|
|
|
| SEC_LOAD
|
|
|
|
|
| SEC_HAS_CONTENTS
|
|
|
|
|
| SEC_IN_MEMORY
|
|
|
|
|
| SEC_READONLY))
|
|
|
|
|
|| ! bfd_set_section_alignment (dynobj, s, 2))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Pick up the dynamic symbols and return them to the caller. */
|
|
|
|
|
if (! sunos_slurp_dynamic_symtab (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
|
|
|
|
|
*symsp = dinfo->dynsym;
|
|
|
|
|
*sym_countp = dinfo->dynsym_count;
|
|
|
|
|
*stringsp = dinfo->dynstr;
|
|
|
|
|
|
|
|
|
|
/* Record information about any other objects needed by this one. */
|
|
|
|
|
need = dinfo->dyninfo.ld_need;
|
|
|
|
|
while (need != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_byte buf[16];
|
|
|
|
|
unsigned long name, flags;
|
|
|
|
|
unsigned short major_vno, minor_vno;
|
|
|
|
|
struct bfd_link_needed_list *needed, **pp;
|
|
|
|
|
char *namebuf, *p;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type alc;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
bfd_byte b;
|
|
|
|
|
char *namecopy;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) need, SEEK_SET) != 0
|
|
|
|
|
|| bfd_bread (buf, (bfd_size_type) 16, abfd) != 16)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* For the format of an ld_need entry, see aout/sun4.h. We
|
|
|
|
|
should probably define structs for this manipulation. */
|
|
|
|
|
|
|
|
|
|
name = bfd_get_32 (abfd, buf);
|
|
|
|
|
flags = bfd_get_32 (abfd, buf + 4);
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
major_vno = (unsigned short) bfd_get_16 (abfd, buf + 8);
|
|
|
|
|
minor_vno = (unsigned short) bfd_get_16 (abfd, buf + 10);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
need = bfd_get_32 (abfd, buf + 12);
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
alc = sizeof (struct bfd_link_needed_list);
|
|
|
|
|
needed = (struct bfd_link_needed_list *) bfd_alloc (abfd, alc);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (needed == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
needed->by = abfd;
|
|
|
|
|
|
|
|
|
|
/* We return the name as [-l]name[.maj][.min]. */
|
|
|
|
|
alc = 30;
|
|
|
|
|
namebuf = (char *) bfd_malloc (alc + 1);
|
|
|
|
|
if (namebuf == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
p = namebuf;
|
|
|
|
|
|
|
|
|
|
if ((flags & 0x80000000) != 0)
|
|
|
|
|
{
|
|
|
|
|
*p++ = '-';
|
|
|
|
|
*p++ = 'l';
|
|
|
|
|
}
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) name, SEEK_SET) != 0)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
free (namebuf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bread (&b, (bfd_size_type) 1, abfd) != 1)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
free (namebuf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if ((bfd_size_type) (p - namebuf) >= alc)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
char *n;
|
|
|
|
|
|
|
|
|
|
alc *= 2;
|
|
|
|
|
n = (char *) bfd_realloc (namebuf, alc + 1);
|
|
|
|
|
if (n == NULL)
|
|
|
|
|
{
|
|
|
|
|
free (namebuf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
p = n + (p - namebuf);
|
|
|
|
|
namebuf = n;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*p++ = b;
|
|
|
|
|
}
|
|
|
|
|
while (b != '\0');
|
|
|
|
|
|
|
|
|
|
if (major_vno == 0)
|
|
|
|
|
*p = '\0';
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
char majbuf[30];
|
|
|
|
|
char minbuf[30];
|
|
|
|
|
|
|
|
|
|
sprintf (majbuf, ".%d", major_vno);
|
|
|
|
|
if (minor_vno == 0)
|
|
|
|
|
minbuf[0] = '\0';
|
|
|
|
|
else
|
|
|
|
|
sprintf (minbuf, ".%d", minor_vno);
|
|
|
|
|
|
|
|
|
|
if ((p - namebuf) + strlen (majbuf) + strlen (minbuf) >= alc)
|
|
|
|
|
{
|
|
|
|
|
char *n;
|
|
|
|
|
|
|
|
|
|
alc = (p - namebuf) + strlen (majbuf) + strlen (minbuf);
|
|
|
|
|
n = (char *) bfd_realloc (namebuf, alc + 1);
|
|
|
|
|
if (n == NULL)
|
|
|
|
|
{
|
|
|
|
|
free (namebuf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
p = n + (p - namebuf);
|
|
|
|
|
namebuf = n;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
strcpy (p, majbuf);
|
|
|
|
|
strcat (p, minbuf);
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
namecopy = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (namecopy == NULL)
|
|
|
|
|
{
|
|
|
|
|
free (namebuf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
strcpy (namecopy, namebuf);
|
|
|
|
|
free (namebuf);
|
|
|
|
|
needed->name = namecopy;
|
|
|
|
|
|
|
|
|
|
needed->next = NULL;
|
|
|
|
|
|
|
|
|
|
for (pp = &sunos_hash_table (info)->needed;
|
|
|
|
|
*pp != NULL;
|
|
|
|
|
pp = &(*pp)->next)
|
|
|
|
|
;
|
|
|
|
|
*pp = needed;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Function to add a single symbol to the linker hash table. This is
|
|
|
|
|
a wrapper around _bfd_generic_link_add_one_symbol which handles the
|
|
|
|
|
tweaking needed for dynamic linking support. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
|
|
|
|
|
copy, collect, hashp)
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
const char *name;
|
|
|
|
|
flagword flags;
|
|
|
|
|
asection *section;
|
|
|
|
|
bfd_vma value;
|
|
|
|
|
const char *string;
|
|
|
|
|
boolean copy;
|
|
|
|
|
boolean collect;
|
|
|
|
|
struct bfd_link_hash_entry **hashp;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_link_hash_entry *h;
|
|
|
|
|
int new_flag;
|
|
|
|
|
|
|
|
|
|
if ((flags & (BSF_INDIRECT | BSF_WARNING | BSF_CONSTRUCTOR)) != 0
|
|
|
|
|
|| ! bfd_is_und_section (section))
|
|
|
|
|
h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
|
|
|
|
|
false);
|
|
|
|
|
else
|
|
|
|
|
h = ((struct sunos_link_hash_entry *)
|
|
|
|
|
bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false));
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (hashp != NULL)
|
|
|
|
|
*hashp = (struct bfd_link_hash_entry *) h;
|
|
|
|
|
|
|
|
|
|
/* Treat a common symbol in a dynamic object as defined in the .bss
|
|
|
|
|
section of the dynamic object. We don't want to allocate space
|
|
|
|
|
for it in our process image. */
|
|
|
|
|
if ((abfd->flags & DYNAMIC) != 0
|
|
|
|
|
&& bfd_is_com_section (section))
|
|
|
|
|
section = obj_bsssec (abfd);
|
|
|
|
|
|
|
|
|
|
if (! bfd_is_und_section (section)
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_new
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_undefined
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_defweak)
|
|
|
|
|
{
|
|
|
|
|
/* We are defining the symbol, and it is already defined. This
|
|
|
|
|
is a potential multiple definition error. */
|
|
|
|
|
if ((abfd->flags & DYNAMIC) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* The definition we are adding is from a dynamic object.
|
|
|
|
|
We do not want this new definition to override the
|
|
|
|
|
existing definition, so we pretend it is just a
|
|
|
|
|
reference. */
|
|
|
|
|
section = bfd_und_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
else if (h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
&& h->root.root.u.def.section->owner != NULL
|
|
|
|
|
&& (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* The existing definition is from a dynamic object. We
|
|
|
|
|
want to override it with the definition we just found.
|
|
|
|
|
Clobber the existing definition. */
|
|
|
|
|
h->root.root.type = bfd_link_hash_undefined;
|
|
|
|
|
h->root.root.u.undef.abfd = h->root.root.u.def.section->owner;
|
|
|
|
|
}
|
|
|
|
|
else if (h->root.root.type == bfd_link_hash_common
|
|
|
|
|
&& (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* The existing definition is from a dynamic object. We
|
|
|
|
|
want to override it with the definition we just found.
|
|
|
|
|
Clobber the existing definition. We can't set it to new,
|
|
|
|
|
because it is on the undefined list. */
|
|
|
|
|
h->root.root.type = bfd_link_hash_undefined;
|
|
|
|
|
h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((abfd->flags & DYNAMIC) != 0
|
|
|
|
|
&& abfd->xvec == info->hash->creator
|
|
|
|
|
&& (h->flags & SUNOS_CONSTRUCTOR) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* The existing symbol is a constructor symbol, and this symbol
|
|
|
|
|
is from a dynamic object. A constructor symbol is actually a
|
|
|
|
|
definition, although the type will be bfd_link_hash_undefined
|
|
|
|
|
at this point. We want to ignore the definition from the
|
|
|
|
|
dynamic object. */
|
|
|
|
|
section = bfd_und_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
else if ((flags & BSF_CONSTRUCTOR) != 0
|
|
|
|
|
&& (abfd->flags & DYNAMIC) == 0
|
|
|
|
|
&& h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
&& h->root.root.u.def.section->owner != NULL
|
|
|
|
|
&& (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* The existing symbol is defined by a dynamic object, and this
|
|
|
|
|
is a constructor symbol. As above, we want to force the use
|
|
|
|
|
of the constructor symbol from the regular object. */
|
|
|
|
|
h->root.root.type = bfd_link_hash_new;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Do the usual procedure for adding a symbol. */
|
|
|
|
|
if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
|
|
|
|
|
value, string, copy, collect,
|
|
|
|
|
hashp))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (abfd->xvec == info->hash->creator)
|
|
|
|
|
{
|
|
|
|
|
/* Set a flag in the hash table entry indicating the type of
|
|
|
|
|
reference or definition we just found. Keep a count of the
|
|
|
|
|
number of dynamic symbols we find. A dynamic symbol is one
|
|
|
|
|
which is referenced or defined by both a regular object and a
|
|
|
|
|
shared object. */
|
|
|
|
|
if ((abfd->flags & DYNAMIC) == 0)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_is_und_section (section))
|
|
|
|
|
new_flag = SUNOS_REF_REGULAR;
|
|
|
|
|
else
|
|
|
|
|
new_flag = SUNOS_DEF_REGULAR;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (bfd_is_und_section (section))
|
|
|
|
|
new_flag = SUNOS_REF_DYNAMIC;
|
|
|
|
|
else
|
|
|
|
|
new_flag = SUNOS_DEF_DYNAMIC;
|
|
|
|
|
}
|
|
|
|
|
h->flags |= new_flag;
|
|
|
|
|
|
|
|
|
|
if (h->dynindx == -1
|
|
|
|
|
&& (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
|
|
|
|
|
{
|
|
|
|
|
++sunos_hash_table (info)->dynsymcount;
|
|
|
|
|
h->dynindx = -2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((flags & BSF_CONSTRUCTOR) != 0
|
|
|
|
|
&& (abfd->flags & DYNAMIC) == 0)
|
|
|
|
|
h->flags |= SUNOS_CONSTRUCTOR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the list of objects needed by BFD. */
|
|
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
|
struct bfd_link_needed_list *
|
|
|
|
|
bfd_sunos_get_needed_list (abfd, info)
|
1999-07-12 10:30:21 +00:00
|
|
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
if (info->hash->creator != &MY(vec))
|
|
|
|
|
return NULL;
|
|
|
|
|
return sunos_hash_table (info)->needed;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record an assignment made to a symbol by a linker script. We need
|
|
|
|
|
this in case some dynamic object refers to this symbol. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
bfd_sunos_record_link_assignment (output_bfd, info, name)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
const char *name;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
if (output_bfd->xvec != &MY(vec))
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* This is called after we have examined all the input objects. If
|
|
|
|
|
the symbol does not exist, it merely means that no object refers
|
|
|
|
|
to it, and we can just ignore it at this point. */
|
|
|
|
|
h = sunos_link_hash_lookup (sunos_hash_table (info), name,
|
|
|
|
|
false, false, false);
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* In a shared library, the __DYNAMIC symbol does not appear in the
|
|
|
|
|
dynamic symbol table. */
|
|
|
|
|
if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
|
|
|
|
|
{
|
|
|
|
|
h->flags |= SUNOS_DEF_REGULAR;
|
|
|
|
|
|
|
|
|
|
if (h->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
++sunos_hash_table (info)->dynsymcount;
|
|
|
|
|
h->dynindx = -2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set up the sizes and contents of the dynamic sections created in
|
|
|
|
|
sunos_add_dynamic_symbols. This is called by the SunOS linker
|
|
|
|
|
emulation before_allocation routine. We must set the sizes of the
|
|
|
|
|
sections before the linker sets the addresses of the various
|
|
|
|
|
sections. This unfortunately requires reading all the relocs so
|
|
|
|
|
that we can work out which ones need to become dynamic relocs. If
|
|
|
|
|
info->keep_memory is true, we keep the relocs in memory; otherwise,
|
|
|
|
|
we discard them, and will read them again later. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
|
|
|
|
|
srulesptr)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
asection **sdynptr;
|
|
|
|
|
asection **sneedptr;
|
|
|
|
|
asection **srulesptr;
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type dynsymcount;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
struct sunos_link_hash_entry *h;
|
|
|
|
|
asection *s;
|
|
|
|
|
size_t bucketcount;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type hashalloc;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
size_t i;
|
|
|
|
|
bfd *sub;
|
|
|
|
|
|
|
|
|
|
*sdynptr = NULL;
|
|
|
|
|
*sneedptr = NULL;
|
|
|
|
|
*srulesptr = NULL;
|
|
|
|
|
|
|
|
|
|
if (info->relocateable)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
if (output_bfd->xvec != &MY(vec))
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* Look through all the input BFD's and read their relocs. It would
|
|
|
|
|
be better if we didn't have to do this, but there is no other way
|
|
|
|
|
to determine the number of dynamic relocs we need, and, more
|
|
|
|
|
importantly, there is no other way to know which symbols should
|
|
|
|
|
get an entry in the procedure linkage table. */
|
|
|
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
|
|
|
|
{
|
|
|
|
|
if ((sub->flags & DYNAMIC) == 0
|
|
|
|
|
&& sub->xvec == output_bfd->xvec)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
|
|
|
|
|
exec_hdr (sub)->a_trsize)
|
|
|
|
|
|| ! sunos_scan_relocs (info, sub, obj_datasec (sub),
|
|
|
|
|
exec_hdr (sub)->a_drsize))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
dynsymcount = sunos_hash_table (info)->dynsymcount;
|
|
|
|
|
|
|
|
|
|
/* If there were no dynamic objects in the link, and we don't need
|
|
|
|
|
to build a global offset table, there is nothing to do here. */
|
|
|
|
|
if (! sunos_hash_table (info)->dynamic_sections_needed
|
|
|
|
|
&& ! sunos_hash_table (info)->got_needed)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
/* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
|
|
|
|
|
h = sunos_link_hash_lookup (sunos_hash_table (info),
|
|
|
|
|
"__GLOBAL_OFFSET_TABLE_", false, false, false);
|
|
|
|
|
if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
|
|
|
|
|
{
|
|
|
|
|
h->flags |= SUNOS_DEF_REGULAR;
|
|
|
|
|
if (h->dynindx == -1)
|
|
|
|
|
{
|
|
|
|
|
++sunos_hash_table (info)->dynsymcount;
|
|
|
|
|
h->dynindx = -2;
|
|
|
|
|
}
|
|
|
|
|
h->root.root.type = bfd_link_hash_defined;
|
|
|
|
|
h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
|
|
|
|
|
/* If the .got section is more than 0x1000 bytes, we set
|
|
|
|
|
__GLOBAL_OFFSET_TABLE_ to be 0x1000 bytes into the section,
|
|
|
|
|
so that 13 bit relocations have a greater chance of working. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
if (s->_raw_size >= 0x1000)
|
|
|
|
|
h->root.root.u.def.value = 0x1000;
|
|
|
|
|
else
|
|
|
|
|
h->root.root.u.def.value = 0;
|
|
|
|
|
|
|
|
|
|
sunos_hash_table (info)->got_base = h->root.root.u.def.value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If there are any shared objects in the link, then we need to set
|
|
|
|
|
up the dynamic linking information. */
|
|
|
|
|
if (sunos_hash_table (info)->dynamic_sections_needed)
|
|
|
|
|
{
|
|
|
|
|
*sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
|
|
|
|
|
|
/* The .dynamic section is always the same size. */
|
|
|
|
|
s = *sdynptr;
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
s->_raw_size = (sizeof (struct external_sun4_dynamic)
|
|
|
|
|
+ EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
|
|
|
|
|
+ sizeof (struct external_sun4_dynamic_link));
|
|
|
|
|
|
|
|
|
|
/* Set the size of the .dynsym and .hash sections. We counted
|
|
|
|
|
the number of dynamic symbols as we read the input files. We
|
|
|
|
|
will build the dynamic symbol table (.dynsym) and the hash
|
|
|
|
|
table (.hash) when we build the final symbol table, because
|
|
|
|
|
until then we do not know the correct value to give the
|
|
|
|
|
symbols. We build the dynamic symbol string table (.dynstr)
|
|
|
|
|
in a traversal of the symbol table using
|
|
|
|
|
sunos_scan_dynamic_symbol. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
s->_raw_size = dynsymcount * sizeof (struct external_nlist);
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
|
|
|
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
|
|
|
|
return false;
|
2000-12-20 00:21:57 +00:00
|
|
|
|
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* The number of buckets is just the number of symbols divided
|
|
|
|
|
by four. To compute the final size of the hash table, we
|
|
|
|
|
must actually compute the hash table. Normally we need
|
|
|
|
|
exactly as many entries in the hash table as there are
|
|
|
|
|
dynamic symbols, but if some of the buckets are not used we
|
|
|
|
|
will need additional entries. In the worst case, every
|
|
|
|
|
symbol will hash to the same bucket, and we will need
|
|
|
|
|
BUCKETCOUNT - 1 extra entries. */
|
|
|
|
|
if (dynsymcount >= 4)
|
|
|
|
|
bucketcount = dynsymcount / 4;
|
|
|
|
|
else if (dynsymcount > 0)
|
|
|
|
|
bucketcount = dynsymcount;
|
|
|
|
|
else
|
|
|
|
|
bucketcount = 1;
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".hash");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
|
|
|
|
|
if (s->contents == NULL && dynsymcount > 0)
|
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
memset (s->contents, 0, (size_t) hashalloc);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
for (i = 0; i < bucketcount; i++)
|
|
|
|
|
PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
|
|
|
|
|
s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
|
|
|
|
|
|
|
|
|
|
sunos_hash_table (info)->bucketcount = bucketcount;
|
|
|
|
|
|
|
|
|
|
/* Scan all the symbols, place them in the dynamic symbol table,
|
|
|
|
|
and build the dynamic hash table. We reuse dynsymcount as a
|
|
|
|
|
counter for the number of symbols we have added so far. */
|
|
|
|
|
sunos_hash_table (info)->dynsymcount = 0;
|
|
|
|
|
sunos_link_hash_traverse (sunos_hash_table (info),
|
|
|
|
|
sunos_scan_dynamic_symbol,
|
|
|
|
|
(PTR) info);
|
|
|
|
|
BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
|
|
|
|
|
|
|
|
|
|
/* The SunOS native linker seems to align the total size of the
|
|
|
|
|
symbol strings to a multiple of 8. I don't know if this is
|
|
|
|
|
important, but it can't hurt much. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
if ((s->_raw_size & 7) != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type add;
|
|
|
|
|
bfd_byte *contents;
|
|
|
|
|
|
|
|
|
|
add = 8 - (s->_raw_size & 7);
|
|
|
|
|
contents = (bfd_byte *) bfd_realloc (s->contents,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
s->_raw_size + add);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (contents == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
memset (contents + s->_raw_size, 0, (size_t) add);
|
|
|
|
|
s->contents = contents;
|
|
|
|
|
s->_raw_size += add;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now that we have worked out the sizes of the procedure linkage
|
|
|
|
|
table and the dynamic relocs, allocate storage for them. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
if (s->_raw_size != 0)
|
|
|
|
|
{
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
|
|
|
|
|
if (s->contents == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Fill in the first entry in the table. */
|
|
|
|
|
switch (bfd_get_arch (dynobj))
|
|
|
|
|
{
|
|
|
|
|
case bfd_arch_sparc:
|
|
|
|
|
memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_m68k:
|
|
|
|
|
memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
if (s->_raw_size != 0)
|
|
|
|
|
{
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
|
|
|
|
|
if (s->contents == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
/* We use the reloc_count field to keep track of how many of the
|
|
|
|
|
relocs we have output so far. */
|
|
|
|
|
s->reloc_count = 0;
|
|
|
|
|
|
|
|
|
|
/* Make space for the global offset table. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
|
|
|
|
|
if (s->contents == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
*sneedptr = bfd_get_section_by_name (dynobj, ".need");
|
|
|
|
|
*srulesptr = bfd_get_section_by_name (dynobj, ".rules");
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan the relocs for an input section. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_scan_relocs (info, abfd, sec, rel_size)
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asection *sec;
|
|
|
|
|
bfd_size_type rel_size;
|
|
|
|
|
{
|
|
|
|
|
PTR relocs;
|
|
|
|
|
PTR free_relocs = NULL;
|
|
|
|
|
|
|
|
|
|
if (rel_size == 0)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
if (! info->keep_memory)
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
relocs = free_relocs = bfd_malloc (rel_size);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct aout_section_data_struct *n;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt = sizeof (struct aout_section_data_struct);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
n = (struct aout_section_data_struct *) bfd_alloc (abfd, amt);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (n == NULL)
|
|
|
|
|
relocs = NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
set_aout_section_data (sec, n);
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
relocs = bfd_malloc (rel_size);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
aout_section_data (sec)->relocs = relocs;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (relocs == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| bfd_bread (relocs, rel_size, abfd) != rel_size)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_scan_std_relocs (info, abfd, sec,
|
|
|
|
|
(struct reloc_std_external *) relocs,
|
|
|
|
|
rel_size))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_scan_ext_relocs (info, abfd, sec,
|
|
|
|
|
(struct reloc_ext_external *) relocs,
|
|
|
|
|
rel_size))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (free_relocs != NULL)
|
|
|
|
|
free (free_relocs);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
if (free_relocs != NULL)
|
|
|
|
|
free (free_relocs);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan the relocs for an input section using standard relocs. We
|
|
|
|
|
need to figure out what to do for each reloc against a dynamic
|
|
|
|
|
symbol. If the symbol is in the .text section, an entry is made in
|
|
|
|
|
the procedure linkage table. Note that this will do the wrong
|
|
|
|
|
thing if the symbol is actually data; I don't think the Sun 3
|
|
|
|
|
native linker handles this case correctly either. If the symbol is
|
|
|
|
|
not in the .text section, we must preserve the reloc as a dynamic
|
|
|
|
|
reloc. FIXME: We should also handle the PIC relocs here by
|
|
|
|
|
building global offset table entries. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd *abfd;
|
1999-07-12 10:30:21 +00:00
|
|
|
|
asection *sec ATTRIBUTE_UNUSED;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
const struct reloc_std_external *relocs;
|
|
|
|
|
bfd_size_type rel_size;
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
asection *splt = NULL;
|
|
|
|
|
asection *srel = NULL;
|
|
|
|
|
struct sunos_link_hash_entry **sym_hashes;
|
|
|
|
|
const struct reloc_std_external *rel, *relend;
|
|
|
|
|
|
|
|
|
|
/* We only know how to handle m68k plt entries. */
|
|
|
|
|
if (bfd_get_arch (abfd) != bfd_arch_m68k)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_target);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dynobj = NULL;
|
|
|
|
|
|
|
|
|
|
sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
|
|
|
|
|
|
|
|
|
|
relend = relocs + rel_size / RELOC_STD_SIZE;
|
|
|
|
|
for (rel = relocs; rel < relend; rel++)
|
|
|
|
|
{
|
|
|
|
|
int r_index;
|
|
|
|
|
struct sunos_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
/* We only want relocs against external symbols. */
|
|
|
|
|
if (bfd_header_big_endian (abfd))
|
|
|
|
|
{
|
|
|
|
|
if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the symbol index. */
|
|
|
|
|
if (bfd_header_big_endian (abfd))
|
|
|
|
|
r_index = ((rel->r_index[0] << 16)
|
|
|
|
|
| (rel->r_index[1] << 8)
|
|
|
|
|
| rel->r_index[2]);
|
|
|
|
|
else
|
|
|
|
|
r_index = ((rel->r_index[2] << 16)
|
|
|
|
|
| (rel->r_index[1] << 8)
|
|
|
|
|
| rel->r_index[0]);
|
|
|
|
|
|
|
|
|
|
/* Get the hash table entry. */
|
|
|
|
|
h = sym_hashes[r_index];
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This should not normally happen, but it will in any case
|
|
|
|
|
be caught in the relocation phase. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At this point common symbols have already been allocated, so
|
|
|
|
|
we don't have to worry about them. We need to consider that
|
|
|
|
|
we may have already seen this symbol and marked it undefined;
|
|
|
|
|
if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
|
|
|
|
|
will be zero. */
|
|
|
|
|
if (h->root.root.type != bfd_link_hash_defined
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_defweak
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_undefined)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
|
|
|
|
|
|| (h->flags & SUNOS_DEF_REGULAR) != 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (dynobj == NULL)
|
|
|
|
|
{
|
|
|
|
|
asection *sgot;
|
|
|
|
|
|
|
|
|
|
if (! sunos_create_dynamic_sections (abfd, info, false))
|
|
|
|
|
return false;
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
srel = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (splt != NULL && srel != NULL);
|
|
|
|
|
|
|
|
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
BFD_ASSERT (sgot != NULL);
|
|
|
|
|
if (sgot->_raw_size == 0)
|
|
|
|
|
sgot->_raw_size = BYTES_IN_WORD;
|
|
|
|
|
sunos_hash_table (info)->got_needed = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
|
|
|
|
|
BFD_ASSERT (h->plt_offset != 0
|
|
|
|
|
|| ((h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
|
|
|
|
? (h->root.root.u.def.section->owner->flags
|
|
|
|
|
& DYNAMIC) != 0
|
|
|
|
|
: (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
|
|
|
|
|
|
|
|
|
|
/* This reloc is against a symbol defined only by a dynamic
|
|
|
|
|
object. */
|
|
|
|
|
|
|
|
|
|
if (h->root.root.type == bfd_link_hash_undefined)
|
|
|
|
|
{
|
|
|
|
|
/* Presumably this symbol was marked as being undefined by
|
|
|
|
|
an earlier reloc. */
|
|
|
|
|
srel->_raw_size += RELOC_STD_SIZE;
|
|
|
|
|
}
|
|
|
|
|
else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
|
|
|
|
|
{
|
|
|
|
|
bfd *sub;
|
|
|
|
|
|
|
|
|
|
/* This reloc is not in the .text section. It must be
|
|
|
|
|
copied into the dynamic relocs. We mark the symbol as
|
|
|
|
|
being undefined. */
|
|
|
|
|
srel->_raw_size += RELOC_STD_SIZE;
|
|
|
|
|
sub = h->root.root.u.def.section->owner;
|
|
|
|
|
h->root.root.type = bfd_link_hash_undefined;
|
|
|
|
|
h->root.root.u.undef.abfd = sub;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* This symbol is in the .text section. We must give it an
|
|
|
|
|
entry in the procedure linkage table, if we have not
|
|
|
|
|
already done so. We change the definition of the symbol
|
|
|
|
|
to the .plt section; this will cause relocs against it to
|
|
|
|
|
be handled correctly. */
|
|
|
|
|
if (h->plt_offset == 0)
|
|
|
|
|
{
|
|
|
|
|
if (splt->_raw_size == 0)
|
|
|
|
|
splt->_raw_size = M68K_PLT_ENTRY_SIZE;
|
|
|
|
|
h->plt_offset = splt->_raw_size;
|
|
|
|
|
|
|
|
|
|
if ((h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
h->root.root.u.def.section = splt;
|
|
|
|
|
h->root.root.u.def.value = splt->_raw_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
splt->_raw_size += M68K_PLT_ENTRY_SIZE;
|
|
|
|
|
|
|
|
|
|
/* We may also need a dynamic reloc entry. */
|
|
|
|
|
if ((h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
srel->_raw_size += RELOC_STD_SIZE;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Scan the relocs for an input section using extended relocs. We
|
|
|
|
|
need to figure out what to do for each reloc against a dynamic
|
|
|
|
|
symbol. If the reloc is a WDISP30, and the symbol is in the .text
|
|
|
|
|
section, an entry is made in the procedure linkage table.
|
|
|
|
|
Otherwise, we must preserve the reloc as a dynamic reloc. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd *abfd;
|
1999-07-12 10:30:21 +00:00
|
|
|
|
asection *sec ATTRIBUTE_UNUSED;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
const struct reloc_ext_external *relocs;
|
|
|
|
|
bfd_size_type rel_size;
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
struct sunos_link_hash_entry **sym_hashes;
|
|
|
|
|
const struct reloc_ext_external *rel, *relend;
|
|
|
|
|
asection *splt = NULL;
|
|
|
|
|
asection *sgot = NULL;
|
|
|
|
|
asection *srel = NULL;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* We only know how to handle SPARC plt entries. */
|
|
|
|
|
if (bfd_get_arch (abfd) != bfd_arch_sparc)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_target);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dynobj = NULL;
|
|
|
|
|
|
|
|
|
|
sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
|
|
|
|
|
|
|
|
|
|
relend = relocs + rel_size / RELOC_EXT_SIZE;
|
|
|
|
|
for (rel = relocs; rel < relend; rel++)
|
|
|
|
|
{
|
|
|
|
|
unsigned int r_index;
|
|
|
|
|
int r_extern;
|
|
|
|
|
int r_type;
|
|
|
|
|
struct sunos_link_hash_entry *h = NULL;
|
|
|
|
|
|
|
|
|
|
/* Swap in the reloc information. */
|
|
|
|
|
if (bfd_header_big_endian (abfd))
|
|
|
|
|
{
|
|
|
|
|
r_index = ((rel->r_index[0] << 16)
|
|
|
|
|
| (rel->r_index[1] << 8)
|
|
|
|
|
| rel->r_index[2]);
|
|
|
|
|
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
|
|
|
|
|
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
|
|
|
|
>> RELOC_EXT_BITS_TYPE_SH_BIG);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
r_index = ((rel->r_index[2] << 16)
|
|
|
|
|
| (rel->r_index[1] << 8)
|
|
|
|
|
| rel->r_index[0]);
|
|
|
|
|
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
|
|
|
|
|
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
|
|
|
|
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (r_extern)
|
|
|
|
|
{
|
|
|
|
|
h = sym_hashes[r_index];
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This should not normally happen, but it will in any
|
|
|
|
|
case be caught in the relocation phase. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is a base relative reloc, we need to make an entry in
|
|
|
|
|
the .got section. */
|
|
|
|
|
if (r_type == RELOC_BASE10
|
|
|
|
|
|| r_type == RELOC_BASE13
|
|
|
|
|
|| r_type == RELOC_BASE22)
|
|
|
|
|
{
|
|
|
|
|
if (dynobj == NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_create_dynamic_sections (abfd, info, false))
|
|
|
|
|
return false;
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
srel = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
|
|
|
|
|
|
|
|
|
|
/* Make sure we have an initial entry in the .got table. */
|
|
|
|
|
if (sgot->_raw_size == 0)
|
|
|
|
|
sgot->_raw_size = BYTES_IN_WORD;
|
|
|
|
|
sunos_hash_table (info)->got_needed = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (r_extern)
|
|
|
|
|
{
|
|
|
|
|
if (h->got_offset != 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
h->got_offset = sgot->_raw_size;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (r_index >= bfd_get_symcount (abfd))
|
|
|
|
|
{
|
|
|
|
|
/* This is abnormal, but should be caught in the
|
|
|
|
|
relocation phase. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (adata (abfd).local_got_offsets == NULL)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
amt = bfd_get_symcount (abfd);
|
|
|
|
|
amt *= sizeof (bfd_vma);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
adata (abfd).local_got_offsets =
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(bfd_vma *) bfd_zalloc (abfd, amt);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (adata (abfd).local_got_offsets == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (adata (abfd).local_got_offsets[r_index] != 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sgot->_raw_size += BYTES_IN_WORD;
|
|
|
|
|
|
|
|
|
|
/* If we are making a shared library, or if the symbol is
|
|
|
|
|
defined by a dynamic object, we will need a dynamic reloc
|
|
|
|
|
entry. */
|
|
|
|
|
if (info->shared
|
|
|
|
|
|| (h != NULL
|
|
|
|
|
&& (h->flags & SUNOS_DEF_DYNAMIC) != 0
|
|
|
|
|
&& (h->flags & SUNOS_DEF_REGULAR) == 0))
|
|
|
|
|
srel->_raw_size += RELOC_EXT_SIZE;
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Otherwise, we are only interested in relocs against symbols
|
|
|
|
|
defined in dynamic objects but not in regular objects. We
|
|
|
|
|
only need to consider relocs against external symbols. */
|
|
|
|
|
if (! r_extern)
|
|
|
|
|
{
|
|
|
|
|
/* But, if we are creating a shared library, we need to
|
|
|
|
|
generate an absolute reloc. */
|
|
|
|
|
if (info->shared)
|
|
|
|
|
{
|
|
|
|
|
if (dynobj == NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_create_dynamic_sections (abfd, info, true))
|
|
|
|
|
return false;
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
srel = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
srel->_raw_size += RELOC_EXT_SIZE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At this point common symbols have already been allocated, so
|
|
|
|
|
we don't have to worry about them. We need to consider that
|
|
|
|
|
we may have already seen this symbol and marked it undefined;
|
|
|
|
|
if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
|
|
|
|
|
will be zero. */
|
|
|
|
|
if (h->root.root.type != bfd_link_hash_defined
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_defweak
|
|
|
|
|
&& h->root.root.type != bfd_link_hash_undefined)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (r_type != RELOC_JMP_TBL
|
|
|
|
|
&& ! info->shared
|
|
|
|
|
&& ((h->flags & SUNOS_DEF_DYNAMIC) == 0
|
|
|
|
|
|| (h->flags & SUNOS_DEF_REGULAR) != 0))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (r_type == RELOC_JMP_TBL
|
|
|
|
|
&& ! info->shared
|
|
|
|
|
&& (h->flags & SUNOS_DEF_DYNAMIC) == 0
|
|
|
|
|
&& (h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
/* This symbol is apparently undefined. Don't do anything
|
|
|
|
|
here; just let the relocation routine report an undefined
|
|
|
|
|
symbol. */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (dynobj == NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! sunos_create_dynamic_sections (abfd, info, false))
|
|
|
|
|
return false;
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
srel = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
|
|
|
|
|
|
|
|
|
|
/* Make sure we have an initial entry in the .got table. */
|
|
|
|
|
if (sgot->_raw_size == 0)
|
|
|
|
|
sgot->_raw_size = BYTES_IN_WORD;
|
|
|
|
|
sunos_hash_table (info)->got_needed = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (r_type == RELOC_JMP_TBL
|
|
|
|
|
|| info->shared
|
|
|
|
|
|| (h->flags & SUNOS_REF_REGULAR) != 0);
|
|
|
|
|
BFD_ASSERT (r_type == RELOC_JMP_TBL
|
|
|
|
|
|| info->shared
|
|
|
|
|
|| h->plt_offset != 0
|
|
|
|
|
|| ((h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
|
|
|
|
? (h->root.root.u.def.section->owner->flags
|
|
|
|
|
& DYNAMIC) != 0
|
|
|
|
|
: (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
|
|
|
|
|
|
|
|
|
|
/* This reloc is against a symbol defined only by a dynamic
|
|
|
|
|
object, or it is a jump table reloc from PIC compiled code. */
|
|
|
|
|
|
|
|
|
|
if (r_type != RELOC_JMP_TBL
|
|
|
|
|
&& h->root.root.type == bfd_link_hash_undefined)
|
|
|
|
|
{
|
|
|
|
|
/* Presumably this symbol was marked as being undefined by
|
|
|
|
|
an earlier reloc. */
|
|
|
|
|
srel->_raw_size += RELOC_EXT_SIZE;
|
|
|
|
|
}
|
|
|
|
|
else if (r_type != RELOC_JMP_TBL
|
|
|
|
|
&& (h->root.root.u.def.section->flags & SEC_CODE) == 0)
|
|
|
|
|
{
|
|
|
|
|
bfd *sub;
|
|
|
|
|
|
|
|
|
|
/* This reloc is not in the .text section. It must be
|
|
|
|
|
copied into the dynamic relocs. We mark the symbol as
|
|
|
|
|
being undefined. */
|
|
|
|
|
srel->_raw_size += RELOC_EXT_SIZE;
|
|
|
|
|
if ((h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
sub = h->root.root.u.def.section->owner;
|
|
|
|
|
h->root.root.type = bfd_link_hash_undefined;
|
|
|
|
|
h->root.root.u.undef.abfd = sub;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* This symbol is in the .text section. We must give it an
|
|
|
|
|
entry in the procedure linkage table, if we have not
|
|
|
|
|
already done so. We change the definition of the symbol
|
|
|
|
|
to the .plt section; this will cause relocs against it to
|
|
|
|
|
be handled correctly. */
|
|
|
|
|
if (h->plt_offset == 0)
|
|
|
|
|
{
|
|
|
|
|
if (splt->_raw_size == 0)
|
|
|
|
|
splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
|
|
|
|
|
h->plt_offset = splt->_raw_size;
|
|
|
|
|
|
|
|
|
|
if ((h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
if (h->root.root.type == bfd_link_hash_undefined)
|
|
|
|
|
h->root.root.type = bfd_link_hash_defined;
|
|
|
|
|
h->root.root.u.def.section = splt;
|
|
|
|
|
h->root.root.u.def.value = splt->_raw_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
|
|
|
|
|
|
|
|
|
|
/* We will also need a dynamic reloc entry, unless this
|
|
|
|
|
is a JMP_TBL reloc produced by linking PIC compiled
|
|
|
|
|
code, and we are not making a shared library. */
|
|
|
|
|
if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
srel->_raw_size += RELOC_EXT_SIZE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we are creating a shared library, we need to copy over
|
|
|
|
|
any reloc other than a jump table reloc. */
|
|
|
|
|
if (info->shared && r_type != RELOC_JMP_TBL)
|
|
|
|
|
srel->_raw_size += RELOC_EXT_SIZE;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Build the hash table of dynamic symbols, and to mark as written all
|
|
|
|
|
symbols from dynamic objects which we do not plan to write out. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_scan_dynamic_symbol (h, data)
|
|
|
|
|
struct sunos_link_hash_entry *h;
|
|
|
|
|
PTR data;
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_info *info = (struct bfd_link_info *) data;
|
|
|
|
|
|
2002-03-28 03:27:46 +00:00
|
|
|
|
if (h->root.root.type == bfd_link_hash_warning)
|
|
|
|
|
h = (struct sunos_link_hash_entry *) h->root.root.u.i.link;
|
|
|
|
|
|
1999-05-03 07:29:11 +00:00
|
|
|
|
/* Set the written flag for symbols we do not want to write out as
|
|
|
|
|
part of the regular symbol table. This is all symbols which are
|
|
|
|
|
not defined in a regular object file. For some reason symbols
|
|
|
|
|
which are referenced by a regular object and defined by a dynamic
|
|
|
|
|
object do not seem to show up in the regular symbol table. It is
|
|
|
|
|
possible for a symbol to have only SUNOS_REF_REGULAR set here, it
|
|
|
|
|
is an undefined symbol which was turned into a common symbol
|
|
|
|
|
because it was found in an archive object which was not included
|
|
|
|
|
in the link. */
|
|
|
|
|
if ((h->flags & SUNOS_DEF_REGULAR) == 0
|
|
|
|
|
&& (h->flags & SUNOS_DEF_DYNAMIC) != 0
|
|
|
|
|
&& strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
|
|
|
|
|
h->root.written = true;
|
|
|
|
|
|
|
|
|
|
/* If this symbol is defined by a dynamic object and referenced by a
|
|
|
|
|
regular object, see whether we gave it a reasonable value while
|
|
|
|
|
scanning the relocs. */
|
|
|
|
|
|
|
|
|
|
if ((h->flags & SUNOS_DEF_REGULAR) == 0
|
|
|
|
|
&& (h->flags & SUNOS_DEF_DYNAMIC) != 0
|
|
|
|
|
&& (h->flags & SUNOS_REF_REGULAR) != 0)
|
|
|
|
|
{
|
|
|
|
|
if ((h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
|
|
|
|
&& ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
|
|
|
|
|
&& h->root.root.u.def.section->output_section == NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd *sub;
|
|
|
|
|
|
|
|
|
|
/* This symbol is currently defined in a dynamic section
|
|
|
|
|
which is not being put into the output file. This
|
|
|
|
|
implies that there is no reloc against the symbol. I'm
|
|
|
|
|
not sure why this case would ever occur. In any case, we
|
|
|
|
|
change the symbol to be undefined. */
|
|
|
|
|
sub = h->root.root.u.def.section->owner;
|
|
|
|
|
h->root.root.type = bfd_link_hash_undefined;
|
|
|
|
|
h->root.root.u.undef.abfd = sub;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this symbol is defined or referenced by a regular file, add it
|
|
|
|
|
to the dynamic symbols. */
|
|
|
|
|
if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
|
|
|
|
|
{
|
|
|
|
|
asection *s;
|
|
|
|
|
size_t len;
|
|
|
|
|
bfd_byte *contents;
|
|
|
|
|
unsigned char *name;
|
|
|
|
|
unsigned long hash;
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (h->dynindx == -2);
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
h->dynindx = sunos_hash_table (info)->dynsymcount;
|
|
|
|
|
++sunos_hash_table (info)->dynsymcount;
|
|
|
|
|
|
|
|
|
|
len = strlen (h->root.root.root.string);
|
|
|
|
|
|
|
|
|
|
/* We don't bother to construct a BFD hash table for the strings
|
|
|
|
|
which are the names of the dynamic symbols. Using a hash
|
|
|
|
|
table for the regular symbols is beneficial, because the
|
|
|
|
|
regular symbols includes the debugging symbols, which have
|
|
|
|
|
long names and are often duplicated in several object files.
|
|
|
|
|
There are no debugging symbols in the dynamic symbols. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
contents = (bfd_byte *) bfd_realloc (s->contents,
|
|
|
|
|
s->_raw_size + len + 1);
|
|
|
|
|
if (contents == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
s->contents = contents;
|
|
|
|
|
|
|
|
|
|
h->dynstr_index = s->_raw_size;
|
|
|
|
|
strcpy ((char *) contents + s->_raw_size, h->root.root.root.string);
|
|
|
|
|
s->_raw_size += len + 1;
|
|
|
|
|
|
|
|
|
|
/* Add it to the dynamic hash table. */
|
|
|
|
|
name = (unsigned char *) h->root.root.root.string;
|
|
|
|
|
hash = 0;
|
|
|
|
|
while (*name != '\0')
|
|
|
|
|
hash = (hash << 1) + *name++;
|
|
|
|
|
hash &= 0x7fffffff;
|
|
|
|
|
hash %= sunos_hash_table (info)->bucketcount;
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".hash");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
|
|
|
|
|
if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
|
|
|
|
|
PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
bfd_vma next;
|
|
|
|
|
|
|
|
|
|
next = GET_WORD (dynobj,
|
|
|
|
|
(s->contents
|
|
|
|
|
+ hash * HASH_ENTRY_SIZE
|
|
|
|
|
+ BYTES_IN_WORD));
|
|
|
|
|
PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
|
|
|
|
|
s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
|
|
|
|
|
PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
|
|
|
|
|
PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
|
|
|
|
|
s->_raw_size += HASH_ENTRY_SIZE;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Link a dynamic object. We actually don't have anything to do at
|
|
|
|
|
this point. This entry point exists to prevent the regular linker
|
|
|
|
|
code from doing anything with the object. */
|
|
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_link_dynamic_object (info, abfd)
|
1999-07-12 10:30:21 +00:00
|
|
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
|
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
{
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out a dynamic symbol. This is called by the final traversal
|
|
|
|
|
over the symbol table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_write_dynamic_symbol (output_bfd, info, harg)
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
struct aout_link_hash_entry *harg;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
|
|
|
|
|
int type;
|
|
|
|
|
bfd_vma val;
|
|
|
|
|
asection *s;
|
|
|
|
|
struct external_nlist *outsym;
|
|
|
|
|
|
|
|
|
|
/* If this symbol is in the procedure linkage table, fill in the
|
|
|
|
|
table entry. */
|
|
|
|
|
if (h->plt_offset != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
asection *splt;
|
|
|
|
|
bfd_byte *p;
|
|
|
|
|
bfd_vma r_address;
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
p = splt->contents + h->plt_offset;
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
|
|
|
|
|
r_address = (splt->output_section->vma
|
|
|
|
|
+ splt->output_offset
|
|
|
|
|
+ h->plt_offset);
|
|
|
|
|
|
|
|
|
|
switch (bfd_get_arch (output_bfd))
|
|
|
|
|
{
|
|
|
|
|
case bfd_arch_sparc:
|
|
|
|
|
if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
|
|
|
|
|
bfd_put_32 (output_bfd,
|
|
|
|
|
(SPARC_PLT_ENTRY_WORD1
|
|
|
|
|
+ (((- (h->plt_offset + 4) >> 2)
|
|
|
|
|
& 0x3fffffff))),
|
|
|
|
|
p + 4);
|
|
|
|
|
bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
|
|
|
|
|
p + 8);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
val = (h->root.root.u.def.section->output_section->vma
|
|
|
|
|
+ h->root.root.u.def.section->output_offset
|
|
|
|
|
+ h->root.root.u.def.value);
|
|
|
|
|
bfd_put_32 (output_bfd,
|
|
|
|
|
SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
|
|
|
|
|
p);
|
|
|
|
|
bfd_put_32 (output_bfd,
|
|
|
|
|
SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
|
|
|
|
|
p + 4);
|
|
|
|
|
bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_m68k:
|
|
|
|
|
if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
|
|
|
|
|
abort ();
|
|
|
|
|
bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
|
|
|
|
|
bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_put_16 (output_bfd, (bfd_vma) s->reloc_count, p + 6);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
r_address += 2;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We also need to add a jump table reloc, unless this is the
|
|
|
|
|
result of a JMP_TBL reloc from PIC compiled code. */
|
|
|
|
|
if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
BFD_ASSERT (h->dynindx >= 0);
|
|
|
|
|
BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
|
|
|
|
|
< s->_raw_size);
|
|
|
|
|
p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
|
|
|
|
|
if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
|
|
|
|
|
{
|
|
|
|
|
struct reloc_std_external *srel;
|
|
|
|
|
|
|
|
|
|
srel = (struct reloc_std_external *) p;
|
|
|
|
|
PUT_WORD (output_bfd, r_address, srel->r_address);
|
|
|
|
|
if (bfd_header_big_endian (output_bfd))
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
srel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
|
|
|
|
|
srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
|
|
|
|
|
srel->r_index[2] = (bfd_byte) (h->dynindx);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
|
|
|
|
|
| RELOC_STD_BITS_JMPTABLE_BIG);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
srel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
|
|
|
|
|
srel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
srel->r_index[0] = (bfd_byte)h->dynindx;
|
|
|
|
|
srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
|
|
|
|
|
| RELOC_STD_BITS_JMPTABLE_LITTLE);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct reloc_ext_external *erel;
|
|
|
|
|
|
|
|
|
|
erel = (struct reloc_ext_external *) p;
|
|
|
|
|
PUT_WORD (output_bfd, r_address, erel->r_address);
|
|
|
|
|
if (bfd_header_big_endian (output_bfd))
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
erel->r_index[0] = (bfd_byte) (h->dynindx >> 16);
|
|
|
|
|
erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
erel->r_index[2] = (bfd_byte)h->dynindx;
|
|
|
|
|
erel->r_type[0] =
|
|
|
|
|
(RELOC_EXT_BITS_EXTERN_BIG
|
|
|
|
|
| (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
erel->r_index[2] = (bfd_byte) (h->dynindx >> 16);
|
|
|
|
|
erel->r_index[1] = (bfd_byte) (h->dynindx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
erel->r_index[0] = (bfd_byte)h->dynindx;
|
|
|
|
|
erel->r_type[0] =
|
|
|
|
|
(RELOC_EXT_BITS_EXTERN_LITTLE
|
|
|
|
|
| (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
|
|
|
|
|
}
|
|
|
|
|
PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
++s->reloc_count;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is not a dynamic symbol, we don't have to do anything
|
|
|
|
|
else. We only check this after handling the PLT entry, because
|
|
|
|
|
we can have a PLT entry for a nondynamic symbol when linking PIC
|
|
|
|
|
compiled code from a regular object. */
|
|
|
|
|
if (h->dynindx < 0)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
switch (h->root.root.type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case bfd_link_hash_new:
|
|
|
|
|
abort ();
|
|
|
|
|
/* Avoid variable not initialized warnings. */
|
|
|
|
|
return true;
|
|
|
|
|
case bfd_link_hash_undefined:
|
|
|
|
|
type = N_UNDF | N_EXT;
|
|
|
|
|
val = 0;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_defined:
|
|
|
|
|
case bfd_link_hash_defweak:
|
|
|
|
|
{
|
|
|
|
|
asection *sec;
|
|
|
|
|
asection *output_section;
|
|
|
|
|
|
|
|
|
|
sec = h->root.root.u.def.section;
|
|
|
|
|
output_section = sec->output_section;
|
|
|
|
|
BFD_ASSERT (bfd_is_abs_section (output_section)
|
|
|
|
|
|| output_section->owner == output_bfd);
|
|
|
|
|
if (h->plt_offset != 0
|
|
|
|
|
&& (h->flags & SUNOS_DEF_REGULAR) == 0)
|
|
|
|
|
{
|
|
|
|
|
type = N_UNDF | N_EXT;
|
|
|
|
|
val = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (output_section == obj_textsec (output_bfd))
|
|
|
|
|
type = (h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
? N_TEXT
|
|
|
|
|
: N_WEAKT);
|
|
|
|
|
else if (output_section == obj_datasec (output_bfd))
|
|
|
|
|
type = (h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
? N_DATA
|
|
|
|
|
: N_WEAKD);
|
|
|
|
|
else if (output_section == obj_bsssec (output_bfd))
|
|
|
|
|
type = (h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
? N_BSS
|
|
|
|
|
: N_WEAKB);
|
|
|
|
|
else
|
|
|
|
|
type = (h->root.root.type == bfd_link_hash_defined
|
|
|
|
|
? N_ABS
|
|
|
|
|
: N_WEAKA);
|
|
|
|
|
type |= N_EXT;
|
|
|
|
|
val = (h->root.root.u.def.value
|
|
|
|
|
+ output_section->vma
|
|
|
|
|
+ sec->output_offset);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_common:
|
|
|
|
|
type = N_UNDF | N_EXT;
|
|
|
|
|
val = h->root.root.u.c.size;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_undefweak:
|
|
|
|
|
type = N_WEAKU;
|
|
|
|
|
val = 0;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_indirect:
|
|
|
|
|
case bfd_link_hash_warning:
|
|
|
|
|
/* FIXME: Ignore these for now. The circumstances under which
|
|
|
|
|
they should be written out are not clear to me. */
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
outsym = ((struct external_nlist *)
|
|
|
|
|
(s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (output_bfd, type, outsym->e_type);
|
|
|
|
|
H_PUT_8 (output_bfd, 0, outsym->e_other);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* FIXME: The native linker doesn't use 0 for desc. It seems to use
|
|
|
|
|
one less than the desc value in the shared library, although that
|
|
|
|
|
seems unlikely. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_16 (output_bfd, 0, outsym->e_desc);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
|
|
|
|
|
PUT_WORD (output_bfd, val, outsym->e_value);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This is called for each reloc against an external symbol. If this
|
|
|
|
|
is a reloc which are are going to copy as a dynamic reloc, then
|
|
|
|
|
copy it over, and tell the caller to not bother processing this
|
|
|
|
|
reloc. */
|
|
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
|
|
|
|
|
contents, skip, relocationp)
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
asection *input_section;
|
|
|
|
|
struct aout_link_hash_entry *harg;
|
|
|
|
|
PTR reloc;
|
1999-07-12 10:30:21 +00:00
|
|
|
|
bfd_byte *contents ATTRIBUTE_UNUSED;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
boolean *skip;
|
|
|
|
|
bfd_vma *relocationp;
|
|
|
|
|
{
|
|
|
|
|
struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
boolean baserel;
|
|
|
|
|
boolean jmptbl;
|
|
|
|
|
boolean pcrel;
|
|
|
|
|
asection *s;
|
|
|
|
|
bfd_byte *p;
|
|
|
|
|
long indx;
|
|
|
|
|
|
|
|
|
|
*skip = false;
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
if (h != NULL
|
|
|
|
|
&& h->plt_offset != 0
|
|
|
|
|
&& (info->shared
|
|
|
|
|
|| (h->flags & SUNOS_DEF_REGULAR) == 0))
|
|
|
|
|
{
|
|
|
|
|
asection *splt;
|
|
|
|
|
|
|
|
|
|
/* Redirect the relocation to the PLT entry. */
|
|
|
|
|
splt = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
*relocationp = (splt->output_section->vma
|
|
|
|
|
+ splt->output_offset
|
|
|
|
|
+ h->plt_offset);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
|
|
|
|
|
{
|
|
|
|
|
struct reloc_std_external *srel;
|
|
|
|
|
|
|
|
|
|
srel = (struct reloc_std_external *) reloc;
|
|
|
|
|
if (bfd_header_big_endian (input_bfd))
|
|
|
|
|
{
|
|
|
|
|
baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
|
|
|
|
|
jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
|
|
|
|
|
pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
|
|
|
|
|
jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
|
|
|
|
|
pcrel = (0 != (srel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct reloc_ext_external *erel;
|
|
|
|
|
int r_type;
|
|
|
|
|
|
|
|
|
|
erel = (struct reloc_ext_external *) reloc;
|
|
|
|
|
if (bfd_header_big_endian (input_bfd))
|
|
|
|
|
r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
|
|
|
|
|
>> RELOC_EXT_BITS_TYPE_SH_BIG);
|
|
|
|
|
else
|
|
|
|
|
r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
|
|
|
|
|
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
|
|
|
|
|
baserel = (r_type == RELOC_BASE10
|
|
|
|
|
|| r_type == RELOC_BASE13
|
|
|
|
|
|| r_type == RELOC_BASE22);
|
|
|
|
|
jmptbl = r_type == RELOC_JMP_TBL;
|
|
|
|
|
pcrel = (r_type == RELOC_DISP8
|
|
|
|
|
|| r_type == RELOC_DISP16
|
|
|
|
|
|| r_type == RELOC_DISP32
|
|
|
|
|
|| r_type == RELOC_WDISP30
|
|
|
|
|
|| r_type == RELOC_WDISP22);
|
|
|
|
|
/* We don't consider the PC10 and PC22 types to be PC relative,
|
|
|
|
|
because they are pcrel_offset. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (baserel)
|
|
|
|
|
{
|
|
|
|
|
bfd_vma *got_offsetp;
|
|
|
|
|
asection *sgot;
|
|
|
|
|
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
got_offsetp = &h->got_offset;
|
|
|
|
|
else if (adata (input_bfd).local_got_offsets == NULL)
|
|
|
|
|
got_offsetp = NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct reloc_std_external *srel;
|
|
|
|
|
int r_index;
|
|
|
|
|
|
|
|
|
|
srel = (struct reloc_std_external *) reloc;
|
|
|
|
|
if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_header_big_endian (input_bfd))
|
|
|
|
|
r_index = ((srel->r_index[0] << 16)
|
|
|
|
|
| (srel->r_index[1] << 8)
|
|
|
|
|
| srel->r_index[2]);
|
|
|
|
|
else
|
|
|
|
|
r_index = ((srel->r_index[2] << 16)
|
|
|
|
|
| (srel->r_index[1] << 8)
|
|
|
|
|
| srel->r_index[0]);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct reloc_ext_external *erel;
|
|
|
|
|
|
|
|
|
|
erel = (struct reloc_ext_external *) reloc;
|
|
|
|
|
if (bfd_header_big_endian (input_bfd))
|
|
|
|
|
r_index = ((erel->r_index[0] << 16)
|
|
|
|
|
| (erel->r_index[1] << 8)
|
|
|
|
|
| erel->r_index[2]);
|
|
|
|
|
else
|
|
|
|
|
r_index = ((erel->r_index[2] << 16)
|
|
|
|
|
| (erel->r_index[1] << 8)
|
|
|
|
|
| erel->r_index[0]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
got_offsetp = adata (input_bfd).local_got_offsets + r_index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
|
|
|
|
|
|
|
|
|
|
sgot = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
|
|
|
|
|
/* We set the least significant bit to indicate whether we have
|
|
|
|
|
already initialized the GOT entry. */
|
|
|
|
|
if ((*got_offsetp & 1) == 0)
|
|
|
|
|
{
|
|
|
|
|
if (h == NULL
|
|
|
|
|
|| (! info->shared
|
|
|
|
|
&& ((h->flags & SUNOS_DEF_DYNAMIC) == 0
|
|
|
|
|
|| (h->flags & SUNOS_DEF_REGULAR) != 0)))
|
|
|
|
|
PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
|
|
|
|
|
else
|
|
|
|
|
PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
|
|
|
|
|
|
|
|
|
|
if (info->shared
|
|
|
|
|
|| (h != NULL
|
|
|
|
|
&& (h->flags & SUNOS_DEF_DYNAMIC) != 0
|
|
|
|
|
&& (h->flags & SUNOS_DEF_REGULAR) == 0))
|
|
|
|
|
{
|
|
|
|
|
/* We need to create a GLOB_DAT or 32 reloc to tell the
|
|
|
|
|
dynamic linker to fill in this entry in the table. */
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
|
|
|
|
|
< s->_raw_size);
|
|
|
|
|
|
|
|
|
|
p = (s->contents
|
|
|
|
|
+ s->reloc_count * obj_reloc_entry_size (dynobj));
|
|
|
|
|
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
indx = h->dynindx;
|
|
|
|
|
else
|
|
|
|
|
indx = 0;
|
|
|
|
|
|
|
|
|
|
if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
|
|
|
|
|
{
|
|
|
|
|
struct reloc_std_external *srel;
|
|
|
|
|
|
|
|
|
|
srel = (struct reloc_std_external *) p;
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
(*got_offsetp
|
|
|
|
|
+ sgot->output_section->vma
|
|
|
|
|
+ sgot->output_offset),
|
|
|
|
|
srel->r_address);
|
|
|
|
|
if (bfd_header_big_endian (dynobj))
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
srel->r_index[0] = (bfd_byte) (indx >> 16);
|
|
|
|
|
srel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
srel->r_index[2] = (bfd_byte)indx;
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
|
|
|
|
|
else
|
|
|
|
|
srel->r_type[0] =
|
|
|
|
|
(RELOC_STD_BITS_EXTERN_BIG
|
|
|
|
|
| RELOC_STD_BITS_BASEREL_BIG
|
|
|
|
|
| RELOC_STD_BITS_RELATIVE_BIG
|
|
|
|
|
| (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
srel->r_index[2] = (bfd_byte) (indx >> 16);
|
|
|
|
|
srel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
srel->r_index[0] = (bfd_byte)indx;
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
|
|
|
|
|
else
|
|
|
|
|
srel->r_type[0] =
|
|
|
|
|
(RELOC_STD_BITS_EXTERN_LITTLE
|
|
|
|
|
| RELOC_STD_BITS_BASEREL_LITTLE
|
|
|
|
|
| RELOC_STD_BITS_RELATIVE_LITTLE
|
|
|
|
|
| (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct reloc_ext_external *erel;
|
|
|
|
|
|
|
|
|
|
erel = (struct reloc_ext_external *) p;
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
(*got_offsetp
|
|
|
|
|
+ sgot->output_section->vma
|
|
|
|
|
+ sgot->output_offset),
|
|
|
|
|
erel->r_address);
|
|
|
|
|
if (bfd_header_big_endian (dynobj))
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
erel->r_index[0] = (bfd_byte) (indx >> 16);
|
|
|
|
|
erel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
erel->r_index[2] = (bfd_byte)indx;
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
erel->r_type[0] =
|
|
|
|
|
RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
|
|
|
|
|
else
|
|
|
|
|
erel->r_type[0] =
|
|
|
|
|
(RELOC_EXT_BITS_EXTERN_BIG
|
|
|
|
|
| (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
erel->r_index[2] = (bfd_byte) (indx >> 16);
|
|
|
|
|
erel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
erel->r_index[0] = (bfd_byte)indx;
|
|
|
|
|
if (h == NULL)
|
|
|
|
|
erel->r_type[0] =
|
|
|
|
|
RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
|
|
|
|
|
else
|
|
|
|
|
erel->r_type[0] =
|
|
|
|
|
(RELOC_EXT_BITS_EXTERN_LITTLE
|
|
|
|
|
| (RELOC_GLOB_DAT
|
|
|
|
|
<< RELOC_EXT_BITS_TYPE_SH_LITTLE));
|
|
|
|
|
}
|
|
|
|
|
PUT_WORD (dynobj, 0, erel->r_addend);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
++s->reloc_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*got_offsetp |= 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*relocationp = (sgot->vma
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
+ (*got_offsetp &~ (bfd_vma) 1)
|
1999-05-03 07:29:11 +00:00
|
|
|
|
- sunos_hash_table (info)->got_base);
|
|
|
|
|
|
|
|
|
|
/* There is nothing else to do for a base relative reloc. */
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! sunos_hash_table (info)->dynamic_sections_needed)
|
|
|
|
|
return true;
|
|
|
|
|
if (! info->shared)
|
|
|
|
|
{
|
|
|
|
|
if (h == NULL
|
|
|
|
|
|| h->dynindx == -1
|
|
|
|
|
|| h->root.root.type != bfd_link_hash_undefined
|
|
|
|
|
|| (h->flags & SUNOS_DEF_REGULAR) != 0
|
|
|
|
|
|| (h->flags & SUNOS_DEF_DYNAMIC) == 0
|
|
|
|
|
|| (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (h != NULL
|
|
|
|
|
&& (h->dynindx == -1
|
|
|
|
|
|| jmptbl
|
|
|
|
|
|| strcmp (h->root.root.root.string,
|
|
|
|
|
"__GLOBAL_OFFSET_TABLE_") == 0))
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* It looks like this is a reloc we are supposed to copy. */
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size);
|
|
|
|
|
|
|
|
|
|
p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
|
|
|
|
|
|
|
|
|
|
/* Copy the reloc over. */
|
|
|
|
|
memcpy (p, reloc, obj_reloc_entry_size (dynobj));
|
|
|
|
|
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
indx = h->dynindx;
|
|
|
|
|
else
|
|
|
|
|
indx = 0;
|
|
|
|
|
|
|
|
|
|
/* Adjust the address and symbol index. */
|
|
|
|
|
if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
|
|
|
|
|
{
|
|
|
|
|
struct reloc_std_external *srel;
|
|
|
|
|
|
|
|
|
|
srel = (struct reloc_std_external *) p;
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
(GET_WORD (dynobj, srel->r_address)
|
|
|
|
|
+ input_section->output_section->vma
|
|
|
|
|
+ input_section->output_offset),
|
|
|
|
|
srel->r_address);
|
|
|
|
|
if (bfd_header_big_endian (dynobj))
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
srel->r_index[0] = (bfd_byte) (indx >> 16);
|
|
|
|
|
srel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
srel->r_index[2] = (bfd_byte)indx;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
srel->r_index[2] = (bfd_byte) (indx >> 16);
|
|
|
|
|
srel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
srel->r_index[0] = (bfd_byte)indx;
|
|
|
|
|
}
|
|
|
|
|
/* FIXME: We may have to change the addend for a PC relative
|
|
|
|
|
reloc. */
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct reloc_ext_external *erel;
|
|
|
|
|
|
|
|
|
|
erel = (struct reloc_ext_external *) p;
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
(GET_WORD (dynobj, erel->r_address)
|
|
|
|
|
+ input_section->output_section->vma
|
|
|
|
|
+ input_section->output_offset),
|
|
|
|
|
erel->r_address);
|
|
|
|
|
if (bfd_header_big_endian (dynobj))
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
erel->r_index[0] = (bfd_byte) (indx >> 16);
|
|
|
|
|
erel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
erel->r_index[2] = (bfd_byte)indx;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2000-12-20 00:21:57 +00:00
|
|
|
|
erel->r_index[2] = (bfd_byte) (indx >> 16);
|
|
|
|
|
erel->r_index[1] = (bfd_byte) (indx >> 8);
|
1999-05-03 07:29:11 +00:00
|
|
|
|
erel->r_index[0] = (bfd_byte)indx;
|
|
|
|
|
}
|
|
|
|
|
if (pcrel && h != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Adjust the addend for the change in address. */
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
(GET_WORD (dynobj, erel->r_addend)
|
|
|
|
|
- (input_section->output_section->vma
|
|
|
|
|
+ input_section->output_offset
|
|
|
|
|
- input_section->vma)),
|
|
|
|
|
erel->r_addend);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
++s->reloc_count;
|
|
|
|
|
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
*skip = true;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish up the dynamic linking information. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
sunos_finish_dynamic_link (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
bfd *dynobj;
|
|
|
|
|
asection *o;
|
|
|
|
|
asection *s;
|
|
|
|
|
asection *sdyn;
|
|
|
|
|
|
|
|
|
|
if (! sunos_hash_table (info)->dynamic_sections_needed
|
|
|
|
|
&& ! sunos_hash_table (info)->got_needed)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
dynobj = sunos_hash_table (info)->dynobj;
|
|
|
|
|
|
|
|
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
|
|
|
|
BFD_ASSERT (sdyn != NULL);
|
|
|
|
|
|
|
|
|
|
/* Finish up the .need section. The linker emulation code filled it
|
|
|
|
|
in, but with offsets from the start of the section instead of
|
|
|
|
|
real addresses. Now that we know the section location, we can
|
|
|
|
|
fill in the final values. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".need");
|
|
|
|
|
if (s != NULL && s->_raw_size != 0)
|
|
|
|
|
{
|
|
|
|
|
file_ptr filepos;
|
|
|
|
|
bfd_byte *p;
|
|
|
|
|
|
|
|
|
|
filepos = s->output_section->filepos + s->output_offset;
|
|
|
|
|
p = s->contents;
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
bfd_vma val;
|
|
|
|
|
|
|
|
|
|
PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
|
|
|
|
|
val = GET_WORD (dynobj, p + 12);
|
|
|
|
|
if (val == 0)
|
|
|
|
|
break;
|
|
|
|
|
PUT_WORD (dynobj, val + filepos, p + 12);
|
|
|
|
|
p += 16;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The first entry in the .got section is the address of the
|
|
|
|
|
dynamic information, unless this is a shared library. */
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
if (info->shared || sdyn->_raw_size == 0)
|
|
|
|
|
PUT_WORD (dynobj, 0, s->contents);
|
|
|
|
|
else
|
|
|
|
|
PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
|
|
|
|
|
s->contents);
|
|
|
|
|
|
|
|
|
|
for (o = dynobj->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
if ((o->flags & SEC_HAS_CONTENTS) != 0
|
|
|
|
|
&& o->contents != NULL)
|
|
|
|
|
{
|
|
|
|
|
BFD_ASSERT (o->output_section != NULL
|
|
|
|
|
&& o->output_section->owner == abfd);
|
|
|
|
|
if (! bfd_set_section_contents (abfd, o->output_section,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
o->contents,
|
|
|
|
|
(file_ptr) o->output_offset,
|
1999-05-03 07:29:11 +00:00
|
|
|
|
o->_raw_size))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sdyn->_raw_size > 0)
|
|
|
|
|
{
|
|
|
|
|
struct external_sun4_dynamic esd;
|
|
|
|
|
struct external_sun4_dynamic_link esdl;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
file_ptr pos;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
|
|
|
|
|
/* Finish up the dynamic link information. */
|
|
|
|
|
PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
|
|
|
|
|
esd.ldd);
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
(sdyn->output_section->vma
|
|
|
|
|
+ sdyn->output_offset
|
|
|
|
|
+ sizeof esd
|
|
|
|
|
+ EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
|
|
|
|
|
esd.ld);
|
|
|
|
|
|
|
|
|
|
if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(file_ptr) sdyn->output_offset,
|
|
|
|
|
(bfd_size_type) sizeof esd))
|
1999-05-03 07:29:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".need");
|
|
|
|
|
if (s == NULL || s->_raw_size == 0)
|
|
|
|
|
PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
|
|
|
|
|
else
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
|
|
|
|
|
esdl.ld_need);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".rules");
|
|
|
|
|
if (s == NULL || s->_raw_size == 0)
|
|
|
|
|
PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
|
|
|
|
|
else
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
|
|
|
|
|
esdl.ld_rules);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".got");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
|
|
|
|
|
esdl.ld_got);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".plt");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->vma + s->output_offset,
|
|
|
|
|
esdl.ld_plt);
|
|
|
|
|
PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynrel");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
|
|
|
|
|
== s->_raw_size);
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
|
|
|
|
|
esdl.ld_rel);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".hash");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
|
|
|
|
|
esdl.ld_hash);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
|
|
|
|
|
esdl.ld_stab);
|
|
|
|
|
|
|
|
|
|
PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
|
|
|
|
|
|
|
|
|
|
PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
|
|
|
|
|
esdl.ld_buckets);
|
|
|
|
|
|
|
|
|
|
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
|
PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
|
|
|
|
|
esdl.ld_symbols);
|
|
|
|
|
PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
|
|
|
|
|
|
|
|
|
|
/* The size of the text area is the size of the .text section
|
|
|
|
|
rounded up to a page boundary. FIXME: Should the page size be
|
|
|
|
|
conditional on something? */
|
|
|
|
|
PUT_WORD (dynobj,
|
|
|
|
|
BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
|
|
|
|
|
esdl.ld_text);
|
2000-12-20 00:21:57 +00:00
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
pos = sdyn->output_offset;
|
|
|
|
|
pos += sizeof esd + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE;
|
1999-05-03 07:29:11 +00:00
|
|
|
|
if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
pos, (bfd_size_type) sizeof esdl))
|
1999-05-03 07:29:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
abfd->flags |= DYNAMIC;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|