1993-05-05 22:19:00 +00:00
|
|
|
|
/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
|
|
|
|
|
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993
|
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
Contributed by the Center for Software Science at the
|
|
|
|
|
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
|
|
|
|
/* Target system byte order. */
|
|
|
|
|
|
|
|
|
|
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
|
|
|
|
|
|
|
|
|
/* Get at various relevent fields of an instruction word. */
|
|
|
|
|
|
|
|
|
|
#define MASK_5 0x1f
|
|
|
|
|
#define MASK_11 0x7ff
|
|
|
|
|
#define MASK_14 0x3fff
|
|
|
|
|
#define MASK_21 0x1fffff
|
|
|
|
|
|
|
|
|
|
/* This macro gets bit fields using HP's numbering (MSB = 0) */
|
|
|
|
|
|
|
|
|
|
#define GET_FIELD(X, FROM, TO) \
|
|
|
|
|
((X) >> 31 - (TO) & (1 << ((TO) - (FROM) + 1)) - 1)
|
|
|
|
|
|
|
|
|
|
/* Watch out for NaNs */
|
|
|
|
|
|
|
|
|
|
#define IEEE_FLOAT
|
|
|
|
|
|
|
|
|
|
/* When passing a structure to a function, GCC passes the address
|
|
|
|
|
in a register, not the structure itself. */
|
|
|
|
|
|
1993-07-30 17:01:26 +00:00
|
|
|
|
/* FIXME: I believe this is wrong. I believe passing the address
|
|
|
|
|
depends only on the size of the argument being > 8, not on its type
|
|
|
|
|
(which is a much more sane way than the REG_STRUCT_HAS_ADDR way,
|
|
|
|
|
IMHO). Also, as far as I know it is not dependent on it being
|
|
|
|
|
passed in a register. This should be verified before changing
|
|
|
|
|
anything (in fact, printing structure arguments of
|
|
|
|
|
2,4,6,8,12,16,and 20 bytes should all be in the test suite). */
|
1993-05-05 22:19:00 +00:00
|
|
|
|
|
1993-07-30 17:01:26 +00:00
|
|
|
|
#define REG_STRUCT_HAS_ADDR(gcc_p) (1)
|
1993-05-05 22:19:00 +00:00
|
|
|
|
|
|
|
|
|
/* Offset from address of function to start of its code.
|
|
|
|
|
Zero on most machines. */
|
|
|
|
|
|
|
|
|
|
#define FUNCTION_START_OFFSET 0
|
|
|
|
|
|
|
|
|
|
/* Advance PC across any function entry prologue instructions
|
|
|
|
|
to reach some "real" code. */
|
|
|
|
|
|
|
|
|
|
/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
|
|
|
|
|
for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
|
|
|
|
|
|
|
|
|
|
#define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
|
|
|
|
|
|
|
|
|
|
/* If PC is in some function-call trampoline code, return the PC
|
|
|
|
|
where the function itself actually starts. If not, return NULL. */
|
|
|
|
|
|
|
|
|
|
#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
|
|
|
|
|
|
|
|
|
|
/* Return non-zero if we are in some sort of a trampoline. */
|
|
|
|
|
|
|
|
|
|
#define IN_SOLIB_TRAMPOLINE(pc, name) skip_trampoline_code (pc, name)
|
|
|
|
|
|
|
|
|
|
/* Immediately after a function call, return the saved pc.
|
|
|
|
|
Can't go through the frames for this because on some machines
|
|
|
|
|
the new frame is not set up until the new function executes
|
|
|
|
|
some instructions. */
|
|
|
|
|
|
1993-07-30 17:01:26 +00:00
|
|
|
|
#undef SAVED_PC_AFTER_CALL
|
|
|
|
|
#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
|
1993-05-05 22:19:00 +00:00
|
|
|
|
|
|
|
|
|
/* Stack grows upward */
|
|
|
|
|
|
|
|
|
|
#define INNER_THAN >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Sequence of bytes for breakpoint instruction. */
|
|
|
|
|
|
|
|
|
|
/*#define BREAKPOINT {0x00, 0x00, 0x00, 0x00}*/
|
|
|
|
|
#ifdef KERNELDEBUG /* XXX */
|
|
|
|
|
#define BREAKPOINT {0x00, 0x00, 0xa0, 0x00}
|
|
|
|
|
#else
|
|
|
|
|
#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Amount PC must be decremented by after a breakpoint.
|
|
|
|
|
This is often the number of bytes in BREAKPOINT
|
|
|
|
|
but not always.
|
|
|
|
|
|
|
|
|
|
Not on the PA-RISC */
|
|
|
|
|
|
|
|
|
|
#define DECR_PC_AFTER_BREAK 0
|
|
|
|
|
|
|
|
|
|
/* return instruction is bv r0(rp) or bv,n r0(rp)*/
|
|
|
|
|
|
|
|
|
|
#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
|
|
|
|
|
|
|
|
|
|
/* Return 1 if P points to an invalid floating point value. */
|
|
|
|
|
|
|
|
|
|
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
|
|
|
|
|
|
|
|
|
|
/* Largest integer type */
|
|
|
|
|
#define LONGEST long
|
|
|
|
|
|
|
|
|
|
/* Name of the builtin type for the LONGEST type above. */
|
|
|
|
|
#define BUILTIN_TYPE_LONGEST builtin_type_long
|
|
|
|
|
|
|
|
|
|
/* Say how long (ordinary) registers are. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_TYPE long
|
|
|
|
|
|
|
|
|
|
/* Number of machine registers */
|
|
|
|
|
|
|
|
|
|
#define NUM_REGS 100
|
|
|
|
|
|
|
|
|
|
/* Initializer for an array of names of registers.
|
|
|
|
|
There should be NUM_REGS strings in this initializer. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_NAMES \
|
|
|
|
|
{"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
|
|
|
|
|
"r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
|
|
|
|
|
"r20", "r21", "r22", "arg3", "arg2", "arg1", "arg0", "dp", "ret0", "ret1", \
|
|
|
|
|
"sp", "r31", "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", \
|
|
|
|
|
"eiem", "iir", "isr", "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", \
|
|
|
|
|
"sr3", "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", "cr13", \
|
|
|
|
|
"cr24", "cr25", "cr26", "mpsfu_high", "mpsfu_low", "mpsfu_ovflo", "pad", \
|
|
|
|
|
"fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
|
1993-07-30 17:01:26 +00:00
|
|
|
|
"fr4", "fr5", "fr6", "fr7", "fr8", \
|
|
|
|
|
"fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
|
|
|
|
|
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
|
|
|
|
|
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31"}
|
1993-05-05 22:19:00 +00:00
|
|
|
|
|
|
|
|
|
/* Register numbers of various important registers.
|
|
|
|
|
Note that some of these values are "real" register numbers,
|
|
|
|
|
and correspond to the general registers of the machine,
|
|
|
|
|
and some are "phony" register numbers which are too large
|
|
|
|
|
to be actual register numbers as far as the user is concerned
|
|
|
|
|
but do serve to get the desired values when passed to read_register. */
|
|
|
|
|
|
|
|
|
|
#define FLAGS_REGNUM 0 /* Various status flags */
|
|
|
|
|
#define RP_REGNUM 2 /* return pointer */
|
|
|
|
|
#define FP_REGNUM 4 /* Contains address of executing stack */
|
|
|
|
|
/* frame */
|
|
|
|
|
#define SP_REGNUM 30 /* Contains address of top of stack */
|
|
|
|
|
#define SAR_REGNUM 32 /* shift amount register */
|
|
|
|
|
#define IPSW_REGNUM 41 /* processor status word. ? */
|
|
|
|
|
#define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
|
|
|
|
|
#define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
|
|
|
|
|
#define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
|
|
|
|
|
#define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
|
|
|
|
|
#define FP0_REGNUM 64 /* floating point reg. 0 */
|
|
|
|
|
#define FP4_REGNUM 72
|
|
|
|
|
|
|
|
|
|
/* compatibility with the rest of gdb. */
|
|
|
|
|
#define PC_REGNUM PCOQ_HEAD_REGNUM
|
|
|
|
|
#define NPC_REGNUM PCOQ_TAIL_REGNUM
|
|
|
|
|
|
|
|
|
|
/* When fetching register values from an inferior or a core file,
|
|
|
|
|
clean them up using this macro. BUF is a char pointer to
|
|
|
|
|
the raw value of the register in the registers[] array. */
|
|
|
|
|
|
|
|
|
|
#define CLEAN_UP_REGISTER_VALUE(regno, buf) \
|
|
|
|
|
do { \
|
|
|
|
|
if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
|
|
|
|
|
(buf)[3] &= ~0x3; \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
|
|
|
|
|
of register dumps. */
|
|
|
|
|
|
|
|
|
|
#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
|
|
|
|
|
|
|
|
|
|
/* PA specific macro to see if the current instruction is nullified. */
|
|
|
|
|
#define INSTRUCTION_NULLIFIED ((int)read_register (IPSW_REGNUM) & 0x00200000)
|
|
|
|
|
|
|
|
|
|
/* Total amount of space needed to store our copies of the machine's
|
|
|
|
|
register state, the array `registers'. */
|
|
|
|
|
#define REGISTER_BYTES (32 * 4 + 11 * 4 + 8 * 4 + 12 * 4 + 4 + 32 * 8)
|
|
|
|
|
|
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
|
|
|
register N. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_BYTE(N) \
|
|
|
|
|
((N) >= FP4_REGNUM ? ((N) - FP4_REGNUM) * 8 + 288 : (N) * 4)
|
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the actual machine representation
|
|
|
|
|
for register N. On the PA-RISC, all regs are 4 bytes
|
|
|
|
|
except the floating point regs which are 8 bytes. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_RAW_SIZE(N) ((N) < FP4_REGNUM ? 4 : 8)
|
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the program's representation
|
|
|
|
|
for register N. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
|
|
|
|
|
|
|
|
|
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
|
|
|
|
|
|
|
|
|
#define MAX_REGISTER_RAW_SIZE 8
|
|
|
|
|
|
|
|
|
|
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
|
|
|
|
|
|
|
|
|
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
|
|
|
|
|
|
|
|
|
/* Nonzero if register N requires conversion
|
|
|
|
|
from raw format to virtual format. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_CONVERTIBLE(N) 0
|
|
|
|
|
|
|
|
|
|
/* Convert data from raw format for register REGNUM
|
|
|
|
|
to virtual format for register REGNUM. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM, FROM, TO) \
|
|
|
|
|
{ memcpy ((TO), (FROM), (REGNUM) < FP4_REGNUM ? 4 : 8); }
|
|
|
|
|
|
|
|
|
|
/* Convert data from virtual format for register REGNUM
|
|
|
|
|
to raw format for register REGNUM. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_CONVERT_TO_RAW(REGNUM, FROM, TO) \
|
|
|
|
|
{ memcpy ((TO), (FROM), (REGNUM) < FP4_REGNUM ? 4 : 8); }
|
|
|
|
|
|
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
|
|
|
of data in register N. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
|
|
|
|
((N) < FP4_REGNUM ? builtin_type_int : builtin_type_double)
|
|
|
|
|
|
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
|
|
|
subroutine will return. This is called from call_function. */
|
|
|
|
|
|
|
|
|
|
#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
|
|
|
|
|
|
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
|
|
|
a function return value of type TYPE, and copy that, in virtual format,
|
|
|
|
|
into VALBUF. */
|
|
|
|
|
|
|
|
|
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
1993-09-01 20:37:15 +00:00
|
|
|
|
memcpy (VALBUF, (REGBUF) + REGISTER_BYTE(TYPE_LENGTH(TYPE) > 4 ? \
|
|
|
|
|
FP4_REGNUM :28), TYPE_LENGTH (TYPE))
|
1993-05-05 22:19:00 +00:00
|
|
|
|
|
|
|
|
|
/* Write into appropriate registers a function return value
|
|
|
|
|
of type TYPE, given in virtual format. */
|
|
|
|
|
|
|
|
|
|
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
|
|
|
|
write_register_bytes (TYPE_LENGTH(TYPE) > 4 ? FP4_REGNUM :28, \
|
|
|
|
|
VALBUF, TYPE_LENGTH (TYPE))
|
|
|
|
|
|
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
|
|
|
the address in which a function should return its structure value,
|
|
|
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
|
|
|
|
|
|
|
|
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)((REGBUF) + 28))
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This macro defines the register numbers (from REGISTER_NAMES) that
|
|
|
|
|
* are effectively unavailable to the user through ptrace(). It allows
|
|
|
|
|
* us to include the whole register set in REGISTER_NAMES (inorder to
|
|
|
|
|
* better support remote debugging). If it is used in
|
|
|
|
|
* fetch/store_inferior_registers() gdb will not complain about I/O errors
|
|
|
|
|
* on fetching these registers. If all registers in REGISTER_NAMES
|
|
|
|
|
* are available, then return false (0).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define CANNOT_STORE_REGISTER(regno) \
|
|
|
|
|
((regno) == 0) || \
|
|
|
|
|
((regno) == PCSQ_HEAD_REGNUM) || \
|
|
|
|
|
((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
|
|
|
|
|
((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
|
|
|
|
|
|
|
|
|
|
#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
|
|
|
|
|
|
|
|
|
|
/* Describe the pointer in each stack frame to the previous stack frame
|
|
|
|
|
(its caller). */
|
|
|
|
|
|
|
|
|
|
/* FRAME_CHAIN takes a frame's nominal address
|
|
|
|
|
and produces the frame's chain-pointer.
|
|
|
|
|
|
|
|
|
|
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
|
|
|
|
and produces the nominal address of the caller frame.
|
|
|
|
|
|
|
|
|
|
However, if FRAME_CHAIN_VALID returns zero,
|
|
|
|
|
it means the given frame is the outermost one and has no caller.
|
|
|
|
|
In that case, FRAME_CHAIN_COMBINE is not used. */
|
|
|
|
|
|
|
|
|
|
/* In the case of the PA-RISC, the frame's nominal address
|
|
|
|
|
is the address of a 4-byte word containing the calling frame's
|
|
|
|
|
address (previous FP). */
|
|
|
|
|
|
|
|
|
|
#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
|
|
|
|
|
|
|
|
|
|
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
|
|
|
|
frame_chain_valid (chain, thisframe)
|
|
|
|
|
|
|
|
|
|
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
|
|
|
|
|
|
|
|
|
/* Define other aspects of the stack frame. */
|
|
|
|
|
|
|
|
|
|
/* A macro that tells us whether the function invocation represented
|
|
|
|
|
by FI does not have a frame on the stack associated with it. If it
|
|
|
|
|
does not, FRAMELESS is set to 1, else 0. */
|
|
|
|
|
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
1993-07-30 17:01:26 +00:00
|
|
|
|
(FRAMELESS) = frameless_function_invocation(FI)
|
1993-05-05 22:19:00 +00:00
|
|
|
|
|
|
|
|
|
#define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
|
|
|
|
|
|
|
|
|
|
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
|
|
|
|
|
|
|
|
|
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
|
|
|
|
/* Set VAL to the number of args passed to frame described by FI.
|
|
|
|
|
Can set VAL to -1, meaning no way to tell. */
|
|
|
|
|
|
|
|
|
|
/* We can't tell how many args there are
|
|
|
|
|
now that the C compiler delays popping them. */
|
|
|
|
|
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
|
|
|
|
|
|
|
|
|
/* Return number of bytes at start of arglist that are not really args. */
|
|
|
|
|
|
|
|
|
|
#define FRAME_ARGS_SKIP 0
|
|
|
|
|
|
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
|
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
|
|
|
This includes special registers such as pc and fp saved in special
|
|
|
|
|
ways in the stack frame. sp is even more special:
|
|
|
|
|
the address we return for it IS the sp for the next frame. */
|
|
|
|
|
|
|
|
|
|
/* Deal with dummy functions later. */
|
|
|
|
|
|
|
|
|
|
#define STW_P(INSN) (((INSN) & 0xfc000000) == 0x68000000)
|
|
|
|
|
#define ADDIL_P(INSN) (((INSN) & 0xfc000000) == 0x28000000)
|
|
|
|
|
#define LDO_P(INSN) (((INSN) & 0xfc00c000) == 0x34000000)
|
|
|
|
|
|
|
|
|
|
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
|
|
|
|
{ register int regnum; \
|
|
|
|
|
register CORE_ADDR next_addr; \
|
|
|
|
|
register CORE_ADDR pc; \
|
|
|
|
|
unsigned this_insn; \
|
|
|
|
|
unsigned address; \
|
|
|
|
|
\
|
1993-09-01 21:56:42 +00:00
|
|
|
|
memset (&frame_saved_regs, '\0', sizeof frame_saved_regs); \
|
1993-05-05 22:19:00 +00:00
|
|
|
|
if ((frame_info->pc >= (frame_info)->frame \
|
|
|
|
|
&& (frame_info)->pc <= ((frame_info)->frame + CALL_DUMMY_LENGTH \
|
|
|
|
|
+ 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 \
|
|
|
|
|
+ 6 * 4))) \
|
|
|
|
|
find_dummy_frame_regs ((frame_info), &(frame_saved_regs)); \
|
|
|
|
|
else \
|
|
|
|
|
{ pc = get_pc_function_start ((frame_info)->pc); \
|
|
|
|
|
if (read_memory_integer (pc, 4) == 0x6BC23FD9) \
|
|
|
|
|
{ (frame_saved_regs).regs[RP_REGNUM] = (frame_info)->frame - 20;\
|
|
|
|
|
pc = pc + 4; \
|
|
|
|
|
} \
|
|
|
|
|
if (read_memory_integer (pc, 4) != 0x8040241) goto lose; \
|
|
|
|
|
pc += 8; /* skip "copy 4,1; copy 30, 4" */ \
|
|
|
|
|
/* skip either "stw 1,0(4);addil L'fsize,30;ldo R'fsize(1),30" \
|
|
|
|
|
or "stwm 1,fsize(30)" */ \
|
|
|
|
|
if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
|
|
|
|
|
pc += 12; \
|
|
|
|
|
else \
|
|
|
|
|
pc += 4; \
|
|
|
|
|
while (1) \
|
|
|
|
|
{ this_insn = read_memory_integer(pc, 4); \
|
|
|
|
|
if (STW_P (this_insn)) /* stw */ \
|
|
|
|
|
{ regnum = GET_FIELD (this_insn, 11, 15); \
|
|
|
|
|
if (!regnum) goto lose; \
|
|
|
|
|
(frame_saved_regs).regs[regnum] = (frame_info)->frame + \
|
|
|
|
|
extract_14 (this_insn); \
|
|
|
|
|
pc += 4; \
|
|
|
|
|
} \
|
|
|
|
|
else if (ADDIL_P (this_insn)) /* addil */ \
|
|
|
|
|
{ int next_insn; \
|
|
|
|
|
next_insn = read_memory_integer(pc + 4, 4); \
|
|
|
|
|
if (STW_P (next_insn)) /* stw */ \
|
|
|
|
|
{ regnum = GET_FIELD (this_insn, 6, 10); \
|
|
|
|
|
if (!regnum) goto lose; \
|
|
|
|
|
(frame_saved_regs).regs[regnum] = (frame_info)->frame +\
|
|
|
|
|
(extract_21 (this_insn) << 11) + extract_14 (next_insn);\
|
|
|
|
|
pc += 8; \
|
|
|
|
|
} \
|
|
|
|
|
else \
|
|
|
|
|
break; \
|
|
|
|
|
} \
|
|
|
|
|
else \
|
|
|
|
|
{ pc += 4; \
|
|
|
|
|
break; \
|
|
|
|
|
} \
|
|
|
|
|
} \
|
|
|
|
|
this_insn = read_memory_integer (pc, 4); \
|
|
|
|
|
if (LDO_P (this_insn)) \
|
|
|
|
|
{ next_addr = (frame_info)->frame + extract_14 (this_insn); \
|
|
|
|
|
pc += 4; \
|
|
|
|
|
} \
|
|
|
|
|
else if (ADDIL_P (this_insn)) \
|
|
|
|
|
{ next_addr = (frame_info)->frame + (extract_21 (this_insn) << 11)\
|
|
|
|
|
+ extract_14 (read_memory_integer (pc + 4, 4)); \
|
|
|
|
|
pc += 8; \
|
|
|
|
|
} \
|
|
|
|
|
while (1) \
|
|
|
|
|
{ this_insn = read_memory_integer (pc, 4); \
|
|
|
|
|
if ((this_insn & 0xfc001fe0) == 0x2c001220) /* fstds,ma */ \
|
|
|
|
|
{ regnum = GET_FIELD (this_insn, 27, 31); \
|
|
|
|
|
(frame_saved_regs).regs[regnum + FP0_REGNUM] = next_addr; \
|
|
|
|
|
next_addr += 8; \
|
|
|
|
|
pc += 4; \
|
|
|
|
|
} \
|
|
|
|
|
else \
|
|
|
|
|
break; \
|
|
|
|
|
} \
|
|
|
|
|
lose: \
|
|
|
|
|
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
|
|
|
|
|
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame -4; \
|
|
|
|
|
}}
|
|
|
|
|
|
|
|
|
|
/* Things needed for making the inferior call functions. */
|
|
|
|
|
|
|
|
|
|
/* Push an empty stack frame, to record the current PC, etc. */
|
|
|
|
|
|
|
|
|
|
#define PUSH_DUMMY_FRAME push_dummy_frame ()
|
|
|
|
|
|
|
|
|
|
/* Discard from the stack the innermost frame,
|
|
|
|
|
restoring all saved registers. */
|
|
|
|
|
#define POP_FRAME hppa_pop_frame ()
|
|
|
|
|
|
|
|
|
|
/* This sequence of words is the instructions
|
|
|
|
|
|
|
|
|
|
; Call stack frame has already been built by gdb. Since we could be calling
|
|
|
|
|
; a varargs function, and we do not have the benefit of a stub to put things in
|
|
|
|
|
; the right place, we load the first 4 word of arguments into both the general
|
|
|
|
|
; and fp registers.
|
|
|
|
|
call_dummy
|
|
|
|
|
ldw -36(sp), arg0
|
|
|
|
|
ldw -40(sp), arg1
|
|
|
|
|
ldw -44(sp), arg2
|
|
|
|
|
ldw -48(sp), arg3
|
|
|
|
|
ldo -36(sp), r1
|
|
|
|
|
fldws 0(0, r1), fr4
|
|
|
|
|
fldds -4(0, r1), fr5
|
|
|
|
|
fldws -8(0, r1), fr6
|
|
|
|
|
fldds -12(0, r1), fr7
|
|
|
|
|
ldil 0, r22 ; target will be placed here.
|
|
|
|
|
ldo 0(r22), r22
|
|
|
|
|
ldsid (0,r22), r3
|
|
|
|
|
ldil 0, r1 ; _sr4export will be placed here.
|
|
|
|
|
ldo 0(r1), r1
|
|
|
|
|
ldsid (0,r1), r19
|
|
|
|
|
combt,=,n r3, r19, text_space ; If target is in data space, do a
|
|
|
|
|
ble 0(sr5, r22) ; "normal" procedure call
|
|
|
|
|
copy r31, r2
|
|
|
|
|
break 4, 8
|
|
|
|
|
mtsp r21, sr0
|
|
|
|
|
ble,n 0(sr0, r22)
|
|
|
|
|
text_space ; Otherwise, go through _sr4export,
|
|
|
|
|
ble (sr4, r1) ; which will return back here.
|
|
|
|
|
stw 31,-24(r30)
|
|
|
|
|
break 4, 8
|
|
|
|
|
mtsp r21, sr0
|
|
|
|
|
ble,n 0(sr0, r22)
|
|
|
|
|
|
|
|
|
|
The dummy decides if the target is in text space or data space. If
|
|
|
|
|
it's in data space, there's no problem because the target can
|
|
|
|
|
return back to the dummy. However, if the target is in text space,
|
|
|
|
|
the dummy calls the secret, undocumented routine _sr4export, which
|
|
|
|
|
calls a function in text space and can return to any space. Instead
|
|
|
|
|
of including fake instructions to represent saved registers, we
|
|
|
|
|
know that the frame is associated with the call dummy and treat it
|
|
|
|
|
specially. */
|
|
|
|
|
|
|
|
|
|
#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
|
|
|
|
|
0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
|
|
|
|
|
0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A3,\
|
|
|
|
|
0x20200000, 0x34210000, 0x002010b3, 0x82632022,\
|
|
|
|
|
0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
|
|
|
|
|
0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
|
|
|
|
|
0x00151820, 0xe6c00002}
|
|
|
|
|
|
|
|
|
|
#define CALL_DUMMY_LENGTH 104
|
|
|
|
|
#define CALL_DUMMY_START_OFFSET 0
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Insert the specified number of args and function address
|
|
|
|
|
* into a call sequence of the above form stored at DUMMYNAME.
|
|
|
|
|
*
|
|
|
|
|
* On the hppa we need to call the stack dummy through $$dyncall.
|
|
|
|
|
* Therefore our version of FIX_CALL_DUMMY takes an extra argument,
|
|
|
|
|
* real_pc, which is the location where gdb should start up the
|
|
|
|
|
* inferior to do the function call.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define FIX_CALL_DUMMY hppa_fix_call_dummy
|
|
|
|
|
|
|
|
|
|
CORE_ADDR hppa_fix_call_dummy();
|
|
|
|
|
|
|
|
|
|
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
|
|
|
|
|
sp = hppa_push_arguments(nargs, args, sp, struct_return, struct_addr)
|
|
|
|
|
|
|
|
|
|
/* Symbol files have two symbol tables. Rather than do this right,
|
|
|
|
|
like the ELF symbol reading code, massive hackery was added
|
|
|
|
|
to dbxread.c and partial-stab.h. This flag turns on that
|
|
|
|
|
hackery, which should all go away FIXME FIXME FIXME FIXME now. */
|
|
|
|
|
|
|
|
|
|
#define GDB_TARGET_IS_HPPA
|
|
|
|
|
|
|
|
|
|
#define BELIEVE_PCC_PROMOTION 1
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Unwind table and descriptor.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
struct unwind_table_entry {
|
|
|
|
|
unsigned int region_start;
|
|
|
|
|
unsigned int region_end;
|
|
|
|
|
|
|
|
|
|
unsigned int Cannot_unwind : 1;
|
|
|
|
|
unsigned int Millicode : 1;
|
|
|
|
|
unsigned int Millicode_save_sr0 : 1;
|
|
|
|
|
unsigned int Region_description : 2;
|
|
|
|
|
unsigned int reserverd1 : 1;
|
|
|
|
|
unsigned int Entry_SR : 1;
|
|
|
|
|
unsigned int Entry_FR : 4; /* number saved */
|
|
|
|
|
unsigned int Entry_GR : 5; /* number saved */
|
|
|
|
|
unsigned int Args_stored : 1;
|
|
|
|
|
unsigned int Variable_Frame : 1;
|
|
|
|
|
unsigned int Separate_Package_Body : 1;
|
|
|
|
|
unsigned int Frame_Extension_Millicode:1;
|
|
|
|
|
unsigned int Stack_Overflow_Check : 1;
|
|
|
|
|
unsigned int Two_Instruction_SP_Increment:1;
|
|
|
|
|
unsigned int Ada_Region : 1;
|
|
|
|
|
unsigned int reserved2 : 4;
|
|
|
|
|
unsigned int Save_SP : 1;
|
|
|
|
|
unsigned int Save_RP : 1;
|
|
|
|
|
unsigned int Save_MRP_in_frame : 1;
|
|
|
|
|
unsigned int extn_ptr_defined : 1;
|
|
|
|
|
unsigned int Cleanup_defined : 1;
|
|
|
|
|
|
|
|
|
|
unsigned int MPE_XL_interrupt_marker: 1;
|
|
|
|
|
unsigned int HP_UX_interrupt_marker: 1;
|
|
|
|
|
unsigned int Large_frame : 1;
|
|
|
|
|
unsigned int reserved4 : 2;
|
|
|
|
|
unsigned int Total_frame_size : 27;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Info about the unwind table associated with an object file. This is hung
|
|
|
|
|
off of the objfile->obj_private pointer, and is allocated in the objfile's
|
|
|
|
|
psymbol obstack. This allows us to have unique unwind info for each
|
|
|
|
|
executable and shared library that we are debugging. */
|
|
|
|
|
|
|
|
|
|
struct obj_unwind_info {
|
|
|
|
|
struct unwind_table_entry *table; /* Pointer to unwind info */
|
|
|
|
|
struct unwind_table_entry *cache; /* Pointer to last entry we found */
|
|
|
|
|
int last; /* Index of last entry */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define OBJ_UNWIND_INFO(obj) ((struct obj_unwind_info *)obj->obj_private)
|
1993-07-30 17:01:26 +00:00
|
|
|
|
|
|
|
|
|
#define TARGET_READ_PC() target_read_pc ()
|
1993-09-01 20:37:15 +00:00
|
|
|
|
#define TARGET_WRITE_PC(v) target_write_pc (v)
|