1999-04-16 01:35:26 +00:00
|
|
|
|
/* Symbol table lookup for the GNU debugger, GDB.
|
|
|
|
|
Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
|
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "symfile.h"
|
|
|
|
|
#include "objfiles.h"
|
|
|
|
|
#include "gdbcmd.h"
|
|
|
|
|
#include "call-cmds.h"
|
|
|
|
|
#include "gnu-regex.h"
|
|
|
|
|
#include "expression.h"
|
|
|
|
|
#include "language.h"
|
|
|
|
|
#include "demangle.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
|
|
|
|
|
#include "obstack.h"
|
|
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
#include <fcntl.h>
|
|
|
|
|
#include "gdb_string.h"
|
|
|
|
|
#include "gdb_stat.h"
|
|
|
|
|
#include <ctype.h>
|
|
|
|
|
|
|
|
|
|
/* Prototype for one function in parser-defs.h,
|
|
|
|
|
instead of including that entire file. */
|
|
|
|
|
|
|
|
|
|
extern char * find_template_name_end PARAMS ((char *));
|
|
|
|
|
|
|
|
|
|
/* Prototypes for local functions */
|
|
|
|
|
|
|
|
|
|
static int find_methods PARAMS ((struct type *, char *, struct symbol **));
|
|
|
|
|
|
|
|
|
|
static void completion_list_add_name PARAMS ((char *, char *, int, char *,
|
|
|
|
|
char *));
|
|
|
|
|
|
|
|
|
|
static void build_canonical_line_spec PARAMS ((struct symtab_and_line *,
|
|
|
|
|
char *, char ***));
|
|
|
|
|
|
|
|
|
|
static struct symtabs_and_lines decode_line_2 PARAMS ((struct symbol *[],
|
|
|
|
|
int, int, char ***));
|
|
|
|
|
|
|
|
|
|
static void rbreak_command PARAMS ((char *, int));
|
|
|
|
|
|
|
|
|
|
static void types_info PARAMS ((char *, int));
|
|
|
|
|
|
|
|
|
|
static void functions_info PARAMS ((char *, int));
|
|
|
|
|
|
|
|
|
|
static void variables_info PARAMS ((char *, int));
|
|
|
|
|
|
|
|
|
|
static void sources_info PARAMS ((char *, int));
|
|
|
|
|
|
|
|
|
|
static void output_source_filename PARAMS ((char *, int *));
|
|
|
|
|
|
|
|
|
|
char *operator_chars PARAMS ((char *, char **));
|
|
|
|
|
|
|
|
|
|
static int find_line_common PARAMS ((struct linetable *, int, int *));
|
|
|
|
|
|
|
|
|
|
static struct partial_symbol *lookup_partial_symbol PARAMS
|
|
|
|
|
((struct partial_symtab *, const char *,
|
|
|
|
|
int, namespace_enum));
|
|
|
|
|
|
|
|
|
|
static struct partial_symbol *fixup_psymbol_section PARAMS ((struct
|
|
|
|
|
partial_symbol *, struct objfile *));
|
|
|
|
|
|
|
|
|
|
static struct symtab *lookup_symtab_1 PARAMS ((char *));
|
|
|
|
|
|
|
|
|
|
static void cplusplus_hint PARAMS ((char *));
|
|
|
|
|
|
|
|
|
|
static struct symbol *find_active_alias PARAMS ((struct symbol *sym,
|
|
|
|
|
CORE_ADDR addr));
|
|
|
|
|
|
|
|
|
|
/* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c */
|
|
|
|
|
/* Signals the presence of objects compiled by HP compilers */
|
|
|
|
|
int hp_som_som_object_present = 0;
|
|
|
|
|
|
|
|
|
|
static void fixup_section PARAMS ((struct general_symbol_info *,
|
|
|
|
|
struct objfile *));
|
|
|
|
|
|
|
|
|
|
static int file_matches PARAMS ((char *, char **, int));
|
|
|
|
|
|
|
|
|
|
static void print_symbol_info PARAMS ((namespace_enum,
|
|
|
|
|
struct symtab *, struct symbol *,
|
|
|
|
|
int, char *));
|
|
|
|
|
|
|
|
|
|
static void print_msymbol_info PARAMS ((struct minimal_symbol *));
|
|
|
|
|
|
|
|
|
|
static void symtab_symbol_info PARAMS ((char *, namespace_enum, int));
|
|
|
|
|
|
1999-05-25 18:09:09 +00:00
|
|
|
|
static void overload_list_add_symbol PARAMS ((struct symbol *sym,
|
|
|
|
|
char *oload_name));
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
void _initialize_symtab PARAMS ((void));
|
|
|
|
|
|
|
|
|
|
/* */
|
|
|
|
|
|
|
|
|
|
/* The single non-language-specific builtin type */
|
|
|
|
|
struct type *builtin_type_error;
|
|
|
|
|
|
|
|
|
|
/* Block in which the most recently searched-for symbol was found.
|
|
|
|
|
Might be better to make this a parameter to lookup_symbol and
|
|
|
|
|
value_of_this. */
|
|
|
|
|
|
|
|
|
|
const struct block *block_found;
|
|
|
|
|
|
|
|
|
|
char no_symtab_msg[] = "No symbol table is loaded. Use the \"file\" command.";
|
|
|
|
|
|
|
|
|
|
/* While the C++ support is still in flux, issue a possibly helpful hint on
|
|
|
|
|
using the new command completion feature on single quoted demangled C++
|
|
|
|
|
symbols. Remove when loose ends are cleaned up. FIXME -fnf */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
cplusplus_hint (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
while (*name == '\'')
|
|
|
|
|
name++;
|
|
|
|
|
printf_filtered ("Hint: try '%s<TAB> or '%s<ESC-?>\n", name, name);
|
|
|
|
|
printf_filtered ("(Note leading single quote.)\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check for a symtab of a specific name; first in symtabs, then in
|
|
|
|
|
psymtabs. *If* there is no '/' in the name, a match after a '/'
|
|
|
|
|
in the symtab filename will also work. */
|
|
|
|
|
|
|
|
|
|
static struct symtab *
|
|
|
|
|
lookup_symtab_1 (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
register char *slash;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
|
|
|
|
|
got_symtab:
|
|
|
|
|
|
|
|
|
|
/* First, search for an exact match */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
if (STREQ (name, s->filename))
|
|
|
|
|
return s;
|
|
|
|
|
|
|
|
|
|
slash = strchr (name, '/');
|
|
|
|
|
|
|
|
|
|
/* Now, search for a matching tail (only if name doesn't have any dirs) */
|
|
|
|
|
|
|
|
|
|
if (!slash)
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
char *p = s -> filename;
|
|
|
|
|
char *tail = strrchr (p, '/');
|
|
|
|
|
|
|
|
|
|
if (tail)
|
|
|
|
|
p = tail + 1;
|
|
|
|
|
|
|
|
|
|
if (STREQ (p, name))
|
|
|
|
|
return s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Same search rules as above apply here, but now we look thru the
|
|
|
|
|
psymtabs. */
|
|
|
|
|
|
|
|
|
|
ps = lookup_partial_symtab (name);
|
|
|
|
|
if (!ps)
|
|
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
|
|
if (ps -> readin)
|
|
|
|
|
error ("Internal: readin %s pst for `%s' found when no symtab found.",
|
|
|
|
|
ps -> filename, name);
|
|
|
|
|
|
|
|
|
|
s = PSYMTAB_TO_SYMTAB (ps);
|
|
|
|
|
|
|
|
|
|
if (s)
|
|
|
|
|
return s;
|
|
|
|
|
|
|
|
|
|
/* At this point, we have located the psymtab for this file, but
|
|
|
|
|
the conversion to a symtab has failed. This usually happens
|
|
|
|
|
when we are looking up an include file. In this case,
|
|
|
|
|
PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
|
|
|
|
|
been created. So, we need to run through the symtabs again in
|
|
|
|
|
order to find the file.
|
|
|
|
|
XXX - This is a crock, and should be fixed inside of the the
|
|
|
|
|
symbol parsing routines. */
|
|
|
|
|
goto got_symtab;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Lookup the symbol table of a source file named NAME. Try a couple
|
|
|
|
|
of variations if the first lookup doesn't work. */
|
|
|
|
|
|
|
|
|
|
struct symtab *
|
|
|
|
|
lookup_symtab (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
#if 0
|
|
|
|
|
register char *copy;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
s = lookup_symtab_1 (name);
|
|
|
|
|
if (s) return s;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* This screws c-exp.y:yylex if there is both a type "tree" and a symtab
|
|
|
|
|
"tree.c". */
|
|
|
|
|
|
|
|
|
|
/* If name not found as specified, see if adding ".c" helps. */
|
|
|
|
|
/* Why is this? Is it just a user convenience? (If so, it's pretty
|
|
|
|
|
questionable in the presence of C++, FORTRAN, etc.). It's not in
|
|
|
|
|
the GDB manual. */
|
|
|
|
|
|
|
|
|
|
copy = (char *) alloca (strlen (name) + 3);
|
|
|
|
|
strcpy (copy, name);
|
|
|
|
|
strcat (copy, ".c");
|
|
|
|
|
s = lookup_symtab_1 (copy);
|
|
|
|
|
if (s) return s;
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
|
|
|
|
/* We didn't find anything; die. */
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Lookup the partial symbol table of a source file named NAME.
|
|
|
|
|
*If* there is no '/' in the name, a match after a '/'
|
|
|
|
|
in the psymtab filename will also work. */
|
|
|
|
|
|
|
|
|
|
struct partial_symtab *
|
|
|
|
|
lookup_partial_symtab (name)
|
|
|
|
|
char *name;
|
|
|
|
|
{
|
|
|
|
|
register struct partial_symtab *pst;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, pst)
|
|
|
|
|
{
|
|
|
|
|
if (STREQ (name, pst -> filename))
|
|
|
|
|
{
|
|
|
|
|
return (pst);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now, search for a matching tail (only if name doesn't have any dirs) */
|
|
|
|
|
|
|
|
|
|
if (!strchr (name, '/'))
|
|
|
|
|
ALL_PSYMTABS (objfile, pst)
|
|
|
|
|
{
|
|
|
|
|
char *p = pst -> filename;
|
|
|
|
|
char *tail = strrchr (p, '/');
|
|
|
|
|
|
|
|
|
|
if (tail)
|
|
|
|
|
p = tail + 1;
|
|
|
|
|
|
|
|
|
|
if (STREQ (p, name))
|
|
|
|
|
return (pst);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Mangle a GDB method stub type. This actually reassembles the pieces of the
|
|
|
|
|
full method name, which consist of the class name (from T), the unadorned
|
|
|
|
|
method name from METHOD_ID, and the signature for the specific overload,
|
|
|
|
|
specified by SIGNATURE_ID. Note that this function is g++ specific. */
|
|
|
|
|
|
|
|
|
|
char *
|
|
|
|
|
gdb_mangle_name (type, method_id, signature_id)
|
|
|
|
|
struct type *type;
|
|
|
|
|
int method_id, signature_id;
|
|
|
|
|
{
|
|
|
|
|
int mangled_name_len;
|
|
|
|
|
char *mangled_name;
|
|
|
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
|
|
|
|
|
struct fn_field *method = &f[signature_id];
|
|
|
|
|
char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
|
|
|
|
|
char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
|
|
|
|
|
char *newname = type_name_no_tag (type);
|
|
|
|
|
|
|
|
|
|
/* Does the form of physname indicate that it is the full mangled name
|
|
|
|
|
of a constructor (not just the args)? */
|
|
|
|
|
int is_full_physname_constructor;
|
|
|
|
|
|
|
|
|
|
int is_constructor;
|
|
|
|
|
int is_destructor = DESTRUCTOR_PREFIX_P (physname);
|
|
|
|
|
/* Need a new type prefix. */
|
|
|
|
|
char *const_prefix = method->is_const ? "C" : "";
|
|
|
|
|
char *volatile_prefix = method->is_volatile ? "V" : "";
|
|
|
|
|
char buf[20];
|
|
|
|
|
int len = (newname == NULL ? 0 : strlen (newname));
|
|
|
|
|
|
|
|
|
|
is_full_physname_constructor =
|
|
|
|
|
((physname[0]=='_' && physname[1]=='_' &&
|
|
|
|
|
(isdigit(physname[2]) || physname[2]=='Q' || physname[2]=='t'))
|
|
|
|
|
|| (strncmp(physname, "__ct", 4) == 0));
|
|
|
|
|
|
|
|
|
|
is_constructor =
|
|
|
|
|
is_full_physname_constructor || (newname && STREQ(field_name, newname));
|
|
|
|
|
|
|
|
|
|
if (!is_destructor)
|
|
|
|
|
is_destructor = (strncmp(physname, "__dt", 4) == 0);
|
|
|
|
|
|
|
|
|
|
if (is_destructor || is_full_physname_constructor)
|
|
|
|
|
{
|
|
|
|
|
mangled_name = (char*) xmalloc(strlen(physname)+1);
|
|
|
|
|
strcpy(mangled_name, physname);
|
|
|
|
|
return mangled_name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (len == 0)
|
|
|
|
|
{
|
|
|
|
|
sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
|
|
|
|
|
}
|
|
|
|
|
else if (physname[0] == 't' || physname[0] == 'Q')
|
|
|
|
|
{
|
|
|
|
|
/* The physname for template and qualified methods already includes
|
|
|
|
|
the class name. */
|
|
|
|
|
sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
|
|
|
|
|
newname = NULL;
|
|
|
|
|
len = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
|
|
|
|
|
}
|
|
|
|
|
mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
|
|
|
|
|
+ strlen (buf) + len
|
|
|
|
|
+ strlen (physname)
|
|
|
|
|
+ 1);
|
|
|
|
|
|
|
|
|
|
/* Only needed for GNU-mangled names. ANSI-mangled names
|
|
|
|
|
work with the normal mechanisms. */
|
|
|
|
|
if (OPNAME_PREFIX_P (field_name))
|
|
|
|
|
{
|
|
|
|
|
const char *opname = cplus_mangle_opname (field_name + 3, 0);
|
|
|
|
|
if (opname == NULL)
|
|
|
|
|
error ("No mangling for \"%s\"", field_name);
|
|
|
|
|
mangled_name_len += strlen (opname);
|
|
|
|
|
mangled_name = (char *)xmalloc (mangled_name_len);
|
|
|
|
|
|
|
|
|
|
strncpy (mangled_name, field_name, 3);
|
|
|
|
|
mangled_name[3] = '\0';
|
|
|
|
|
strcat (mangled_name, opname);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
mangled_name = (char *)xmalloc (mangled_name_len);
|
|
|
|
|
if (is_constructor)
|
|
|
|
|
mangled_name[0] = '\0';
|
|
|
|
|
else
|
|
|
|
|
strcpy (mangled_name, field_name);
|
|
|
|
|
}
|
|
|
|
|
strcat (mangled_name, buf);
|
|
|
|
|
/* If the class doesn't have a name, i.e. newname NULL, then we just
|
|
|
|
|
mangle it using 0 for the length of the class. Thus it gets mangled
|
|
|
|
|
as something starting with `::' rather than `classname::'. */
|
|
|
|
|
if (newname != NULL)
|
|
|
|
|
strcat (mangled_name, newname);
|
|
|
|
|
|
|
|
|
|
strcat (mangled_name, physname);
|
|
|
|
|
return (mangled_name);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Find which partial symtab on contains PC and SECTION. Return 0 if none. */
|
|
|
|
|
|
|
|
|
|
struct partial_symtab *
|
|
|
|
|
find_pc_sect_psymtab (pc, section)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
asection *section;
|
|
|
|
|
{
|
|
|
|
|
register struct partial_symtab *pst;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, pst)
|
|
|
|
|
{
|
|
|
|
|
#if defined(HPUXHPPA)
|
|
|
|
|
if (pc >= pst->textlow && pc <= pst->texthigh)
|
|
|
|
|
#else
|
|
|
|
|
if (pc >= pst->textlow && pc < pst->texthigh)
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
struct partial_symtab *tpst;
|
|
|
|
|
|
|
|
|
|
/* An objfile that has its functions reordered might have
|
|
|
|
|
many partial symbol tables containing the PC, but
|
|
|
|
|
we want the partial symbol table that contains the
|
|
|
|
|
function containing the PC. */
|
|
|
|
|
if (!(objfile->flags & OBJF_REORDERED) &&
|
|
|
|
|
section == 0) /* can't validate section this way */
|
|
|
|
|
return (pst);
|
|
|
|
|
|
|
|
|
|
msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
|
|
|
|
|
if (msymbol == NULL)
|
|
|
|
|
return (pst);
|
|
|
|
|
|
|
|
|
|
for (tpst = pst; tpst != NULL; tpst = tpst->next)
|
|
|
|
|
{
|
|
|
|
|
#if defined(HPUXHPPA)
|
|
|
|
|
if (pc >= tpst->textlow && pc <= tpst->texthigh)
|
|
|
|
|
#else
|
|
|
|
|
if (pc >= tpst->textlow && pc < tpst->texthigh)
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
struct partial_symbol *p;
|
|
|
|
|
|
|
|
|
|
p = find_pc_sect_psymbol (tpst, pc, section);
|
|
|
|
|
if (p != NULL
|
|
|
|
|
&& SYMBOL_VALUE_ADDRESS(p)
|
|
|
|
|
== SYMBOL_VALUE_ADDRESS (msymbol))
|
|
|
|
|
return (tpst);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (pst);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find which partial symtab contains PC. Return 0 if none.
|
|
|
|
|
Backward compatibility, no section */
|
|
|
|
|
|
|
|
|
|
struct partial_symtab *
|
|
|
|
|
find_pc_psymtab (pc)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
{
|
|
|
|
|
return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find which partial symbol within a psymtab matches PC and SECTION.
|
|
|
|
|
Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
|
|
|
|
|
|
|
|
|
|
struct partial_symbol *
|
|
|
|
|
find_pc_sect_psymbol (psymtab, pc, section)
|
|
|
|
|
struct partial_symtab *psymtab;
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
asection *section;
|
|
|
|
|
{
|
|
|
|
|
struct partial_symbol *best = NULL, *p, **pp;
|
|
|
|
|
CORE_ADDR best_pc;
|
|
|
|
|
|
|
|
|
|
if (!psymtab)
|
|
|
|
|
psymtab = find_pc_sect_psymtab (pc, section);
|
|
|
|
|
if (!psymtab)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Cope with programs that start at address 0 */
|
|
|
|
|
best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
|
|
|
|
|
|
|
|
|
|
/* Search the global symbols as well as the static symbols, so that
|
|
|
|
|
find_pc_partial_function doesn't use a minimal symbol and thus
|
|
|
|
|
cache a bad endaddr. */
|
|
|
|
|
for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
|
|
|
|
|
(pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
|
|
|
|
|
< psymtab->n_global_syms);
|
|
|
|
|
pp++)
|
|
|
|
|
{
|
|
|
|
|
p = *pp;
|
|
|
|
|
if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE
|
|
|
|
|
&& SYMBOL_CLASS (p) == LOC_BLOCK
|
|
|
|
|
&& pc >= SYMBOL_VALUE_ADDRESS (p)
|
|
|
|
|
&& (SYMBOL_VALUE_ADDRESS (p) > best_pc
|
|
|
|
|
|| (psymtab->textlow == 0
|
|
|
|
|
&& best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
|
|
|
|
|
{
|
|
|
|
|
if (section) /* match on a specific section */
|
|
|
|
|
{
|
|
|
|
|
fixup_psymbol_section (p, psymtab->objfile);
|
|
|
|
|
if (SYMBOL_BFD_SECTION (p) != section)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
best_pc = SYMBOL_VALUE_ADDRESS (p);
|
|
|
|
|
best = p;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
|
|
|
|
|
(pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
|
|
|
|
|
< psymtab->n_static_syms);
|
|
|
|
|
pp++)
|
|
|
|
|
{
|
|
|
|
|
p = *pp;
|
|
|
|
|
if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE
|
|
|
|
|
&& SYMBOL_CLASS (p) == LOC_BLOCK
|
|
|
|
|
&& pc >= SYMBOL_VALUE_ADDRESS (p)
|
|
|
|
|
&& (SYMBOL_VALUE_ADDRESS (p) > best_pc
|
|
|
|
|
|| (psymtab->textlow == 0
|
|
|
|
|
&& best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
|
|
|
|
|
{
|
|
|
|
|
if (section) /* match on a specific section */
|
|
|
|
|
{
|
|
|
|
|
fixup_psymbol_section (p, psymtab->objfile);
|
|
|
|
|
if (SYMBOL_BFD_SECTION (p) != section)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
best_pc = SYMBOL_VALUE_ADDRESS (p);
|
|
|
|
|
best = p;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return best;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find which partial symbol within a psymtab matches PC. Return 0 if none.
|
|
|
|
|
Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
|
|
|
|
|
|
|
|
|
|
struct partial_symbol *
|
|
|
|
|
find_pc_psymbol (psymtab, pc)
|
|
|
|
|
struct partial_symtab *psymtab;
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
{
|
|
|
|
|
return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Debug symbols usually don't have section information. We need to dig that
|
|
|
|
|
out of the minimal symbols and stash that in the debug symbol. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
fixup_section (ginfo, objfile)
|
|
|
|
|
struct general_symbol_info *ginfo;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
struct minimal_symbol *msym;
|
|
|
|
|
msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
|
|
|
|
|
|
|
|
|
|
if (msym)
|
|
|
|
|
ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
|
|
|
|
fixup_symbol_section (sym, objfile)
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
if (!sym)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_BFD_SECTION (sym))
|
|
|
|
|
return sym;
|
|
|
|
|
|
|
|
|
|
fixup_section (&sym->ginfo, objfile);
|
|
|
|
|
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct partial_symbol *
|
|
|
|
|
fixup_psymbol_section (psym, objfile)
|
|
|
|
|
struct partial_symbol *psym;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
{
|
|
|
|
|
if (!psym)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
if (SYMBOL_BFD_SECTION (psym))
|
|
|
|
|
return psym;
|
|
|
|
|
|
|
|
|
|
fixup_section (&psym->ginfo, objfile);
|
|
|
|
|
|
|
|
|
|
return psym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find the definition for a specified symbol name NAME
|
|
|
|
|
in namespace NAMESPACE, visible from lexical block BLOCK.
|
|
|
|
|
Returns the struct symbol pointer, or zero if no symbol is found.
|
|
|
|
|
If SYMTAB is non-NULL, store the symbol table in which the
|
|
|
|
|
symbol was found there, or NULL if not found.
|
|
|
|
|
C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
|
|
|
|
|
NAME is a field of the current implied argument `this'. If so set
|
|
|
|
|
*IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
|
|
|
|
|
BLOCK_FOUND is set to the block in which NAME is found (in the case of
|
|
|
|
|
a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
|
|
|
|
|
|
|
|
|
|
/* This function has a bunch of loops in it and it would seem to be
|
|
|
|
|
attractive to put in some QUIT's (though I'm not really sure
|
|
|
|
|
whether it can run long enough to be really important). But there
|
|
|
|
|
are a few calls for which it would appear to be bad news to quit
|
|
|
|
|
out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c, and
|
|
|
|
|
nindy_frame_chain_valid in nindy-tdep.c. (Note that there is C++
|
|
|
|
|
code below which can error(), but that probably doesn't affect
|
|
|
|
|
these calls since they are looking for a known variable and thus
|
|
|
|
|
can probably assume it will never hit the C++ code). */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
|
|
|
|
lookup_symbol (name, block, namespace, is_a_field_of_this, symtab)
|
|
|
|
|
const char *name;
|
|
|
|
|
register const struct block *block;
|
|
|
|
|
const namespace_enum namespace;
|
|
|
|
|
int *is_a_field_of_this;
|
|
|
|
|
struct symtab **symtab;
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
register struct symtab *s = NULL;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
struct blockvector *bv;
|
|
|
|
|
register struct objfile *objfile = NULL;
|
|
|
|
|
register struct block *b;
|
|
|
|
|
register struct minimal_symbol *msymbol;
|
|
|
|
|
|
|
|
|
|
/* Search specified block and its superiors. */
|
|
|
|
|
|
|
|
|
|
while (block != 0)
|
|
|
|
|
{
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (sym)
|
|
|
|
|
{
|
|
|
|
|
block_found = block;
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Search the list of symtabs for one which contains the
|
|
|
|
|
address of the start of this block. */
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
if (BLOCK_START (b) <= BLOCK_START (block)
|
|
|
|
|
&& BLOCK_END (b) > BLOCK_START (block))
|
|
|
|
|
goto found;
|
|
|
|
|
}
|
|
|
|
|
found:
|
|
|
|
|
*symtab = s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
block = BLOCK_SUPERBLOCK (block);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* FIXME: this code is never executed--block is always NULL at this
|
|
|
|
|
point. What is it trying to do, anyway? We already should have
|
|
|
|
|
checked the STATIC_BLOCK above (it is the superblock of top-level
|
|
|
|
|
blocks). Why is VAR_NAMESPACE special-cased? */
|
|
|
|
|
/* Don't need to mess with the psymtabs; if we have a block,
|
|
|
|
|
that file is read in. If we don't, then we deal later with
|
|
|
|
|
all the psymtab stuff that needs checking. */
|
|
|
|
|
/* Note (RT): The following never-executed code looks unnecessary to me also.
|
|
|
|
|
* If we change the code to use the original (passed-in)
|
|
|
|
|
* value of 'block', we could cause it to execute, but then what
|
|
|
|
|
* would it do? The STATIC_BLOCK of the symtab containing the passed-in
|
|
|
|
|
* 'block' was already searched by the above code. And the STATIC_BLOCK's
|
|
|
|
|
* of *other* symtabs (those files not containing 'block' lexically)
|
|
|
|
|
* should not contain 'block' address-wise. So we wouldn't expect this
|
|
|
|
|
* code to find any 'sym''s that were not found above. I vote for
|
|
|
|
|
* deleting the following paragraph of code.
|
|
|
|
|
*/
|
|
|
|
|
if (namespace == VAR_NAMESPACE && block != NULL)
|
|
|
|
|
{
|
|
|
|
|
struct block *b;
|
|
|
|
|
/* Find the right symtab. */
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
if (BLOCK_START (b) <= BLOCK_START (block)
|
|
|
|
|
&& BLOCK_END (b) > BLOCK_START (block))
|
|
|
|
|
{
|
|
|
|
|
sym = lookup_block_symbol (b, name, VAR_NAMESPACE);
|
|
|
|
|
if (sym)
|
|
|
|
|
{
|
|
|
|
|
block_found = b;
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* C++: If requested to do so by the caller,
|
|
|
|
|
check to see if NAME is a field of `this'. */
|
|
|
|
|
if (is_a_field_of_this)
|
|
|
|
|
{
|
|
|
|
|
struct value *v = value_of_this (0);
|
|
|
|
|
|
|
|
|
|
*is_a_field_of_this = 0;
|
|
|
|
|
if (v && check_field (v, name))
|
|
|
|
|
{
|
|
|
|
|
*is_a_field_of_this = 1;
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = NULL;
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now search all global blocks. Do the symtab's first, then
|
|
|
|
|
check the psymtab's. If a psymtab indicates the existence
|
|
|
|
|
of the desired name as a global, then do psymtab-to-symtab
|
|
|
|
|
conversion on the fly and return the found symbol. */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (sym)
|
|
|
|
|
{
|
|
|
|
|
block_found = block;
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifndef HPUXHPPA
|
|
|
|
|
|
|
|
|
|
/* Check for the possibility of the symbol being a function or
|
|
|
|
|
a mangled variable that is stored in one of the minimal symbol tables.
|
|
|
|
|
Eventually, all global symbols might be resolved in this way. */
|
|
|
|
|
|
|
|
|
|
if (namespace == VAR_NAMESPACE)
|
|
|
|
|
{
|
|
|
|
|
msymbol = lookup_minimal_symbol (name, NULL, NULL);
|
|
|
|
|
if (msymbol != NULL)
|
|
|
|
|
{
|
|
|
|
|
s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
|
|
|
|
|
SYMBOL_BFD_SECTION (msymbol));
|
|
|
|
|
if (s != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This is a function which has a symtab for its address. */
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
|
|
|
|
|
namespace);
|
|
|
|
|
/* We kept static functions in minimal symbol table as well as
|
|
|
|
|
in static scope. We want to find them in the symbol table. */
|
|
|
|
|
if (!sym) {
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
|
|
|
|
|
namespace);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* sym == 0 if symbol was found in the minimal symbol table
|
|
|
|
|
but not in the symtab.
|
|
|
|
|
Return 0 to use the msymbol definition of "foo_".
|
|
|
|
|
|
|
|
|
|
This happens for Fortran "foo_" symbols,
|
|
|
|
|
which are "foo" in the symtab.
|
|
|
|
|
|
|
|
|
|
This can also happen if "asm" is used to make a
|
|
|
|
|
regular symbol but not a debugging symbol, e.g.
|
|
|
|
|
asm(".globl _main");
|
|
|
|
|
asm("_main:");
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
else if (MSYMBOL_TYPE (msymbol) != mst_text
|
|
|
|
|
&& MSYMBOL_TYPE (msymbol) != mst_file_text
|
|
|
|
|
&& !STREQ (name, SYMBOL_NAME (msymbol)))
|
|
|
|
|
{
|
|
|
|
|
/* This is a mangled variable, look it up by its
|
|
|
|
|
mangled name. */
|
|
|
|
|
return lookup_symbol (SYMBOL_NAME (msymbol), block,
|
|
|
|
|
namespace, is_a_field_of_this, symtab);
|
|
|
|
|
}
|
|
|
|
|
/* There are no debug symbols for this file, or we are looking
|
|
|
|
|
for an unmangled variable.
|
|
|
|
|
Try to find a matching static symbol below. */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
if (!ps->readin && lookup_partial_symbol (ps, name, 1, namespace))
|
|
|
|
|
{
|
|
|
|
|
s = PSYMTAB_TO_SYMTAB(ps);
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (!sym)
|
|
|
|
|
{
|
|
|
|
|
/* This shouldn't be necessary, but as a last resort
|
|
|
|
|
* try looking in the statics even though the psymtab
|
|
|
|
|
* claimed the symbol was global. It's possible that
|
|
|
|
|
* the psymtab gets it wrong in some cases.
|
|
|
|
|
*/
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (!sym)
|
|
|
|
|
error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
|
|
|
|
|
%s may be an inlined function, or may be a template function\n\
|
|
|
|
|
(if a template, try specifying an instantiation: %s<type>).",
|
|
|
|
|
name, ps->filename, name, name);
|
|
|
|
|
}
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now search all static file-level symbols.
|
|
|
|
|
Not strictly correct, but more useful than an error.
|
|
|
|
|
Do the symtabs first, then check the psymtabs.
|
|
|
|
|
If a psymtab indicates the existence
|
|
|
|
|
of the desired name as a file-level static, then do psymtab-to-symtab
|
|
|
|
|
conversion on the fly and return the found symbol. */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (sym)
|
|
|
|
|
{
|
|
|
|
|
block_found = block;
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
if (!ps->readin && lookup_partial_symbol (ps, name, 0, namespace))
|
|
|
|
|
{
|
|
|
|
|
s = PSYMTAB_TO_SYMTAB(ps);
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (!sym)
|
|
|
|
|
{
|
|
|
|
|
/* This shouldn't be necessary, but as a last resort
|
|
|
|
|
* try looking in the globals even though the psymtab
|
|
|
|
|
* claimed the symbol was static. It's possible that
|
|
|
|
|
* the psymtab gets it wrong in some cases.
|
|
|
|
|
*/
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, namespace);
|
|
|
|
|
if (!sym)
|
|
|
|
|
error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
|
|
|
|
|
%s may be an inlined function, or may be a template function\n\
|
|
|
|
|
(if a template, try specifying an instantiation: %s<type>).",
|
|
|
|
|
name, ps->filename, name, name);
|
|
|
|
|
}
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return fixup_symbol_section (sym, objfile);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef HPUXHPPA
|
|
|
|
|
|
|
|
|
|
/* Check for the possibility of the symbol being a function or
|
|
|
|
|
a global variable that is stored in one of the minimal symbol tables.
|
|
|
|
|
The "minimal symbol table" is built from linker-supplied info.
|
|
|
|
|
|
|
|
|
|
RT: I moved this check to last, after the complete search of
|
|
|
|
|
the global (p)symtab's and static (p)symtab's. For HP-generated
|
|
|
|
|
symbol tables, this check was causing a premature exit from
|
|
|
|
|
lookup_symbol with NULL return, and thus messing up symbol lookups
|
|
|
|
|
of things like "c::f". It seems to me a check of the minimal
|
|
|
|
|
symbol table ought to be a last resort in any case. I'm vaguely
|
|
|
|
|
worried about the comment below which talks about FORTRAN routines "foo_"
|
|
|
|
|
though... is it saying we need to do the "minsym" check before
|
|
|
|
|
the static check in this case?
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
if (namespace == VAR_NAMESPACE)
|
|
|
|
|
{
|
|
|
|
|
msymbol = lookup_minimal_symbol (name, NULL, NULL);
|
|
|
|
|
if (msymbol != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* OK, we found a minimal symbol in spite of not
|
|
|
|
|
* finding any symbol. There are various possible
|
|
|
|
|
* explanations for this. One possibility is the symbol
|
|
|
|
|
* exists in code not compiled -g. Another possibility
|
|
|
|
|
* is that the 'psymtab' isn't doing its job.
|
|
|
|
|
* A third possibility, related to #2, is that we were confused
|
|
|
|
|
* by name-mangling. For instance, maybe the psymtab isn't
|
|
|
|
|
* doing its job because it only know about demangled
|
|
|
|
|
* names, but we were given a mangled name...
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* We first use the address in the msymbol to try to
|
|
|
|
|
* locate the appropriate symtab. Note that find_pc_symtab()
|
|
|
|
|
* has a side-effect of doing psymtab-to-symtab expansion,
|
|
|
|
|
* for the found symtab.
|
|
|
|
|
*/
|
|
|
|
|
s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
|
|
|
|
|
if (s != NULL)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
|
|
|
|
|
namespace);
|
|
|
|
|
/* We kept static functions in minimal symbol table as well as
|
|
|
|
|
in static scope. We want to find them in the symbol table. */
|
|
|
|
|
if (!sym)
|
|
|
|
|
{
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
|
|
|
|
|
namespace);
|
|
|
|
|
}
|
|
|
|
|
/* If we found one, return it */
|
|
|
|
|
if (sym) {
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = s;
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we get here with sym == 0, the symbol was
|
|
|
|
|
found in the minimal symbol table
|
|
|
|
|
but not in the symtab.
|
|
|
|
|
Fall through and return 0 to use the msymbol
|
|
|
|
|
definition of "foo_".
|
|
|
|
|
(Note that outer code generally follows up a call
|
|
|
|
|
to this routine with a call to lookup_minimal_symbol(),
|
|
|
|
|
so a 0 return means we'll just flow into that other routine).
|
|
|
|
|
|
|
|
|
|
This happens for Fortran "foo_" symbols,
|
|
|
|
|
which are "foo" in the symtab.
|
|
|
|
|
|
|
|
|
|
This can also happen if "asm" is used to make a
|
|
|
|
|
regular symbol but not a debugging symbol, e.g.
|
|
|
|
|
asm(".globl _main");
|
|
|
|
|
asm("_main:");
|
|
|
|
|
*/
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the lookup-by-address fails, try repeating the
|
|
|
|
|
* entire lookup process with the symbol name from
|
|
|
|
|
* the msymbol (if different from the original symbol name).
|
|
|
|
|
*/
|
|
|
|
|
else if (MSYMBOL_TYPE (msymbol) != mst_text
|
|
|
|
|
&& MSYMBOL_TYPE (msymbol) != mst_file_text
|
|
|
|
|
&& !STREQ (name, SYMBOL_NAME (msymbol)))
|
|
|
|
|
{
|
|
|
|
|
return lookup_symbol (SYMBOL_NAME (msymbol), block,
|
|
|
|
|
namespace, is_a_field_of_this, symtab);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
*symtab = NULL;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look, in partial_symtab PST, for symbol NAME. Check the global
|
|
|
|
|
symbols if GLOBAL, the static symbols if not */
|
|
|
|
|
|
|
|
|
|
static struct partial_symbol *
|
|
|
|
|
lookup_partial_symbol (pst, name, global, namespace)
|
|
|
|
|
struct partial_symtab *pst;
|
|
|
|
|
const char *name;
|
|
|
|
|
int global;
|
|
|
|
|
namespace_enum namespace;
|
|
|
|
|
{
|
|
|
|
|
struct partial_symbol **start, **psym;
|
|
|
|
|
struct partial_symbol **top, **bottom, **center;
|
|
|
|
|
int length = (global ? pst->n_global_syms : pst->n_static_syms);
|
|
|
|
|
int do_linear_search = 1;
|
|
|
|
|
|
|
|
|
|
if (length == 0)
|
|
|
|
|
{
|
|
|
|
|
return (NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
start = (global ?
|
|
|
|
|
pst->objfile->global_psymbols.list + pst->globals_offset :
|
|
|
|
|
pst->objfile->static_psymbols.list + pst->statics_offset );
|
|
|
|
|
|
|
|
|
|
if (global) /* This means we can use a binary search. */
|
|
|
|
|
{
|
|
|
|
|
do_linear_search = 0;
|
|
|
|
|
|
|
|
|
|
/* Binary search. This search is guaranteed to end with center
|
|
|
|
|
pointing at the earliest partial symbol with the correct
|
|
|
|
|
name. At that point *all* partial symbols with that name
|
|
|
|
|
will be checked against the correct namespace. */
|
|
|
|
|
|
|
|
|
|
bottom = start;
|
|
|
|
|
top = start + length - 1;
|
|
|
|
|
while (top > bottom)
|
|
|
|
|
{
|
|
|
|
|
center = bottom + (top - bottom) / 2;
|
|
|
|
|
if (!(center < top))
|
|
|
|
|
abort ();
|
|
|
|
|
if (!do_linear_search
|
|
|
|
|
&& (SYMBOL_LANGUAGE (*center) == language_cplus
|
|
|
|
|
|| SYMBOL_LANGUAGE (*center) == language_java
|
|
|
|
|
))
|
|
|
|
|
{
|
|
|
|
|
do_linear_search = 1;
|
|
|
|
|
}
|
|
|
|
|
if (STRCMP (SYMBOL_NAME (*center), name) >= 0)
|
|
|
|
|
{
|
|
|
|
|
top = center;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
bottom = center + 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (!(top == bottom))
|
|
|
|
|
abort ();
|
|
|
|
|
while (STREQ (SYMBOL_NAME (*top), name))
|
|
|
|
|
{
|
|
|
|
|
if (SYMBOL_NAMESPACE (*top) == namespace)
|
|
|
|
|
{
|
|
|
|
|
return (*top);
|
|
|
|
|
}
|
|
|
|
|
top ++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Can't use a binary search or else we found during the binary search that
|
|
|
|
|
we should also do a linear search. */
|
|
|
|
|
|
|
|
|
|
if (do_linear_search)
|
|
|
|
|
{
|
|
|
|
|
for (psym = start; psym < start + length; psym++)
|
|
|
|
|
{
|
|
|
|
|
if (namespace == SYMBOL_NAMESPACE (*psym))
|
|
|
|
|
{
|
|
|
|
|
if (SYMBOL_MATCHES_NAME (*psym, name))
|
|
|
|
|
{
|
|
|
|
|
return (*psym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look up a type named NAME in the struct_namespace. The type returned
|
|
|
|
|
must not be opaque -- i.e., must have at least one field defined
|
|
|
|
|
|
|
|
|
|
This code was modelled on lookup_symbol -- the parts not relevant to looking
|
|
|
|
|
up types were just left out. In particular it's assumed here that types
|
|
|
|
|
are available in struct_namespace and only at file-static or global blocks. */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct type *
|
|
|
|
|
lookup_transparent_type (name)
|
|
|
|
|
const char *name;
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
register struct symtab *s = NULL;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
struct blockvector *bv;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
register struct block *block;
|
|
|
|
|
register struct minimal_symbol *msymbol;
|
|
|
|
|
|
|
|
|
|
/* Now search all the global symbols. Do the symtab's first, then
|
|
|
|
|
check the psymtab's. If a psymtab indicates the existence
|
|
|
|
|
of the desired name as a global, then do psymtab-to-symtab
|
|
|
|
|
conversion on the fly and return the found symbol. */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
|
|
|
|
|
if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
|
|
|
|
|
{
|
|
|
|
|
return SYMBOL_TYPE (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
if (!ps->readin && lookup_partial_symbol (ps, name, 1, STRUCT_NAMESPACE))
|
|
|
|
|
{
|
|
|
|
|
s = PSYMTAB_TO_SYMTAB(ps);
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
|
|
|
|
|
if (!sym)
|
|
|
|
|
{
|
|
|
|
|
/* This shouldn't be necessary, but as a last resort
|
|
|
|
|
* try looking in the statics even though the psymtab
|
|
|
|
|
* claimed the symbol was global. It's possible that
|
|
|
|
|
* the psymtab gets it wrong in some cases.
|
|
|
|
|
*/
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
|
|
|
|
|
if (!sym)
|
|
|
|
|
error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
|
|
|
|
|
%s may be an inlined function, or may be a template function\n\
|
|
|
|
|
(if a template, try specifying an instantiation: %s<type>).",
|
|
|
|
|
name, ps->filename, name, name);
|
|
|
|
|
}
|
|
|
|
|
if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
|
|
|
|
|
return SYMBOL_TYPE (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now search the static file-level symbols.
|
|
|
|
|
Not strictly correct, but more useful than an error.
|
|
|
|
|
Do the symtab's first, then
|
|
|
|
|
check the psymtab's. If a psymtab indicates the existence
|
|
|
|
|
of the desired name as a file-level static, then do psymtab-to-symtab
|
|
|
|
|
conversion on the fly and return the found symbol.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
|
|
|
|
|
if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
|
|
|
|
|
{
|
|
|
|
|
return SYMBOL_TYPE (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
if (!ps->readin && lookup_partial_symbol (ps, name, 0, STRUCT_NAMESPACE))
|
|
|
|
|
{
|
|
|
|
|
s = PSYMTAB_TO_SYMTAB(ps);
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
|
|
|
|
|
if (!sym)
|
|
|
|
|
{
|
|
|
|
|
/* This shouldn't be necessary, but as a last resort
|
|
|
|
|
* try looking in the globals even though the psymtab
|
|
|
|
|
* claimed the symbol was static. It's possible that
|
|
|
|
|
* the psymtab gets it wrong in some cases.
|
|
|
|
|
*/
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
|
|
|
|
|
if (!sym)
|
|
|
|
|
error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
|
|
|
|
|
%s may be an inlined function, or may be a template function\n\
|
|
|
|
|
(if a template, try specifying an instantiation: %s<type>).",
|
|
|
|
|
name, ps->filename, name, name);
|
|
|
|
|
}
|
|
|
|
|
if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
|
|
|
|
|
return SYMBOL_TYPE (sym);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (struct type *) 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Find the psymtab containing main(). */
|
|
|
|
|
/* FIXME: What about languages without main() or specially linked
|
|
|
|
|
executables that have no main() ? */
|
|
|
|
|
|
|
|
|
|
struct partial_symtab *
|
|
|
|
|
find_main_psymtab ()
|
|
|
|
|
{
|
|
|
|
|
register struct partial_symtab *pst;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, pst)
|
|
|
|
|
{
|
|
|
|
|
if (lookup_partial_symbol (pst, "main", 1, VAR_NAMESPACE))
|
|
|
|
|
{
|
|
|
|
|
return (pst);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Search BLOCK for symbol NAME in NAMESPACE.
|
|
|
|
|
|
|
|
|
|
Note that if NAME is the demangled form of a C++ symbol, we will fail
|
|
|
|
|
to find a match during the binary search of the non-encoded names, but
|
|
|
|
|
for now we don't worry about the slight inefficiency of looking for
|
|
|
|
|
a match we'll never find, since it will go pretty quick. Once the
|
|
|
|
|
binary search terminates, we drop through and do a straight linear
|
|
|
|
|
search on the symbols. Each symbol which is marked as being a C++
|
|
|
|
|
symbol (language_cplus set) has both the encoded and non-encoded names
|
|
|
|
|
tested for a match. */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
|
|
|
|
lookup_block_symbol (block, name, namespace)
|
|
|
|
|
register const struct block *block;
|
|
|
|
|
const char *name;
|
|
|
|
|
const namespace_enum namespace;
|
|
|
|
|
{
|
|
|
|
|
register int bot, top, inc;
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
register struct symbol *sym_found = NULL;
|
|
|
|
|
register int do_linear_search = 1;
|
|
|
|
|
|
|
|
|
|
/* If the blocks's symbols were sorted, start with a binary search. */
|
|
|
|
|
|
|
|
|
|
if (BLOCK_SHOULD_SORT (block))
|
|
|
|
|
{
|
|
|
|
|
/* Reset the linear search flag so if the binary search fails, we
|
|
|
|
|
won't do the linear search once unless we find some reason to
|
|
|
|
|
do so, such as finding a C++ symbol during the binary search.
|
|
|
|
|
Note that for C++ modules, ALL the symbols in a block should
|
|
|
|
|
end up marked as C++ symbols. */
|
|
|
|
|
|
|
|
|
|
do_linear_search = 0;
|
|
|
|
|
top = BLOCK_NSYMS (block);
|
|
|
|
|
bot = 0;
|
|
|
|
|
|
|
|
|
|
/* Advance BOT to not far before the first symbol whose name is NAME. */
|
|
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
inc = (top - bot + 1);
|
|
|
|
|
/* No need to keep binary searching for the last few bits worth. */
|
|
|
|
|
if (inc < 4)
|
|
|
|
|
{
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
inc = (inc >> 1) + bot;
|
|
|
|
|
sym = BLOCK_SYM (block, inc);
|
|
|
|
|
if (!do_linear_search
|
|
|
|
|
&& (SYMBOL_LANGUAGE (sym) == language_cplus
|
|
|
|
|
|| SYMBOL_LANGUAGE (sym) == language_java
|
|
|
|
|
))
|
|
|
|
|
{
|
|
|
|
|
do_linear_search = 1;
|
|
|
|
|
}
|
|
|
|
|
if (SYMBOL_NAME (sym)[0] < name[0])
|
|
|
|
|
{
|
|
|
|
|
bot = inc;
|
|
|
|
|
}
|
|
|
|
|
else if (SYMBOL_NAME (sym)[0] > name[0])
|
|
|
|
|
{
|
|
|
|
|
top = inc;
|
|
|
|
|
}
|
|
|
|
|
else if (STRCMP (SYMBOL_NAME (sym), name) < 0)
|
|
|
|
|
{
|
|
|
|
|
bot = inc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
top = inc;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now scan forward until we run out of symbols, find one whose
|
|
|
|
|
name is greater than NAME, or find one we want. If there is
|
|
|
|
|
more than one symbol with the right name and namespace, we
|
|
|
|
|
return the first one; I believe it is now impossible for us
|
|
|
|
|
to encounter two symbols with the same name and namespace
|
|
|
|
|
here, because blocks containing argument symbols are no
|
|
|
|
|
longer sorted. */
|
|
|
|
|
|
|
|
|
|
top = BLOCK_NSYMS (block);
|
|
|
|
|
while (bot < top)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (block, bot);
|
|
|
|
|
inc = SYMBOL_NAME (sym)[0] - name[0];
|
|
|
|
|
if (inc == 0)
|
|
|
|
|
{
|
|
|
|
|
inc = STRCMP (SYMBOL_NAME (sym), name);
|
|
|
|
|
}
|
|
|
|
|
if (inc == 0 && SYMBOL_NAMESPACE (sym) == namespace)
|
|
|
|
|
{
|
|
|
|
|
return (sym);
|
|
|
|
|
}
|
|
|
|
|
if (inc > 0)
|
|
|
|
|
{
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
bot++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Here if block isn't sorted, or we fail to find a match during the
|
|
|
|
|
binary search above. If during the binary search above, we find a
|
|
|
|
|
symbol which is a C++ symbol, then we have re-enabled the linear
|
|
|
|
|
search flag which was reset when starting the binary search.
|
|
|
|
|
|
|
|
|
|
This loop is equivalent to the loop above, but hacked greatly for speed.
|
|
|
|
|
|
|
|
|
|
Note that parameter symbols do not always show up last in the
|
|
|
|
|
list; this loop makes sure to take anything else other than
|
|
|
|
|
parameter symbols first; it only uses parameter symbols as a
|
|
|
|
|
last resort. Note that this only takes up extra computation
|
|
|
|
|
time on a match. */
|
|
|
|
|
|
|
|
|
|
if (do_linear_search)
|
|
|
|
|
{
|
|
|
|
|
top = BLOCK_NSYMS (block);
|
|
|
|
|
bot = 0;
|
|
|
|
|
while (bot < top)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (block, bot);
|
|
|
|
|
if (SYMBOL_NAMESPACE (sym) == namespace &&
|
|
|
|
|
SYMBOL_MATCHES_NAME (sym, name))
|
|
|
|
|
{
|
|
|
|
|
/* If SYM has aliases, then use any alias that is active
|
|
|
|
|
at the current PC. If no alias is active at the current
|
|
|
|
|
PC, then use the main symbol.
|
|
|
|
|
|
|
|
|
|
?!? Is checking the current pc correct? Is this routine
|
|
|
|
|
ever called to look up a symbol from another context? */
|
|
|
|
|
if (SYMBOL_ALIASES (sym))
|
|
|
|
|
sym = find_active_alias (sym, read_pc ());
|
|
|
|
|
|
|
|
|
|
sym_found = sym;
|
|
|
|
|
if (SYMBOL_CLASS (sym) != LOC_ARG &&
|
|
|
|
|
SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
|
|
|
|
|
SYMBOL_CLASS (sym) != LOC_REF_ARG &&
|
|
|
|
|
SYMBOL_CLASS (sym) != LOC_REGPARM &&
|
|
|
|
|
SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
|
|
|
|
|
SYMBOL_CLASS (sym) != LOC_BASEREG_ARG)
|
|
|
|
|
{
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
bot++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return (sym_found); /* Will be NULL if not found. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a main symbol SYM and ADDR, search through the alias
|
|
|
|
|
list to determine if an alias is active at ADDR and return
|
|
|
|
|
the active alias.
|
|
|
|
|
|
|
|
|
|
If no alias is active, then return SYM. */
|
|
|
|
|
|
|
|
|
|
static struct symbol *
|
|
|
|
|
find_active_alias (sym, addr)
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
{
|
|
|
|
|
struct range_list *r;
|
|
|
|
|
struct alias_list *aliases;
|
|
|
|
|
|
|
|
|
|
/* If we have aliases, check them first. */
|
|
|
|
|
aliases = SYMBOL_ALIASES (sym);
|
|
|
|
|
|
|
|
|
|
while (aliases)
|
|
|
|
|
{
|
|
|
|
|
if (!SYMBOL_RANGES (aliases->sym))
|
|
|
|
|
return aliases->sym;
|
|
|
|
|
for (r = SYMBOL_RANGES (aliases->sym); r; r = r->next)
|
|
|
|
|
{
|
|
|
|
|
if (r->start <= addr && r->end > addr)
|
|
|
|
|
return aliases->sym;
|
|
|
|
|
}
|
|
|
|
|
aliases = aliases->next;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Nothing found, return the main symbol. */
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the symbol for the function which contains a specified
|
|
|
|
|
lexical block, described by a struct block BL. */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
|
|
|
|
block_function (bl)
|
|
|
|
|
struct block *bl;
|
|
|
|
|
{
|
|
|
|
|
while (BLOCK_FUNCTION (bl) == 0 && BLOCK_SUPERBLOCK (bl) != 0)
|
|
|
|
|
bl = BLOCK_SUPERBLOCK (bl);
|
|
|
|
|
|
|
|
|
|
return BLOCK_FUNCTION (bl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find the symtab associated with PC and SECTION. Look through the
|
|
|
|
|
psymtabs and read in another symtab if necessary. */
|
|
|
|
|
|
|
|
|
|
struct symtab *
|
|
|
|
|
find_pc_sect_symtab (pc, section)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
asection *section;
|
|
|
|
|
{
|
|
|
|
|
register struct block *b;
|
|
|
|
|
struct blockvector *bv;
|
|
|
|
|
register struct symtab *s = NULL;
|
|
|
|
|
register struct symtab *best_s = NULL;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
CORE_ADDR distance = 0;
|
|
|
|
|
|
|
|
|
|
/* Search all symtabs for the one whose file contains our address, and which
|
|
|
|
|
is the smallest of all the ones containing the address. This is designed
|
|
|
|
|
to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
|
|
|
|
|
and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
|
|
|
|
|
0x1000-0x4000, but for address 0x2345 we want to return symtab b.
|
|
|
|
|
|
|
|
|
|
This happens for native ecoff format, where code from included files
|
|
|
|
|
gets its own symtab. The symtab for the included file should have
|
|
|
|
|
been read in already via the dependency mechanism.
|
|
|
|
|
It might be swifter to create several symtabs with the same name
|
|
|
|
|
like xcoff does (I'm not sure).
|
|
|
|
|
|
|
|
|
|
It also happens for objfiles that have their functions reordered.
|
|
|
|
|
For these, the symtab we are looking for is not necessarily read in. */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
|
|
|
|
|
|
|
|
|
if (BLOCK_START (b) <= pc
|
|
|
|
|
#if defined(HPUXHPPA)
|
|
|
|
|
&& BLOCK_END (b) >= pc
|
|
|
|
|
#else
|
|
|
|
|
&& BLOCK_END (b) > pc
|
|
|
|
|
#endif
|
|
|
|
|
&& (distance == 0
|
|
|
|
|
|| BLOCK_END (b) - BLOCK_START (b) < distance))
|
|
|
|
|
{
|
|
|
|
|
/* For an objfile that has its functions reordered,
|
|
|
|
|
find_pc_psymtab will find the proper partial symbol table
|
|
|
|
|
and we simply return its corresponding symtab. */
|
|
|
|
|
/* In order to better support objfiles that contain both
|
|
|
|
|
stabs and coff debugging info, we continue on if a psymtab
|
|
|
|
|
can't be found. */
|
|
|
|
|
if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
|
|
|
|
|
{
|
|
|
|
|
ps = find_pc_sect_psymtab (pc, section);
|
|
|
|
|
if (ps)
|
|
|
|
|
return PSYMTAB_TO_SYMTAB (ps);
|
|
|
|
|
}
|
|
|
|
|
if (section != 0)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < b->nsyms; i++)
|
|
|
|
|
{
|
|
|
|
|
fixup_symbol_section (b->sym[i], objfile);
|
|
|
|
|
if (section == SYMBOL_BFD_SECTION (b->sym[i]))
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (i >= b->nsyms)
|
|
|
|
|
continue; /* no symbol in this symtab matches section */
|
|
|
|
|
}
|
|
|
|
|
distance = BLOCK_END (b) - BLOCK_START (b);
|
|
|
|
|
best_s = s;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (best_s != NULL)
|
|
|
|
|
return(best_s);
|
|
|
|
|
|
|
|
|
|
s = NULL;
|
|
|
|
|
ps = find_pc_sect_psymtab (pc, section);
|
|
|
|
|
if (ps)
|
|
|
|
|
{
|
|
|
|
|
if (ps->readin)
|
|
|
|
|
/* Might want to error() here (in case symtab is corrupt and
|
|
|
|
|
will cause a core dump), but maybe we can successfully
|
|
|
|
|
continue, so let's not. */
|
|
|
|
|
/* FIXME-32x64: assumes pc fits in a long */
|
|
|
|
|
warning ("\
|
|
|
|
|
(Internal error: pc 0x%lx in read in psymtab, but not in symtab.)\n",
|
|
|
|
|
(unsigned long) pc);
|
|
|
|
|
s = PSYMTAB_TO_SYMTAB (ps);
|
|
|
|
|
}
|
|
|
|
|
return (s);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find the symtab associated with PC. Look through the psymtabs and
|
|
|
|
|
read in another symtab if necessary. Backward compatibility, no section */
|
|
|
|
|
|
|
|
|
|
struct symtab *
|
|
|
|
|
find_pc_symtab (pc)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
{
|
|
|
|
|
return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
|
|
|
|
|
/* Find the closest symbol value (of any sort -- function or variable)
|
|
|
|
|
for a given address value. Slow but complete. (currently unused,
|
|
|
|
|
mainly because it is too slow. We could fix it if each symtab and
|
|
|
|
|
psymtab had contained in it the addresses ranges of each of its
|
|
|
|
|
sections, which also would be required to make things like "info
|
|
|
|
|
line *0x2345" cause psymtabs to be converted to symtabs). */
|
|
|
|
|
|
|
|
|
|
struct symbol *
|
|
|
|
|
find_addr_symbol (addr, symtabp, symaddrp)
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
struct symtab **symtabp;
|
|
|
|
|
CORE_ADDR *symaddrp;
|
|
|
|
|
{
|
|
|
|
|
struct symtab *symtab, *best_symtab;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
register int bot, top;
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
register CORE_ADDR sym_addr;
|
|
|
|
|
struct block *block;
|
|
|
|
|
int blocknum;
|
|
|
|
|
|
|
|
|
|
/* Info on best symbol seen so far */
|
|
|
|
|
|
|
|
|
|
register CORE_ADDR best_sym_addr = 0;
|
|
|
|
|
struct symbol *best_sym = 0;
|
|
|
|
|
|
|
|
|
|
/* FIXME -- we should pull in all the psymtabs, too! */
|
|
|
|
|
ALL_SYMTABS (objfile, symtab)
|
|
|
|
|
{
|
|
|
|
|
/* Search the global and static blocks in this symtab for
|
|
|
|
|
the closest symbol-address to the desired address. */
|
|
|
|
|
|
|
|
|
|
for (blocknum = GLOBAL_BLOCK; blocknum <= STATIC_BLOCK; blocknum++)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), blocknum);
|
|
|
|
|
top = BLOCK_NSYMS (block);
|
|
|
|
|
for (bot = 0; bot < top; bot++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (block, bot);
|
|
|
|
|
switch (SYMBOL_CLASS (sym))
|
|
|
|
|
{
|
|
|
|
|
case LOC_STATIC:
|
|
|
|
|
case LOC_LABEL:
|
|
|
|
|
sym_addr = SYMBOL_VALUE_ADDRESS (sym);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LOC_INDIRECT:
|
|
|
|
|
sym_addr = SYMBOL_VALUE_ADDRESS (sym);
|
|
|
|
|
/* An indirect symbol really lives at *sym_addr,
|
|
|
|
|
* so an indirection needs to be done.
|
|
|
|
|
* However, I am leaving this commented out because it's
|
|
|
|
|
* expensive, and it's possible that symbolization
|
|
|
|
|
* could be done without an active process (in
|
|
|
|
|
* case this read_memory will fail). RT
|
|
|
|
|
sym_addr = read_memory_unsigned_integer
|
|
|
|
|
(sym_addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
|
*/
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case LOC_BLOCK:
|
|
|
|
|
sym_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sym_addr <= addr)
|
|
|
|
|
if (sym_addr > best_sym_addr)
|
|
|
|
|
{
|
|
|
|
|
/* Quit if we found an exact match. */
|
|
|
|
|
best_sym = sym;
|
|
|
|
|
best_sym_addr = sym_addr;
|
|
|
|
|
best_symtab = symtab;
|
|
|
|
|
if (sym_addr == addr)
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
done:
|
|
|
|
|
if (symtabp)
|
|
|
|
|
*symtabp = best_symtab;
|
|
|
|
|
if (symaddrp)
|
|
|
|
|
*symaddrp = best_sym_addr;
|
|
|
|
|
return best_sym;
|
|
|
|
|
}
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
|
|
|
|
/* Find the source file and line number for a given PC value and section.
|
|
|
|
|
Return a structure containing a symtab pointer, a line number,
|
|
|
|
|
and a pc range for the entire source line.
|
|
|
|
|
The value's .pc field is NOT the specified pc.
|
|
|
|
|
NOTCURRENT nonzero means, if specified pc is on a line boundary,
|
|
|
|
|
use the line that ends there. Otherwise, in that case, the line
|
|
|
|
|
that begins there is used. */
|
|
|
|
|
|
|
|
|
|
/* The big complication here is that a line may start in one file, and end just
|
|
|
|
|
before the start of another file. This usually occurs when you #include
|
|
|
|
|
code in the middle of a subroutine. To properly find the end of a line's PC
|
|
|
|
|
range, we must search all symtabs associated with this compilation unit, and
|
|
|
|
|
find the one whose first PC is closer than that of the next line in this
|
|
|
|
|
symtab. */
|
|
|
|
|
|
|
|
|
|
/* If it's worth the effort, we could be using a binary search. */
|
|
|
|
|
|
|
|
|
|
struct symtab_and_line
|
|
|
|
|
find_pc_sect_line (pc, section, notcurrent)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
struct sec *section;
|
|
|
|
|
int notcurrent;
|
|
|
|
|
{
|
|
|
|
|
struct symtab *s;
|
|
|
|
|
register struct linetable *l;
|
|
|
|
|
register int len;
|
|
|
|
|
register int i;
|
|
|
|
|
register struct linetable_entry *item;
|
|
|
|
|
struct symtab_and_line val;
|
|
|
|
|
struct blockvector *bv;
|
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
struct minimal_symbol *mfunsym;
|
|
|
|
|
|
|
|
|
|
/* Info on best line seen so far, and where it starts, and its file. */
|
|
|
|
|
|
|
|
|
|
struct linetable_entry *best = NULL;
|
|
|
|
|
CORE_ADDR best_end = 0;
|
|
|
|
|
struct symtab *best_symtab = 0;
|
|
|
|
|
|
|
|
|
|
/* Store here the first line number
|
|
|
|
|
of a file which contains the line at the smallest pc after PC.
|
|
|
|
|
If we don't find a line whose range contains PC,
|
|
|
|
|
we will use a line one less than this,
|
|
|
|
|
with a range from the start of that file to the first line's pc. */
|
|
|
|
|
struct linetable_entry *alt = NULL;
|
|
|
|
|
struct symtab *alt_symtab = 0;
|
|
|
|
|
|
|
|
|
|
/* Info on best line seen in this file. */
|
|
|
|
|
|
|
|
|
|
struct linetable_entry *prev;
|
|
|
|
|
|
|
|
|
|
/* If this pc is not from the current frame,
|
|
|
|
|
it is the address of the end of a call instruction.
|
|
|
|
|
Quite likely that is the start of the following statement.
|
|
|
|
|
But what we want is the statement containing the instruction.
|
|
|
|
|
Fudge the pc to make sure we get that. */
|
|
|
|
|
|
|
|
|
|
INIT_SAL (&val); /* initialize to zeroes */
|
|
|
|
|
|
|
|
|
|
if (notcurrent)
|
|
|
|
|
pc -= 1;
|
|
|
|
|
|
|
|
|
|
/* elz: added this because this function returned the wrong
|
|
|
|
|
information if the pc belongs to a stub (import/export)
|
|
|
|
|
to call a shlib function. This stub would be anywhere between
|
|
|
|
|
two functions in the target, and the line info was erroneously
|
|
|
|
|
taken to be the one of the line before the pc.
|
|
|
|
|
*/
|
|
|
|
|
/* RT: Further explanation:
|
|
|
|
|
*
|
|
|
|
|
* We have stubs (trampolines) inserted between procedures.
|
|
|
|
|
*
|
|
|
|
|
* Example: "shr1" exists in a shared library, and a "shr1" stub also
|
|
|
|
|
* exists in the main image.
|
|
|
|
|
*
|
|
|
|
|
* In the minimal symbol table, we have a bunch of symbols
|
|
|
|
|
* sorted by start address. The stubs are marked as "trampoline",
|
|
|
|
|
* the others appear as text. E.g.:
|
|
|
|
|
*
|
|
|
|
|
* Minimal symbol table for main image
|
|
|
|
|
* main: code for main (text symbol)
|
|
|
|
|
* shr1: stub (trampoline symbol)
|
|
|
|
|
* foo: code for foo (text symbol)
|
|
|
|
|
* ...
|
|
|
|
|
* Minimal symbol table for "shr1" image:
|
|
|
|
|
* ...
|
|
|
|
|
* shr1: code for shr1 (text symbol)
|
|
|
|
|
* ...
|
|
|
|
|
*
|
|
|
|
|
* So the code below is trying to detect if we are in the stub
|
|
|
|
|
* ("shr1" stub), and if so, find the real code ("shr1" trampoline),
|
|
|
|
|
* and if found, do the symbolization from the real-code address
|
|
|
|
|
* rather than the stub address.
|
|
|
|
|
*
|
|
|
|
|
* Assumptions being made about the minimal symbol table:
|
|
|
|
|
* 1. lookup_minimal_symbol_by_pc() will return a trampoline only
|
|
|
|
|
* if we're really in the trampoline. If we're beyond it (say
|
|
|
|
|
* we're in "foo" in the above example), it'll have a closer
|
|
|
|
|
* symbol (the "foo" text symbol for example) and will not
|
|
|
|
|
* return the trampoline.
|
|
|
|
|
* 2. lookup_minimal_symbol_text() will find a real text symbol
|
|
|
|
|
* corresponding to the trampoline, and whose address will
|
|
|
|
|
* be different than the trampoline address. I put in a sanity
|
|
|
|
|
* check for the address being the same, to avoid an
|
|
|
|
|
* infinite recursion.
|
|
|
|
|
*/
|
|
|
|
|
msymbol = lookup_minimal_symbol_by_pc(pc);
|
|
|
|
|
if (msymbol != NULL)
|
|
|
|
|
if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
|
|
|
|
|
{
|
|
|
|
|
mfunsym = lookup_minimal_symbol_text (SYMBOL_NAME (msymbol), NULL, NULL);
|
|
|
|
|
if (mfunsym == NULL)
|
|
|
|
|
/* I eliminated this warning since it is coming out
|
|
|
|
|
* in the following situation:
|
|
|
|
|
* gdb shmain // test program with shared libraries
|
|
|
|
|
* (gdb) break shr1 // function in shared lib
|
|
|
|
|
* Warning: In stub for ...
|
|
|
|
|
* In the above situation, the shared lib is not loaded yet,
|
|
|
|
|
* so of course we can't find the real func/line info,
|
|
|
|
|
* but the "break" still works, and the warning is annoying.
|
|
|
|
|
* So I commented out the warning. RT */
|
|
|
|
|
/* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */;
|
|
|
|
|
/* fall through */
|
|
|
|
|
else if (SYMBOL_VALUE(mfunsym) == SYMBOL_VALUE(msymbol))
|
|
|
|
|
/* Avoid infinite recursion */
|
|
|
|
|
/* See above comment about why warning is commented out */
|
|
|
|
|
/* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */;
|
|
|
|
|
/* fall through */
|
|
|
|
|
else
|
|
|
|
|
return find_pc_line( SYMBOL_VALUE (mfunsym), 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s = find_pc_sect_symtab (pc, section);
|
|
|
|
|
if (!s)
|
|
|
|
|
{
|
|
|
|
|
/* if no symbol information, return previous pc */
|
|
|
|
|
if (notcurrent)
|
|
|
|
|
pc++;
|
|
|
|
|
val.pc = pc;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
|
|
|
|
|
/* Look at all the symtabs that share this blockvector.
|
|
|
|
|
They all have the same apriori range, that we found was right;
|
|
|
|
|
but they have different line tables. */
|
|
|
|
|
|
|
|
|
|
for (; s && BLOCKVECTOR (s) == bv; s = s->next)
|
|
|
|
|
{
|
|
|
|
|
/* Find the best line in this symtab. */
|
|
|
|
|
l = LINETABLE (s);
|
|
|
|
|
if (!l)
|
|
|
|
|
continue;
|
|
|
|
|
len = l->nitems;
|
|
|
|
|
if (len <= 0)
|
|
|
|
|
{
|
|
|
|
|
/* I think len can be zero if the symtab lacks line numbers
|
|
|
|
|
(e.g. gcc -g1). (Either that or the LINETABLE is NULL;
|
|
|
|
|
I'm not sure which, and maybe it depends on the symbol
|
|
|
|
|
reader). */
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
prev = NULL;
|
|
|
|
|
item = l->item; /* Get first line info */
|
|
|
|
|
|
|
|
|
|
/* Is this file's first line closer than the first lines of other files?
|
|
|
|
|
If so, record this file, and its first line, as best alternate. */
|
|
|
|
|
if (item->pc > pc && (!alt || item->pc < alt->pc))
|
|
|
|
|
{
|
|
|
|
|
alt = item;
|
|
|
|
|
alt_symtab = s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++, item++)
|
|
|
|
|
{
|
|
|
|
|
/* Leave prev pointing to the linetable entry for the last line
|
|
|
|
|
that started at or before PC. */
|
|
|
|
|
if (item->pc > pc)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
prev = item;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At this point, prev points at the line whose start addr is <= pc, and
|
|
|
|
|
item points at the next line. If we ran off the end of the linetable
|
|
|
|
|
(pc >= start of the last line), then prev == item. If pc < start of
|
|
|
|
|
the first line, prev will not be set. */
|
|
|
|
|
|
|
|
|
|
/* Is this file's best line closer than the best in the other files?
|
|
|
|
|
If so, record this file, and its best line, as best so far. */
|
|
|
|
|
|
|
|
|
|
if (prev && (!best || prev->pc > best->pc))
|
|
|
|
|
{
|
|
|
|
|
best = prev;
|
|
|
|
|
best_symtab = s;
|
|
|
|
|
/* If another line is in the linetable, and its PC is closer
|
|
|
|
|
than the best_end we currently have, take it as best_end. */
|
|
|
|
|
if (i < len && (best_end == 0 || best_end > item->pc))
|
|
|
|
|
best_end = item->pc;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!best_symtab)
|
|
|
|
|
{
|
|
|
|
|
if (!alt_symtab)
|
|
|
|
|
{ /* If we didn't find any line # info, just
|
|
|
|
|
return zeros. */
|
|
|
|
|
val.pc = pc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
val.symtab = alt_symtab;
|
|
|
|
|
val.line = alt->line - 1;
|
|
|
|
|
|
|
|
|
|
/* Don't return line 0, that means that we didn't find the line. */
|
|
|
|
|
if (val.line == 0) ++val.line;
|
|
|
|
|
|
|
|
|
|
val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
|
|
|
|
|
val.end = alt->pc;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
val.symtab = best_symtab;
|
|
|
|
|
val.line = best->line;
|
|
|
|
|
val.pc = best->pc;
|
|
|
|
|
if (best_end && (!alt || best_end < alt->pc))
|
|
|
|
|
val.end = best_end;
|
|
|
|
|
else if (alt)
|
|
|
|
|
val.end = alt->pc;
|
|
|
|
|
else
|
|
|
|
|
val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
|
|
|
|
|
}
|
|
|
|
|
val.section = section;
|
|
|
|
|
return val;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Backward compatibility (no section) */
|
|
|
|
|
|
|
|
|
|
struct symtab_and_line
|
|
|
|
|
find_pc_line (pc, notcurrent)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
int notcurrent;
|
|
|
|
|
{
|
|
|
|
|
asection *section;
|
|
|
|
|
|
|
|
|
|
section = find_pc_overlay (pc);
|
|
|
|
|
if (pc_in_unmapped_range (pc, section))
|
|
|
|
|
pc = overlay_mapped_address (pc, section);
|
|
|
|
|
return find_pc_sect_line (pc, section, notcurrent);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static struct symtab* find_line_symtab PARAMS ((struct symtab *, int,
|
|
|
|
|
int *, int *));
|
|
|
|
|
|
|
|
|
|
/* Find line number LINE in any symtab whose name is the same as
|
|
|
|
|
SYMTAB.
|
|
|
|
|
|
|
|
|
|
If found, return the symtab that contains the linetable in which it was
|
|
|
|
|
found, set *INDEX to the index in the linetable of the best entry
|
|
|
|
|
found, and set *EXACT_MATCH nonzero if the value returned is an
|
|
|
|
|
exact match.
|
|
|
|
|
|
|
|
|
|
If not found, return NULL. */
|
|
|
|
|
|
|
|
|
|
static struct symtab*
|
|
|
|
|
find_line_symtab (symtab, line, index, exact_match)
|
|
|
|
|
struct symtab *symtab;
|
|
|
|
|
int line;
|
|
|
|
|
int *index;
|
|
|
|
|
int *exact_match;
|
|
|
|
|
{
|
|
|
|
|
int exact;
|
|
|
|
|
|
|
|
|
|
/* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
|
|
|
|
|
so far seen. */
|
|
|
|
|
|
|
|
|
|
int best_index;
|
|
|
|
|
struct linetable *best_linetable;
|
|
|
|
|
struct symtab *best_symtab;
|
|
|
|
|
|
|
|
|
|
/* First try looking it up in the given symtab. */
|
|
|
|
|
best_linetable = LINETABLE (symtab);
|
|
|
|
|
best_symtab = symtab;
|
|
|
|
|
best_index = find_line_common (best_linetable, line, &exact);
|
|
|
|
|
if (best_index < 0 || !exact)
|
|
|
|
|
{
|
|
|
|
|
/* Didn't find an exact match. So we better keep looking for
|
|
|
|
|
another symtab with the same name. In the case of xcoff,
|
|
|
|
|
multiple csects for one source file (produced by IBM's FORTRAN
|
|
|
|
|
compiler) produce multiple symtabs (this is unavoidable
|
|
|
|
|
assuming csects can be at arbitrary places in memory and that
|
|
|
|
|
the GLOBAL_BLOCK of a symtab has a begin and end address). */
|
|
|
|
|
|
|
|
|
|
/* BEST is the smallest linenumber > LINE so far seen,
|
|
|
|
|
or 0 if none has been seen so far.
|
|
|
|
|
BEST_INDEX and BEST_LINETABLE identify the item for it. */
|
|
|
|
|
int best;
|
|
|
|
|
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
struct symtab *s;
|
|
|
|
|
|
|
|
|
|
if (best_index >= 0)
|
|
|
|
|
best = best_linetable->item[best_index].line;
|
|
|
|
|
else
|
|
|
|
|
best = 0;
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
struct linetable *l;
|
|
|
|
|
int ind;
|
|
|
|
|
|
|
|
|
|
if (!STREQ (symtab->filename, s->filename))
|
|
|
|
|
continue;
|
|
|
|
|
l = LINETABLE (s);
|
|
|
|
|
ind = find_line_common (l, line, &exact);
|
|
|
|
|
if (ind >= 0)
|
|
|
|
|
{
|
|
|
|
|
if (exact)
|
|
|
|
|
{
|
|
|
|
|
best_index = ind;
|
|
|
|
|
best_linetable = l;
|
|
|
|
|
best_symtab = s;
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
if (best == 0 || l->item[ind].line < best)
|
|
|
|
|
{
|
|
|
|
|
best = l->item[ind].line;
|
|
|
|
|
best_index = ind;
|
|
|
|
|
best_linetable = l;
|
|
|
|
|
best_symtab = s;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
done:
|
|
|
|
|
if (best_index < 0)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
if (index)
|
|
|
|
|
*index = best_index;
|
|
|
|
|
if (exact_match)
|
|
|
|
|
*exact_match = exact;
|
|
|
|
|
|
|
|
|
|
return best_symtab;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set the PC value for a given source file and line number and return true.
|
|
|
|
|
Returns zero for invalid line number (and sets the PC to 0).
|
|
|
|
|
The source file is specified with a struct symtab. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
find_line_pc (symtab, line, pc)
|
|
|
|
|
struct symtab *symtab;
|
|
|
|
|
int line;
|
|
|
|
|
CORE_ADDR *pc;
|
|
|
|
|
{
|
|
|
|
|
struct linetable *l;
|
|
|
|
|
int ind;
|
|
|
|
|
|
|
|
|
|
*pc = 0;
|
|
|
|
|
if (symtab == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
symtab = find_line_symtab (symtab, line, &ind, NULL);
|
|
|
|
|
if (symtab != NULL)
|
|
|
|
|
{
|
|
|
|
|
l = LINETABLE (symtab);
|
|
|
|
|
*pc = l->item[ind].pc;
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find the range of pc values in a line.
|
|
|
|
|
Store the starting pc of the line into *STARTPTR
|
|
|
|
|
and the ending pc (start of next line) into *ENDPTR.
|
|
|
|
|
Returns 1 to indicate success.
|
|
|
|
|
Returns 0 if could not find the specified line. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
find_line_pc_range (sal, startptr, endptr)
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
CORE_ADDR *startptr, *endptr;
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR startaddr;
|
|
|
|
|
struct symtab_and_line found_sal;
|
|
|
|
|
|
|
|
|
|
startaddr = sal.pc;
|
|
|
|
|
if (startaddr==0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* This whole function is based on address. For example, if line 10 has
|
|
|
|
|
two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
|
|
|
|
|
"info line *0x123" should say the line goes from 0x100 to 0x200
|
|
|
|
|
and "info line *0x355" should say the line goes from 0x300 to 0x400.
|
|
|
|
|
This also insures that we never give a range like "starts at 0x134
|
|
|
|
|
and ends at 0x12c". */
|
|
|
|
|
|
|
|
|
|
found_sal = find_pc_sect_line (startaddr, sal.section, 0);
|
|
|
|
|
if (found_sal.line != sal.line)
|
|
|
|
|
{
|
|
|
|
|
/* The specified line (sal) has zero bytes. */
|
|
|
|
|
*startptr = found_sal.pc;
|
|
|
|
|
*endptr = found_sal.pc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
*startptr = found_sal.pc;
|
|
|
|
|
*endptr = found_sal.end;
|
|
|
|
|
}
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a line table and a line number, return the index into the line
|
|
|
|
|
table for the pc of the nearest line whose number is >= the specified one.
|
|
|
|
|
Return -1 if none is found. The value is >= 0 if it is an index.
|
|
|
|
|
|
|
|
|
|
Set *EXACT_MATCH nonzero if the value returned is an exact match. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
find_line_common (l, lineno, exact_match)
|
|
|
|
|
register struct linetable *l;
|
|
|
|
|
register int lineno;
|
|
|
|
|
int *exact_match;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
register int len;
|
|
|
|
|
|
|
|
|
|
/* BEST is the smallest linenumber > LINENO so far seen,
|
|
|
|
|
or 0 if none has been seen so far.
|
|
|
|
|
BEST_INDEX identifies the item for it. */
|
|
|
|
|
|
|
|
|
|
int best_index = -1;
|
|
|
|
|
int best = 0;
|
|
|
|
|
|
|
|
|
|
if (lineno <= 0)
|
|
|
|
|
return -1;
|
|
|
|
|
if (l == 0)
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
len = l->nitems;
|
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
|
{
|
|
|
|
|
register struct linetable_entry *item = &(l->item[i]);
|
|
|
|
|
|
|
|
|
|
if (item->line == lineno)
|
|
|
|
|
{
|
|
|
|
|
/* Return the first (lowest address) entry which matches. */
|
|
|
|
|
*exact_match = 1;
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (item->line > lineno && (best == 0 || item->line < best))
|
|
|
|
|
{
|
|
|
|
|
best = item->line;
|
|
|
|
|
best_index = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we got here, we didn't get an exact match. */
|
|
|
|
|
|
|
|
|
|
*exact_match = 0;
|
|
|
|
|
return best_index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
find_pc_line_pc_range (pc, startptr, endptr)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
CORE_ADDR *startptr, *endptr;
|
|
|
|
|
{
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
sal = find_pc_line (pc, 0);
|
|
|
|
|
*startptr = sal.pc;
|
|
|
|
|
*endptr = sal.end;
|
|
|
|
|
return sal.symtab != 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a function symbol SYM, find the symtab and line for the start
|
|
|
|
|
of the function.
|
|
|
|
|
If the argument FUNFIRSTLINE is nonzero, we want the first line
|
|
|
|
|
of real code inside the function. */
|
|
|
|
|
|
|
|
|
|
static struct symtab_and_line
|
|
|
|
|
find_function_start_sal PARAMS ((struct symbol *sym, int));
|
|
|
|
|
|
|
|
|
|
static struct symtab_and_line
|
|
|
|
|
find_function_start_sal (sym, funfirstline)
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
int funfirstline;
|
|
|
|
|
{
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
|
|
|
|
|
pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
|
|
|
|
|
fixup_symbol_section (sym, NULL);
|
|
|
|
|
if (funfirstline)
|
|
|
|
|
{ /* skip "first line" of function (which is actually its prologue) */
|
|
|
|
|
asection *section = SYMBOL_BFD_SECTION (sym);
|
|
|
|
|
/* If function is in an unmapped overlay, use its unmapped LMA
|
|
|
|
|
address, so that SKIP_PROLOGUE has something unique to work on */
|
|
|
|
|
if (section_is_overlay (section) &&
|
|
|
|
|
!section_is_mapped (section))
|
|
|
|
|
pc = overlay_unmapped_address (pc, section);
|
|
|
|
|
|
|
|
|
|
pc += FUNCTION_START_OFFSET;
|
1999-05-05 14:45:51 +00:00
|
|
|
|
pc = SKIP_PROLOGUE (pc);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* For overlays, map pc back into its mapped VMA range */
|
|
|
|
|
pc = overlay_mapped_address (pc, section);
|
|
|
|
|
}
|
|
|
|
|
sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
|
|
|
|
|
|
|
|
|
|
#ifdef PROLOGUE_FIRSTLINE_OVERLAP
|
|
|
|
|
/* Convex: no need to suppress code on first line, if any */
|
|
|
|
|
sal.pc = pc;
|
|
|
|
|
#else
|
|
|
|
|
/* Check if SKIP_PROLOGUE left us in mid-line, and the next
|
|
|
|
|
line is still part of the same function. */
|
|
|
|
|
if (sal.pc != pc
|
|
|
|
|
&& BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
|
|
|
|
|
&& sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
|
|
|
|
|
{
|
|
|
|
|
/* First pc of next line */
|
|
|
|
|
pc = sal.end;
|
|
|
|
|
/* Recalculate the line number (might not be N+1). */
|
|
|
|
|
sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
|
|
|
|
|
}
|
|
|
|
|
sal.pc = pc;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return sal;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If P is of the form "operator[ \t]+..." where `...' is
|
|
|
|
|
some legitimate operator text, return a pointer to the
|
|
|
|
|
beginning of the substring of the operator text.
|
|
|
|
|
Otherwise, return "". */
|
|
|
|
|
char *
|
|
|
|
|
operator_chars (p, end)
|
|
|
|
|
char *p;
|
|
|
|
|
char **end;
|
|
|
|
|
{
|
|
|
|
|
*end = "";
|
|
|
|
|
if (strncmp (p, "operator", 8))
|
|
|
|
|
return *end;
|
|
|
|
|
p += 8;
|
|
|
|
|
|
|
|
|
|
/* Don't get faked out by `operator' being part of a longer
|
|
|
|
|
identifier. */
|
|
|
|
|
if (isalpha(*p) || *p == '_' || *p == '$' || *p == '\0')
|
|
|
|
|
return *end;
|
|
|
|
|
|
|
|
|
|
/* Allow some whitespace between `operator' and the operator symbol. */
|
|
|
|
|
while (*p == ' ' || *p == '\t')
|
|
|
|
|
p++;
|
|
|
|
|
|
|
|
|
|
/* Recognize 'operator TYPENAME'. */
|
|
|
|
|
|
|
|
|
|
if (isalpha(*p) || *p == '_' || *p == '$')
|
|
|
|
|
{
|
|
|
|
|
register char *q = p+1;
|
|
|
|
|
while (isalnum(*q) || *q == '_' || *q == '$')
|
|
|
|
|
q++;
|
|
|
|
|
*end = q;
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
switch (*p)
|
|
|
|
|
{
|
|
|
|
|
case '!':
|
|
|
|
|
case '=':
|
|
|
|
|
case '*':
|
|
|
|
|
case '/':
|
|
|
|
|
case '%':
|
|
|
|
|
case '^':
|
|
|
|
|
if (p[1] == '=')
|
|
|
|
|
*end = p+2;
|
|
|
|
|
else
|
|
|
|
|
*end = p+1;
|
|
|
|
|
return p;
|
|
|
|
|
case '<':
|
|
|
|
|
case '>':
|
|
|
|
|
case '+':
|
|
|
|
|
case '-':
|
|
|
|
|
case '&':
|
|
|
|
|
case '|':
|
|
|
|
|
if (p[1] == '=' || p[1] == p[0])
|
|
|
|
|
*end = p+2;
|
|
|
|
|
else
|
|
|
|
|
*end = p+1;
|
|
|
|
|
return p;
|
|
|
|
|
case '~':
|
|
|
|
|
case ',':
|
|
|
|
|
*end = p+1;
|
|
|
|
|
return p;
|
|
|
|
|
case '(':
|
|
|
|
|
if (p[1] != ')')
|
|
|
|
|
error ("`operator ()' must be specified without whitespace in `()'");
|
|
|
|
|
*end = p+2;
|
|
|
|
|
return p;
|
|
|
|
|
case '?':
|
|
|
|
|
if (p[1] != ':')
|
|
|
|
|
error ("`operator ?:' must be specified without whitespace in `?:'");
|
|
|
|
|
*end = p+2;
|
|
|
|
|
return p;
|
|
|
|
|
case '[':
|
|
|
|
|
if (p[1] != ']')
|
|
|
|
|
error ("`operator []' must be specified without whitespace in `[]'");
|
|
|
|
|
*end = p+2;
|
|
|
|
|
return p;
|
|
|
|
|
default:
|
|
|
|
|
error ("`operator %s' not supported", p);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
*end = "";
|
|
|
|
|
return *end;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the number of methods described for TYPE, including the
|
|
|
|
|
methods from types it derives from. This can't be done in the symbol
|
|
|
|
|
reader because the type of the baseclass might still be stubbed
|
|
|
|
|
when the definition of the derived class is parsed. */
|
|
|
|
|
|
|
|
|
|
static int total_number_of_methods PARAMS ((struct type *type));
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
total_number_of_methods (type)
|
|
|
|
|
struct type *type;
|
|
|
|
|
{
|
|
|
|
|
int n;
|
|
|
|
|
int count;
|
|
|
|
|
|
|
|
|
|
CHECK_TYPEDEF (type);
|
|
|
|
|
if (TYPE_CPLUS_SPECIFIC (type) == NULL)
|
|
|
|
|
return 0;
|
|
|
|
|
count = TYPE_NFN_FIELDS_TOTAL (type);
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
|
|
|
|
|
count += total_number_of_methods (TYPE_BASECLASS (type, n));
|
|
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Recursive helper function for decode_line_1.
|
|
|
|
|
Look for methods named NAME in type T.
|
|
|
|
|
Return number of matches.
|
|
|
|
|
Put matches in SYM_ARR, which should have been allocated with
|
|
|
|
|
a size of total_number_of_methods (T) * sizeof (struct symbol *).
|
|
|
|
|
Note that this function is g++ specific. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
find_methods (t, name, sym_arr)
|
|
|
|
|
struct type *t;
|
|
|
|
|
char *name;
|
|
|
|
|
struct symbol **sym_arr;
|
|
|
|
|
{
|
|
|
|
|
int i1 = 0;
|
|
|
|
|
int ibase;
|
|
|
|
|
struct symbol *sym_class;
|
|
|
|
|
char *class_name = type_name_no_tag (t);
|
|
|
|
|
|
|
|
|
|
/* Ignore this class if it doesn't have a name. This is ugly, but
|
|
|
|
|
unless we figure out how to get the physname without the name of
|
|
|
|
|
the class, then the loop can't do any good. */
|
|
|
|
|
if (class_name
|
|
|
|
|
&& (sym_class = lookup_symbol (class_name,
|
|
|
|
|
(struct block *)NULL,
|
|
|
|
|
STRUCT_NAMESPACE,
|
|
|
|
|
(int *)NULL,
|
|
|
|
|
(struct symtab **)NULL)))
|
|
|
|
|
{
|
|
|
|
|
int method_counter;
|
|
|
|
|
|
|
|
|
|
/* FIXME: Shouldn't this just be CHECK_TYPEDEF (t)? */
|
|
|
|
|
t = SYMBOL_TYPE (sym_class);
|
|
|
|
|
|
|
|
|
|
/* Loop over each method name. At this level, all overloads of a name
|
|
|
|
|
are counted as a single name. There is an inner loop which loops over
|
|
|
|
|
each overload. */
|
|
|
|
|
|
|
|
|
|
for (method_counter = TYPE_NFN_FIELDS (t) - 1;
|
|
|
|
|
method_counter >= 0;
|
|
|
|
|
--method_counter)
|
|
|
|
|
{
|
|
|
|
|
int field_counter;
|
|
|
|
|
char *method_name = TYPE_FN_FIELDLIST_NAME (t, method_counter);
|
|
|
|
|
char dem_opname[64];
|
|
|
|
|
|
|
|
|
|
if (strncmp (method_name, "__", 2) == 0 ||
|
|
|
|
|
strncmp (method_name, "op", 2) == 0 ||
|
|
|
|
|
strncmp (method_name, "type", 4) == 0)
|
|
|
|
|
{
|
|
|
|
|
if (cplus_demangle_opname (method_name, dem_opname, DMGL_ANSI))
|
|
|
|
|
method_name = dem_opname;
|
|
|
|
|
else if (cplus_demangle_opname (method_name, dem_opname, 0))
|
|
|
|
|
method_name = dem_opname;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (STREQ (name, method_name))
|
|
|
|
|
/* Find all the overloaded methods with that name. */
|
|
|
|
|
for (field_counter = TYPE_FN_FIELDLIST_LENGTH (t, method_counter) - 1;
|
|
|
|
|
field_counter >= 0;
|
|
|
|
|
--field_counter)
|
|
|
|
|
{
|
|
|
|
|
struct fn_field *f;
|
|
|
|
|
char *phys_name;
|
|
|
|
|
|
|
|
|
|
f = TYPE_FN_FIELDLIST1 (t, method_counter);
|
|
|
|
|
|
|
|
|
|
if (TYPE_FN_FIELD_STUB (f, field_counter))
|
|
|
|
|
{
|
|
|
|
|
char *tmp_name;
|
|
|
|
|
|
|
|
|
|
tmp_name = gdb_mangle_name (t,
|
|
|
|
|
method_counter,
|
|
|
|
|
field_counter);
|
|
|
|
|
phys_name = alloca (strlen (tmp_name) + 1);
|
|
|
|
|
strcpy (phys_name, tmp_name);
|
|
|
|
|
free (tmp_name);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
phys_name = TYPE_FN_FIELD_PHYSNAME (f, field_counter);
|
|
|
|
|
|
|
|
|
|
/* Destructor is handled by caller, dont add it to the list */
|
|
|
|
|
if (DESTRUCTOR_PREFIX_P (phys_name))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
sym_arr[i1] = lookup_symbol (phys_name,
|
|
|
|
|
NULL, VAR_NAMESPACE,
|
|
|
|
|
(int *) NULL,
|
|
|
|
|
(struct symtab **) NULL);
|
|
|
|
|
if (sym_arr[i1])
|
|
|
|
|
i1++;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* This error message gets printed, but the method
|
|
|
|
|
still seems to be found
|
|
|
|
|
fputs_filtered("(Cannot find method ", gdb_stdout);
|
|
|
|
|
fprintf_symbol_filtered (gdb_stdout, phys_name,
|
|
|
|
|
language_cplus,
|
|
|
|
|
DMGL_PARAMS | DMGL_ANSI);
|
|
|
|
|
fputs_filtered(" - possibly inlined.)\n", gdb_stdout);
|
|
|
|
|
*/
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Only search baseclasses if there is no match yet, since names in
|
|
|
|
|
derived classes override those in baseclasses.
|
|
|
|
|
|
|
|
|
|
FIXME: The above is not true; it is only true of member functions
|
|
|
|
|
if they have the same number of arguments (??? - section 13.1 of the
|
|
|
|
|
ARM says the function members are not in the same scope but doesn't
|
|
|
|
|
really spell out the rules in a way I understand. In any case, if
|
|
|
|
|
the number of arguments differ this is a case in which we can overload
|
|
|
|
|
rather than hiding without any problem, and gcc 2.4.5 does overload
|
|
|
|
|
rather than hiding in this case). */
|
|
|
|
|
|
|
|
|
|
if (i1 == 0)
|
|
|
|
|
for (ibase = 0; ibase < TYPE_N_BASECLASSES (t); ibase++)
|
|
|
|
|
i1 += find_methods (TYPE_BASECLASS (t, ibase), name, sym_arr + i1);
|
|
|
|
|
|
|
|
|
|
return i1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Helper function for decode_line_1.
|
|
|
|
|
Build a canonical line spec in CANONICAL if it is non-NULL and if
|
|
|
|
|
the SAL has a symtab.
|
|
|
|
|
If SYMNAME is non-NULL the canonical line spec is `filename:symname'.
|
|
|
|
|
If SYMNAME is NULL the line number from SAL is used and the canonical
|
|
|
|
|
line spec is `filename:linenum'. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
build_canonical_line_spec (sal, symname, canonical)
|
|
|
|
|
struct symtab_and_line *sal;
|
|
|
|
|
char *symname;
|
|
|
|
|
char ***canonical;
|
|
|
|
|
{
|
|
|
|
|
char **canonical_arr;
|
|
|
|
|
char *canonical_name;
|
|
|
|
|
char *filename;
|
|
|
|
|
struct symtab *s = sal->symtab;
|
|
|
|
|
|
|
|
|
|
if (s == (struct symtab *)NULL
|
|
|
|
|
|| s->filename == (char *)NULL
|
|
|
|
|
|| canonical == (char ***)NULL)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
canonical_arr = (char **) xmalloc (sizeof (char *));
|
|
|
|
|
*canonical = canonical_arr;
|
|
|
|
|
|
|
|
|
|
filename = s->filename;
|
|
|
|
|
if (symname != NULL)
|
|
|
|
|
{
|
|
|
|
|
canonical_name = xmalloc (strlen (filename) + strlen (symname) + 2);
|
|
|
|
|
sprintf (canonical_name, "%s:%s", filename, symname);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
canonical_name = xmalloc (strlen (filename) + 30);
|
|
|
|
|
sprintf (canonical_name, "%s:%d", filename, sal->line);
|
|
|
|
|
}
|
|
|
|
|
canonical_arr[0] = canonical_name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Parse a string that specifies a line number.
|
|
|
|
|
Pass the address of a char * variable; that variable will be
|
|
|
|
|
advanced over the characters actually parsed.
|
|
|
|
|
|
|
|
|
|
The string can be:
|
|
|
|
|
|
|
|
|
|
LINENUM -- that line number in current file. PC returned is 0.
|
|
|
|
|
FILE:LINENUM -- that line in that file. PC returned is 0.
|
|
|
|
|
FUNCTION -- line number of openbrace of that function.
|
|
|
|
|
PC returned is the start of the function.
|
|
|
|
|
VARIABLE -- line number of definition of that variable.
|
|
|
|
|
PC returned is 0.
|
|
|
|
|
FILE:FUNCTION -- likewise, but prefer functions in that file.
|
|
|
|
|
*EXPR -- line in which address EXPR appears.
|
|
|
|
|
|
|
|
|
|
FUNCTION may be an undebuggable function found in minimal symbol table.
|
|
|
|
|
|
|
|
|
|
If the argument FUNFIRSTLINE is nonzero, we want the first line
|
|
|
|
|
of real code inside a function when a function is specified, and it is
|
|
|
|
|
not OK to specify a variable or type to get its line number.
|
|
|
|
|
|
|
|
|
|
DEFAULT_SYMTAB specifies the file to use if none is specified.
|
|
|
|
|
It defaults to current_source_symtab.
|
|
|
|
|
DEFAULT_LINE specifies the line number to use for relative
|
|
|
|
|
line numbers (that start with signs). Defaults to current_source_line.
|
|
|
|
|
If CANONICAL is non-NULL, store an array of strings containing the canonical
|
|
|
|
|
line specs there if necessary. Currently overloaded member functions and
|
|
|
|
|
line numbers or static functions without a filename yield a canonical
|
|
|
|
|
line spec. The array and the line spec strings are allocated on the heap,
|
|
|
|
|
it is the callers responsibility to free them.
|
|
|
|
|
|
|
|
|
|
Note that it is possible to return zero for the symtab
|
|
|
|
|
if no file is validly specified. Callers must check that.
|
|
|
|
|
Also, the line number returned may be invalid. */
|
|
|
|
|
|
|
|
|
|
/* We allow single quotes in various places. This is a hideous
|
|
|
|
|
kludge, which exists because the completer can't yet deal with the
|
|
|
|
|
lack of single quotes. FIXME: write a linespec_completer which we
|
|
|
|
|
can use as appropriate instead of make_symbol_completion_list. */
|
|
|
|
|
|
|
|
|
|
struct symtabs_and_lines
|
|
|
|
|
decode_line_1 (argptr, funfirstline, default_symtab, default_line, canonical)
|
|
|
|
|
char **argptr;
|
|
|
|
|
int funfirstline;
|
|
|
|
|
struct symtab *default_symtab;
|
|
|
|
|
int default_line;
|
|
|
|
|
char ***canonical;
|
|
|
|
|
{
|
|
|
|
|
struct symtabs_and_lines values;
|
|
|
|
|
#ifdef HPPA_COMPILER_BUG
|
|
|
|
|
/* FIXME: The native HP 9000/700 compiler has a bug which appears
|
|
|
|
|
when optimizing this file with target i960-vxworks. I haven't
|
|
|
|
|
been able to construct a simple test case. The problem is that
|
|
|
|
|
in the second call to SKIP_PROLOGUE below, the compiler somehow
|
|
|
|
|
does not realize that the statement val = find_pc_line (...) will
|
|
|
|
|
change the values of the fields of val. It extracts the elements
|
|
|
|
|
into registers at the top of the block, and does not update the
|
|
|
|
|
registers after the call to find_pc_line. You can check this by
|
|
|
|
|
inserting a printf at the end of find_pc_line to show what values
|
|
|
|
|
it is returning for val.pc and val.end and another printf after
|
|
|
|
|
the call to see what values the function actually got (remember,
|
|
|
|
|
this is compiling with cc -O, with this patch removed). You can
|
|
|
|
|
also examine the assembly listing: search for the second call to
|
|
|
|
|
skip_prologue; the LDO statement before the next call to
|
|
|
|
|
find_pc_line loads the address of the structure which
|
|
|
|
|
find_pc_line will return; if there is a LDW just before the LDO,
|
|
|
|
|
which fetches an element of the structure, then the compiler
|
|
|
|
|
still has the bug.
|
|
|
|
|
|
|
|
|
|
Setting val to volatile avoids the problem. We must undef
|
|
|
|
|
volatile, because the HPPA native compiler does not define
|
|
|
|
|
__STDC__, although it does understand volatile, and so volatile
|
|
|
|
|
will have been defined away in defs.h. */
|
|
|
|
|
#undef volatile
|
|
|
|
|
volatile struct symtab_and_line val;
|
|
|
|
|
#define volatile /*nothing*/
|
|
|
|
|
#else
|
|
|
|
|
struct symtab_and_line val;
|
|
|
|
|
#endif
|
|
|
|
|
register char *p, *p1;
|
|
|
|
|
char *q, *pp, *ii, *p2;
|
|
|
|
|
#if 0
|
|
|
|
|
char *q1;
|
|
|
|
|
#endif
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
/* The symtab that SYM was found in. */
|
|
|
|
|
struct symtab *sym_symtab;
|
|
|
|
|
|
|
|
|
|
register CORE_ADDR pc;
|
|
|
|
|
register struct minimal_symbol *msymbol;
|
|
|
|
|
char *copy;
|
|
|
|
|
struct symbol *sym_class;
|
|
|
|
|
int i1;
|
|
|
|
|
int is_quoted;
|
1999-06-07 19:19:32 +00:00
|
|
|
|
int is_quote_enclosed;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
int has_parens;
|
|
|
|
|
int has_if = 0;
|
1999-06-07 19:19:32 +00:00
|
|
|
|
int has_comma = 0;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
struct symbol **sym_arr;
|
|
|
|
|
struct type *t;
|
|
|
|
|
char *saved_arg = *argptr;
|
|
|
|
|
extern char *gdb_completer_quote_characters;
|
|
|
|
|
|
|
|
|
|
INIT_SAL (&val); /* initialize to zeroes */
|
|
|
|
|
|
|
|
|
|
/* Defaults have defaults. */
|
|
|
|
|
|
|
|
|
|
if (default_symtab == 0)
|
|
|
|
|
{
|
|
|
|
|
default_symtab = current_source_symtab;
|
|
|
|
|
default_line = current_source_line;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* See if arg is *PC */
|
|
|
|
|
|
|
|
|
|
if (**argptr == '*')
|
|
|
|
|
{
|
|
|
|
|
(*argptr)++;
|
|
|
|
|
pc = parse_and_eval_address_1 (argptr);
|
|
|
|
|
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (sizeof (struct symtab_and_line));
|
|
|
|
|
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
values.sals[0] = find_pc_line (pc, 0);
|
|
|
|
|
values.sals[0].pc = pc;
|
|
|
|
|
values.sals[0].section = find_pc_overlay (pc);
|
|
|
|
|
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 'has_if' is for the syntax:
|
|
|
|
|
* (gdb) break foo if (a==b)
|
|
|
|
|
*/
|
|
|
|
|
if ((ii = strstr(*argptr, " if ")) != NULL ||
|
|
|
|
|
(ii = strstr(*argptr, "\tif ")) != NULL ||
|
|
|
|
|
(ii = strstr(*argptr, " if\t")) != NULL ||
|
|
|
|
|
(ii = strstr(*argptr, "\tif\t")) != NULL ||
|
|
|
|
|
(ii = strstr(*argptr, " if(")) != NULL ||
|
|
|
|
|
(ii = strstr(*argptr, "\tif( ")) != NULL)
|
|
|
|
|
has_if = 1;
|
|
|
|
|
/* Temporarily zap out "if (condition)" to not
|
|
|
|
|
* confuse the parenthesis-checking code below.
|
|
|
|
|
* This is undone below. Do not change ii!!
|
|
|
|
|
*/
|
|
|
|
|
if (has_if) {
|
|
|
|
|
*ii = '\0';
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set various flags.
|
|
|
|
|
* 'has_parens' is important for overload checking, where
|
|
|
|
|
* we allow things like:
|
|
|
|
|
* (gdb) break c::f(int)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Maybe arg is FILE : LINENUM or FILE : FUNCTION */
|
|
|
|
|
|
|
|
|
|
is_quoted = (**argptr
|
|
|
|
|
&& strchr (gdb_completer_quote_characters, **argptr) != NULL);
|
|
|
|
|
|
|
|
|
|
has_parens = ((pp = strchr (*argptr, '(')) != NULL
|
|
|
|
|
&& (pp = strchr (pp, ')')) != NULL);
|
|
|
|
|
|
|
|
|
|
/* Now that we're safely past the has_parens check,
|
|
|
|
|
* put back " if (condition)" so outer layers can see it
|
|
|
|
|
*/
|
|
|
|
|
if (has_if)
|
|
|
|
|
*ii = ' ';
|
|
|
|
|
|
1999-06-07 19:19:32 +00:00
|
|
|
|
/* Maybe we were called with a line range FILENAME:LINENUM,FILENAME:LINENUM
|
|
|
|
|
and we must isolate the first half. Outer layers will call again later
|
|
|
|
|
for the second half */
|
|
|
|
|
if ((ii = strchr(*argptr, ',')) != NULL)
|
|
|
|
|
has_comma = 1;
|
|
|
|
|
/* Temporarily zap out second half to not
|
|
|
|
|
* confuse the code below.
|
|
|
|
|
* This is undone below. Do not change ii!!
|
|
|
|
|
*/
|
|
|
|
|
if (has_comma) {
|
|
|
|
|
*ii = '\0';
|
|
|
|
|
}
|
|
|
|
|
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Maybe arg is FILE : LINENUM or FILE : FUNCTION */
|
|
|
|
|
/* May also be CLASS::MEMBER, or NAMESPACE::NAME */
|
|
|
|
|
/* Look for ':', but ignore inside of <> */
|
|
|
|
|
|
|
|
|
|
s = NULL;
|
1999-06-07 19:19:32 +00:00
|
|
|
|
p = *argptr;
|
|
|
|
|
if (p[0] == '"')
|
|
|
|
|
{
|
|
|
|
|
is_quote_enclosed = 1;
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
is_quote_enclosed = 0;
|
|
|
|
|
for ( ; *p; p++)
|
1999-04-16 01:35:26 +00:00
|
|
|
|
{
|
|
|
|
|
if (p[0] == '<')
|
|
|
|
|
{
|
|
|
|
|
char * temp_end = find_template_name_end (p);
|
|
|
|
|
if (!temp_end)
|
|
|
|
|
error ("malformed template specification in command");
|
|
|
|
|
p = temp_end;
|
|
|
|
|
}
|
1999-06-07 19:19:32 +00:00
|
|
|
|
/* Check for the end of the first half of the linespec. End of line,
|
|
|
|
|
a tab, a double colon or the last single colon, or a space. But
|
|
|
|
|
if enclosed in double quotes we do not break on enclosed spaces */
|
|
|
|
|
if (!*p
|
|
|
|
|
|| p[0] == '\t'
|
|
|
|
|
|| ((p[0] == ':')
|
|
|
|
|
&& ((p[1] == ':') || (strchr (p + 1, ':') == NULL)))
|
|
|
|
|
|| ((p[0] == ' ') && ! is_quote_enclosed))
|
|
|
|
|
break;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
if (p[0] == '.' && strchr (p, ':') == NULL) /* Java qualified method. */
|
|
|
|
|
{
|
|
|
|
|
/* Find the *last* '.', since the others are package qualifiers. */
|
|
|
|
|
for (p1 = p; *p1; p1++)
|
|
|
|
|
{
|
|
|
|
|
if (*p1 == '.')
|
|
|
|
|
p = p1;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
while (p[0] == ' ' || p[0] == '\t') p++;
|
1999-06-07 19:19:32 +00:00
|
|
|
|
/* if the closing double quote was left at the end, remove it */
|
|
|
|
|
if (is_quote_enclosed && ((pp = strchr (p, '"')) != NULL))
|
|
|
|
|
if (!*(pp+1))
|
|
|
|
|
*pp = '\0';
|
|
|
|
|
|
|
|
|
|
/* Now that we've safely parsed the first half,
|
|
|
|
|
* put back ',' so outer layers can see it
|
|
|
|
|
*/
|
|
|
|
|
if (has_comma)
|
|
|
|
|
*ii = ',';
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
if ((p[0] == ':' || p[0] == '.') && !has_parens)
|
|
|
|
|
{
|
|
|
|
|
/* C++ */
|
|
|
|
|
/* ... or Java */
|
|
|
|
|
if (is_quoted) *argptr = *argptr+1;
|
|
|
|
|
if (p[0] == '.' || p[1] ==':')
|
|
|
|
|
{
|
|
|
|
|
int ix;
|
|
|
|
|
char * saved_arg2 = *argptr;
|
|
|
|
|
char * temp_end;
|
|
|
|
|
/* First check for "global" namespace specification,
|
|
|
|
|
of the form "::foo". If found, skip over the colons
|
|
|
|
|
and jump to normal symbol processing */
|
|
|
|
|
if ((*argptr == p) || (p[-1] == ' ') || (p[-1] == '\t'))
|
|
|
|
|
saved_arg2 += 2;
|
|
|
|
|
|
|
|
|
|
/* We have what looks like a class or namespace
|
|
|
|
|
scope specification (A::B), possibly with many
|
|
|
|
|
levels of namespaces or classes (A::B::C::D).
|
|
|
|
|
|
|
|
|
|
Some versions of the HP ANSI C++ compiler (as also possibly
|
|
|
|
|
other compilers) generate class/function/member names with
|
|
|
|
|
embedded double-colons if they are inside namespaces. To
|
|
|
|
|
handle this, we loop a few times, considering larger and
|
|
|
|
|
larger prefixes of the string as though they were single
|
|
|
|
|
symbols. So, if the initially supplied string is
|
|
|
|
|
A::B::C::D::foo, we have to look up "A", then "A::B",
|
|
|
|
|
then "A::B::C", then "A::B::C::D", and finally
|
|
|
|
|
"A::B::C::D::foo" as single, monolithic symbols, because
|
|
|
|
|
A, B, C or D may be namespaces.
|
|
|
|
|
|
|
|
|
|
Note that namespaces can nest only inside other
|
|
|
|
|
namespaces, and not inside classes. So we need only
|
|
|
|
|
consider *prefixes* of the string; there is no need to look up
|
|
|
|
|
"B::C" separately as a symbol in the previous example. */
|
|
|
|
|
|
|
|
|
|
p2 = p; /* save for restart */
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
/* Extract the class name. */
|
|
|
|
|
p1 = p;
|
|
|
|
|
while (p != *argptr && p[-1] == ' ') --p;
|
|
|
|
|
copy = (char *) alloca (p - *argptr + 1);
|
|
|
|
|
memcpy (copy, *argptr, p - *argptr);
|
|
|
|
|
copy[p - *argptr] = 0;
|
|
|
|
|
|
|
|
|
|
/* Discard the class name from the arg. */
|
|
|
|
|
p = p1 + (p1[0] == ':' ? 2 : 1);
|
|
|
|
|
while (*p == ' ' || *p == '\t') p++;
|
|
|
|
|
*argptr = p;
|
|
|
|
|
|
|
|
|
|
sym_class = lookup_symbol (copy, 0, STRUCT_NAMESPACE, 0,
|
|
|
|
|
(struct symtab **)NULL);
|
|
|
|
|
|
|
|
|
|
if (sym_class &&
|
|
|
|
|
(t = check_typedef (SYMBOL_TYPE (sym_class)),
|
|
|
|
|
(TYPE_CODE (t) == TYPE_CODE_STRUCT
|
|
|
|
|
|| TYPE_CODE (t) == TYPE_CODE_UNION)))
|
|
|
|
|
{
|
|
|
|
|
/* Arg token is not digits => try it as a function name
|
|
|
|
|
Find the next token(everything up to end or next blank). */
|
|
|
|
|
if (**argptr
|
|
|
|
|
&& strchr (gdb_completer_quote_characters, **argptr) != NULL)
|
|
|
|
|
{
|
|
|
|
|
p = skip_quoted(*argptr);
|
|
|
|
|
*argptr = *argptr + 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
p = *argptr;
|
|
|
|
|
while (*p && *p!=' ' && *p!='\t' && *p!=',' && *p!=':') p++;
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
q = operator_chars (*argptr, &q1);
|
|
|
|
|
if (q1 - q)
|
|
|
|
|
{
|
|
|
|
|
char *opname;
|
|
|
|
|
char *tmp = alloca (q1 - q + 1);
|
|
|
|
|
memcpy (tmp, q, q1 - q);
|
|
|
|
|
tmp[q1 - q] = '\0';
|
|
|
|
|
opname = cplus_mangle_opname (tmp, DMGL_ANSI);
|
|
|
|
|
if (opname == NULL)
|
|
|
|
|
{
|
|
|
|
|
error_begin ();
|
|
|
|
|
printf_filtered ("no mangling for \"%s\"\n", tmp);
|
|
|
|
|
cplusplus_hint (saved_arg);
|
|
|
|
|
return_to_top_level (RETURN_ERROR);
|
|
|
|
|
}
|
|
|
|
|
copy = (char*) alloca (3 + strlen(opname));
|
|
|
|
|
sprintf (copy, "__%s", opname);
|
|
|
|
|
p = q1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
*/
|
|
|
|
|
{
|
|
|
|
|
copy = (char *) alloca (p - *argptr + 1 );
|
|
|
|
|
memcpy (copy, *argptr, p - *argptr);
|
|
|
|
|
copy[p - *argptr] = '\0';
|
|
|
|
|
if (p != *argptr
|
|
|
|
|
&& copy[p - *argptr - 1]
|
|
|
|
|
&& strchr (gdb_completer_quote_characters,
|
|
|
|
|
copy[p - *argptr - 1]) != NULL)
|
|
|
|
|
copy[p - *argptr - 1] = '\0';
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* no line number may be specified */
|
|
|
|
|
while (*p == ' ' || *p == '\t') p++;
|
|
|
|
|
*argptr = p;
|
|
|
|
|
|
|
|
|
|
sym = 0;
|
|
|
|
|
i1 = 0; /* counter for the symbol array */
|
|
|
|
|
sym_arr = (struct symbol **) alloca(total_number_of_methods (t)
|
|
|
|
|
* sizeof(struct symbol *));
|
|
|
|
|
|
|
|
|
|
if (destructor_name_p (copy, t))
|
|
|
|
|
{
|
|
|
|
|
/* Destructors are a special case. */
|
|
|
|
|
int m_index, f_index;
|
|
|
|
|
|
|
|
|
|
if (get_destructor_fn_field (t, &m_index, &f_index))
|
|
|
|
|
{
|
|
|
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, m_index);
|
|
|
|
|
|
|
|
|
|
sym_arr[i1] =
|
|
|
|
|
lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, f_index),
|
|
|
|
|
NULL, VAR_NAMESPACE, (int *) NULL,
|
|
|
|
|
(struct symtab **)NULL);
|
|
|
|
|
if (sym_arr[i1])
|
|
|
|
|
i1++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
i1 = find_methods (t, copy, sym_arr);
|
|
|
|
|
if (i1 == 1)
|
|
|
|
|
{
|
|
|
|
|
/* There is exactly one field with that name. */
|
|
|
|
|
sym = sym_arr[0];
|
|
|
|
|
|
|
|
|
|
if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
|
|
|
|
|
{
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (sizeof (struct symtab_and_line));
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
values.sals[0] = find_function_start_sal (sym,
|
|
|
|
|
funfirstline);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
values.nelts = 0;
|
|
|
|
|
}
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
if (i1 > 0)
|
|
|
|
|
{
|
|
|
|
|
/* There is more than one field with that name
|
|
|
|
|
(overloaded). Ask the user which one to use. */
|
|
|
|
|
return decode_line_2 (sym_arr, i1, funfirstline, canonical);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
char *tmp;
|
|
|
|
|
|
|
|
|
|
if (OPNAME_PREFIX_P (copy))
|
|
|
|
|
{
|
|
|
|
|
tmp = (char *)alloca (strlen (copy+3) + 9);
|
|
|
|
|
strcpy (tmp, "operator ");
|
|
|
|
|
strcat (tmp, copy+3);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
tmp = copy;
|
|
|
|
|
error_begin ();
|
|
|
|
|
if (tmp[0] == '~')
|
|
|
|
|
printf_filtered
|
|
|
|
|
("the class `%s' does not have destructor defined\n",
|
|
|
|
|
SYMBOL_SOURCE_NAME(sym_class));
|
|
|
|
|
else
|
|
|
|
|
printf_filtered
|
|
|
|
|
("the class %s does not have any method named %s\n",
|
|
|
|
|
SYMBOL_SOURCE_NAME(sym_class), tmp);
|
|
|
|
|
cplusplus_hint (saved_arg);
|
|
|
|
|
return_to_top_level (RETURN_ERROR);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Move pointer up to next possible class/namespace token */
|
|
|
|
|
p = p2 + 1; /* restart with old value +1 */
|
|
|
|
|
/* Move pointer ahead to next double-colon */
|
|
|
|
|
while (*p && (p[0] != ' ') && (p[0] != '\t') && (p[0] != '\'')) {
|
|
|
|
|
if (p[0] == '<') {
|
|
|
|
|
temp_end = find_template_name_end (p);
|
|
|
|
|
if (!temp_end)
|
|
|
|
|
error ("malformed template specification in command");
|
|
|
|
|
p = temp_end;
|
|
|
|
|
}
|
|
|
|
|
else if ((p[0] == ':') && (p[1] == ':'))
|
|
|
|
|
break; /* found double-colon */
|
|
|
|
|
else
|
|
|
|
|
p++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (*p != ':')
|
|
|
|
|
break; /* out of the while (1) */
|
|
|
|
|
|
|
|
|
|
p2 = p; /* save restart for next time around */
|
|
|
|
|
*argptr = saved_arg2; /* restore argptr */
|
|
|
|
|
} /* while (1) */
|
|
|
|
|
|
|
|
|
|
/* Last chance attempt -- check entire name as a symbol */
|
|
|
|
|
/* Use "copy" in preparation for jumping out of this block,
|
|
|
|
|
to be consistent with usage following the jump target */
|
|
|
|
|
copy = (char *) alloca (p - saved_arg2 + 1);
|
|
|
|
|
memcpy (copy, saved_arg2, p - saved_arg2);
|
|
|
|
|
/* Note: if is_quoted should be true, we snuff out quote here anyway */
|
|
|
|
|
copy[p-saved_arg2] = '\000';
|
|
|
|
|
/* Set argptr to skip over the name */
|
|
|
|
|
*argptr = (*p == '\'') ? p + 1 : p;
|
|
|
|
|
/* Look up entire name */
|
|
|
|
|
sym = lookup_symbol (copy, 0, VAR_NAMESPACE, 0, &sym_symtab);
|
|
|
|
|
s = (struct symtab *) 0;
|
|
|
|
|
/* Prepare to jump: restore the " if (condition)" so outer layers see it */
|
|
|
|
|
/* Symbol was found --> jump to normal symbol processing.
|
|
|
|
|
Code following "symbol_found" expects "copy" to have the
|
|
|
|
|
symbol name, "sym" to have the symbol pointer, "s" to be
|
|
|
|
|
a specified file's symtab, and sym_symtab to be the symbol's
|
|
|
|
|
symtab. */
|
|
|
|
|
/* By jumping there we avoid falling through the FILE:LINE and
|
|
|
|
|
FILE:FUNC processing stuff below */
|
|
|
|
|
if (sym)
|
|
|
|
|
goto symbol_found;
|
|
|
|
|
|
|
|
|
|
/* Couldn't find any interpretation as classes/namespaces, so give up */
|
|
|
|
|
error_begin ();
|
|
|
|
|
/* The quotes are important if copy is empty. */
|
|
|
|
|
printf_filtered
|
|
|
|
|
("Can't find member of namespace, class, struct, or union named \"%s\"\n", copy);
|
|
|
|
|
cplusplus_hint (saved_arg);
|
|
|
|
|
return_to_top_level (RETURN_ERROR);
|
|
|
|
|
}
|
|
|
|
|
/* end of C++ */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Extract the file name. */
|
|
|
|
|
p1 = p;
|
|
|
|
|
while (p != *argptr && p[-1] == ' ') --p;
|
1999-06-07 19:19:32 +00:00
|
|
|
|
if ((*p == '"') && is_quote_enclosed) --p;
|
1999-04-16 01:35:26 +00:00
|
|
|
|
copy = (char *) alloca (p - *argptr + 1);
|
1999-06-07 19:19:32 +00:00
|
|
|
|
if ((**argptr == '"') && is_quote_enclosed)
|
|
|
|
|
{
|
|
|
|
|
memcpy (copy, *argptr + 1, p - *argptr - 1);
|
|
|
|
|
/* It may have the ending quote right after the file name */
|
|
|
|
|
if (copy[p - *argptr - 2] == '"')
|
|
|
|
|
copy[p - *argptr - 2] = 0;
|
|
|
|
|
else
|
|
|
|
|
copy[p - *argptr - 1] = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
memcpy (copy, *argptr, p - *argptr);
|
|
|
|
|
copy[p - *argptr] = 0;
|
|
|
|
|
}
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Find that file's data. */
|
|
|
|
|
s = lookup_symtab (copy);
|
|
|
|
|
if (s == 0)
|
|
|
|
|
{
|
|
|
|
|
if (!have_full_symbols () && !have_partial_symbols ())
|
|
|
|
|
error (no_symtab_msg);
|
|
|
|
|
error ("No source file named %s.", copy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Discard the file name from the arg. */
|
|
|
|
|
p = p1 + 1;
|
|
|
|
|
while (*p == ' ' || *p == '\t') p++;
|
|
|
|
|
*argptr = p;
|
|
|
|
|
}
|
1999-04-26 18:34:20 +00:00
|
|
|
|
#if 0
|
|
|
|
|
/* No one really seems to know why this was added. It certainly
|
|
|
|
|
breaks the command line, though, whenever the passed
|
|
|
|
|
name is of the form ClassName::Method. This bit of code
|
|
|
|
|
singles out the class name, and if funfirstline is set (for
|
|
|
|
|
example, you are setting a breakpoint at this function),
|
|
|
|
|
you get an error. This did not occur with earlier
|
|
|
|
|
verions, so I am ifdef'ing this out. 3/29/99 */
|
1999-04-16 01:35:26 +00:00
|
|
|
|
else {
|
|
|
|
|
/* Check if what we have till now is a symbol name */
|
|
|
|
|
|
|
|
|
|
/* We may be looking at a template instantiation such
|
|
|
|
|
as "foo<int>". Check here whether we know about it,
|
|
|
|
|
instead of falling through to the code below which
|
|
|
|
|
handles ordinary function names, because that code
|
|
|
|
|
doesn't like seeing '<' and '>' in a name -- the
|
|
|
|
|
skip_quoted call doesn't go past them. So see if we
|
|
|
|
|
can figure it out right now. */
|
|
|
|
|
|
|
|
|
|
copy = (char *) alloca (p - *argptr + 1);
|
|
|
|
|
memcpy (copy, *argptr, p - *argptr);
|
|
|
|
|
copy[p - *argptr] = '\000';
|
|
|
|
|
sym = lookup_symbol (copy, 0, VAR_NAMESPACE, 0, &sym_symtab);
|
|
|
|
|
if (sym) {
|
|
|
|
|
/* Yes, we have a symbol; jump to symbol processing */
|
|
|
|
|
/* Code after symbol_found expects S, SYM_SYMTAB, SYM,
|
|
|
|
|
and COPY to be set correctly */
|
|
|
|
|
*argptr = (*p == '\'') ? p + 1 : p;
|
|
|
|
|
s = (struct symtab *) 0;
|
|
|
|
|
goto symbol_found;
|
|
|
|
|
}
|
|
|
|
|
/* Otherwise fall out from here and go to file/line spec
|
|
|
|
|
processing, etc. */
|
|
|
|
|
}
|
1999-04-26 18:34:20 +00:00
|
|
|
|
#endif
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* S is specified file's symtab, or 0 if no file specified.
|
|
|
|
|
arg no longer contains the file name. */
|
|
|
|
|
|
|
|
|
|
/* Check whether arg is all digits (and sign) */
|
|
|
|
|
|
|
|
|
|
q = *argptr;
|
|
|
|
|
if (*q == '-' || *q == '+') q++;
|
|
|
|
|
while (*q >= '0' && *q <= '9')
|
|
|
|
|
q++;
|
|
|
|
|
|
|
|
|
|
if (q != *argptr && (*q == 0 || *q == ' ' || *q == '\t' || *q == ','))
|
|
|
|
|
{
|
|
|
|
|
/* We found a token consisting of all digits -- at least one digit. */
|
|
|
|
|
enum sign {none, plus, minus} sign = none;
|
|
|
|
|
|
|
|
|
|
/* We might need a canonical line spec if no file was specified. */
|
|
|
|
|
int need_canonical = (s == 0) ? 1 : 0;
|
|
|
|
|
|
|
|
|
|
/* This is where we need to make sure that we have good defaults.
|
|
|
|
|
We must guarantee that this section of code is never executed
|
|
|
|
|
when we are called with just a function name, since
|
|
|
|
|
select_source_symtab calls us with such an argument */
|
|
|
|
|
|
|
|
|
|
if (s == 0 && default_symtab == 0)
|
|
|
|
|
{
|
|
|
|
|
select_source_symtab (0);
|
|
|
|
|
default_symtab = current_source_symtab;
|
|
|
|
|
default_line = current_source_line;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (**argptr == '+')
|
|
|
|
|
sign = plus, (*argptr)++;
|
|
|
|
|
else if (**argptr == '-')
|
|
|
|
|
sign = minus, (*argptr)++;
|
|
|
|
|
val.line = atoi (*argptr);
|
|
|
|
|
switch (sign)
|
|
|
|
|
{
|
|
|
|
|
case plus:
|
|
|
|
|
if (q == *argptr)
|
|
|
|
|
val.line = 5;
|
|
|
|
|
if (s == 0)
|
|
|
|
|
val.line = default_line + val.line;
|
|
|
|
|
break;
|
|
|
|
|
case minus:
|
|
|
|
|
if (q == *argptr)
|
|
|
|
|
val.line = 15;
|
|
|
|
|
if (s == 0)
|
|
|
|
|
val.line = default_line - val.line;
|
|
|
|
|
else
|
|
|
|
|
val.line = 1;
|
|
|
|
|
break;
|
|
|
|
|
case none:
|
|
|
|
|
break; /* No need to adjust val.line. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (*q == ' ' || *q == '\t') q++;
|
|
|
|
|
*argptr = q;
|
|
|
|
|
if (s == 0)
|
|
|
|
|
s = default_symtab;
|
|
|
|
|
|
|
|
|
|
/* It is possible that this source file has more than one symtab,
|
|
|
|
|
and that the new line number specification has moved us from the
|
|
|
|
|
default (in s) to a new one. */
|
|
|
|
|
val.symtab = find_line_symtab (s, val.line, NULL, NULL);
|
|
|
|
|
if (val.symtab == 0)
|
|
|
|
|
val.symtab = s;
|
|
|
|
|
|
|
|
|
|
val.pc = 0;
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (sizeof (struct symtab_and_line));
|
|
|
|
|
values.sals[0] = val;
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
if (need_canonical)
|
|
|
|
|
build_canonical_line_spec (values.sals, NULL, canonical);
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Arg token is not digits => try it as a variable name
|
|
|
|
|
Find the next token (everything up to end or next whitespace). */
|
|
|
|
|
|
|
|
|
|
if (**argptr == '$') /* May be a convenience variable */
|
|
|
|
|
p = skip_quoted (*argptr + (((*argptr)[1] == '$') ? 2 : 1)); /* One or two $ chars possible */
|
|
|
|
|
else if (is_quoted)
|
|
|
|
|
{
|
|
|
|
|
p = skip_quoted (*argptr);
|
|
|
|
|
if (p[-1] != '\'')
|
|
|
|
|
error ("Unmatched single quote.");
|
|
|
|
|
}
|
|
|
|
|
else if (has_parens)
|
|
|
|
|
{
|
|
|
|
|
p = pp+1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
p = skip_quoted(*argptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
copy = (char *) alloca (p - *argptr + 1);
|
|
|
|
|
memcpy (copy, *argptr, p - *argptr);
|
|
|
|
|
copy[p - *argptr] = '\0';
|
|
|
|
|
if (p != *argptr
|
|
|
|
|
&& copy[0]
|
|
|
|
|
&& copy[0] == copy [p - *argptr - 1]
|
|
|
|
|
&& strchr (gdb_completer_quote_characters, copy[0]) != NULL)
|
|
|
|
|
{
|
|
|
|
|
copy [p - *argptr - 1] = '\0';
|
|
|
|
|
copy++;
|
|
|
|
|
}
|
|
|
|
|
while (*p == ' ' || *p == '\t') p++;
|
|
|
|
|
*argptr = p;
|
|
|
|
|
|
|
|
|
|
/* If it starts with $: may be a legitimate variable or routine name
|
|
|
|
|
(e.g. HP-UX millicode routines such as $$dyncall), or it may
|
|
|
|
|
be history value, or it may be a convenience variable */
|
|
|
|
|
|
|
|
|
|
if (*copy == '$')
|
|
|
|
|
{
|
|
|
|
|
value_ptr valx;
|
|
|
|
|
int index = 0;
|
|
|
|
|
int need_canonical = 0;
|
|
|
|
|
|
|
|
|
|
p = (copy[1] == '$') ? copy + 2 : copy + 1;
|
|
|
|
|
while (*p >= '0' && *p <= '9')
|
|
|
|
|
p++;
|
|
|
|
|
if (!*p) /* reached end of token without hitting non-digit */
|
|
|
|
|
{
|
|
|
|
|
/* We have a value history reference */
|
|
|
|
|
sscanf ((copy[1] == '$') ? copy + 2 : copy + 1, "%d", &index);
|
|
|
|
|
valx = access_value_history ((copy[1] == '$') ? -index : index);
|
|
|
|
|
if (TYPE_CODE (VALUE_TYPE (valx)) != TYPE_CODE_INT)
|
|
|
|
|
error ("History values used in line specs must have integer values.");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Not all digits -- may be user variable/function or a
|
|
|
|
|
convenience variable */
|
|
|
|
|
|
|
|
|
|
/* Look up entire name as a symbol first */
|
|
|
|
|
sym = lookup_symbol (copy, 0, VAR_NAMESPACE, 0, &sym_symtab);
|
|
|
|
|
s = (struct symtab *) 0;
|
|
|
|
|
need_canonical = 1;
|
|
|
|
|
/* Symbol was found --> jump to normal symbol processing.
|
|
|
|
|
Code following "symbol_found" expects "copy" to have the
|
|
|
|
|
symbol name, "sym" to have the symbol pointer, "s" to be
|
|
|
|
|
a specified file's symtab, and sym_symtab to be the symbol's
|
|
|
|
|
symtab. */
|
|
|
|
|
if (sym)
|
|
|
|
|
goto symbol_found;
|
|
|
|
|
|
|
|
|
|
/* If symbol was not found, look in minimal symbol tables */
|
|
|
|
|
msymbol = lookup_minimal_symbol (copy, 0, 0);
|
|
|
|
|
/* Min symbol was found --> jump to minsym processing. */
|
|
|
|
|
if (msymbol)
|
|
|
|
|
goto minimal_symbol_found;
|
|
|
|
|
|
|
|
|
|
/* Not a user variable or function -- must be convenience variable */
|
|
|
|
|
need_canonical = (s == 0) ? 1 : 0;
|
|
|
|
|
valx = value_of_internalvar (lookup_internalvar (copy + 1));
|
|
|
|
|
if (TYPE_CODE (VALUE_TYPE (valx)) != TYPE_CODE_INT)
|
|
|
|
|
error ("Convenience variables used in line specs must have integer values.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Either history value or convenience value from above, in valx */
|
|
|
|
|
val.symtab = s ? s : default_symtab;
|
|
|
|
|
val.line = value_as_long (valx);
|
|
|
|
|
val.pc = 0;
|
|
|
|
|
|
|
|
|
|
values.sals = (struct symtab_and_line *)xmalloc (sizeof val);
|
|
|
|
|
values.sals[0] = val;
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
|
|
|
|
|
if (need_canonical)
|
|
|
|
|
build_canonical_line_spec (values.sals, NULL, canonical);
|
|
|
|
|
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Look up that token as a variable.
|
|
|
|
|
If file specified, use that file's per-file block to start with. */
|
|
|
|
|
|
|
|
|
|
sym = lookup_symbol (copy,
|
|
|
|
|
(s ? BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK)
|
|
|
|
|
: get_selected_block ()),
|
|
|
|
|
VAR_NAMESPACE, 0, &sym_symtab);
|
|
|
|
|
|
|
|
|
|
symbol_found: /* We also jump here from inside the C++ class/namespace
|
|
|
|
|
code on finding a symbol of the form "A::B::C" */
|
|
|
|
|
|
|
|
|
|
if (sym != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
|
|
|
|
{
|
|
|
|
|
/* Arg is the name of a function */
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (sizeof (struct symtab_and_line));
|
|
|
|
|
values.sals[0] = find_function_start_sal (sym, funfirstline);
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
|
|
|
|
|
/* Don't use the SYMBOL_LINE; if used at all it points to
|
|
|
|
|
the line containing the parameters or thereabouts, not
|
|
|
|
|
the first line of code. */
|
|
|
|
|
|
|
|
|
|
/* We might need a canonical line spec if it is a static
|
|
|
|
|
function. */
|
|
|
|
|
if (s == 0)
|
|
|
|
|
{
|
|
|
|
|
struct blockvector *bv = BLOCKVECTOR (sym_symtab);
|
|
|
|
|
struct block *b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
|
|
|
|
if (lookup_block_symbol (b, copy, VAR_NAMESPACE) != NULL)
|
|
|
|
|
build_canonical_line_spec (values.sals, copy, canonical);
|
|
|
|
|
}
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (funfirstline)
|
|
|
|
|
error ("\"%s\" is not a function", copy);
|
|
|
|
|
else if (SYMBOL_LINE (sym) != 0)
|
|
|
|
|
{
|
|
|
|
|
/* We know its line number. */
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (sizeof (struct symtab_and_line));
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
memset (&values.sals[0], 0, sizeof (values.sals[0]));
|
|
|
|
|
values.sals[0].symtab = sym_symtab;
|
|
|
|
|
values.sals[0].line = SYMBOL_LINE (sym);
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
/* This can happen if it is compiled with a compiler which doesn't
|
|
|
|
|
put out line numbers for variables. */
|
|
|
|
|
/* FIXME: Shouldn't we just set .line and .symtab to zero
|
|
|
|
|
and return? For example, "info line foo" could print
|
|
|
|
|
the address. */
|
|
|
|
|
error ("Line number not known for symbol \"%s\"", copy);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
msymbol = lookup_minimal_symbol (copy, NULL, NULL);
|
|
|
|
|
|
|
|
|
|
minimal_symbol_found: /* We also jump here from the case for variables
|
|
|
|
|
that begin with '$' */
|
|
|
|
|
|
|
|
|
|
if (msymbol != NULL)
|
|
|
|
|
{
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (sizeof (struct symtab_and_line));
|
|
|
|
|
values.sals[0] = find_pc_sect_line ( SYMBOL_VALUE_ADDRESS (msymbol),
|
|
|
|
|
(struct sec *)0,0 );
|
|
|
|
|
values.sals[0].section = SYMBOL_BFD_SECTION (msymbol);
|
|
|
|
|
if (funfirstline)
|
|
|
|
|
{
|
|
|
|
|
values.sals[0].pc += FUNCTION_START_OFFSET;
|
1999-05-05 14:45:51 +00:00
|
|
|
|
values.sals[0].pc = SKIP_PROLOGUE (values.sals[0].pc);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
}
|
|
|
|
|
values.nelts = 1;
|
|
|
|
|
return values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!have_full_symbols () &&
|
|
|
|
|
!have_partial_symbols () && !have_minimal_symbols ())
|
|
|
|
|
error (no_symtab_msg);
|
|
|
|
|
|
|
|
|
|
error ("Function \"%s\" not defined.", copy);
|
|
|
|
|
return values; /* for lint */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct symtabs_and_lines
|
|
|
|
|
decode_line_spec (string, funfirstline)
|
|
|
|
|
char *string;
|
|
|
|
|
int funfirstline;
|
|
|
|
|
{
|
|
|
|
|
struct symtabs_and_lines sals;
|
|
|
|
|
if (string == 0)
|
|
|
|
|
error ("Empty line specification.");
|
|
|
|
|
sals = decode_line_1 (&string, funfirstline,
|
|
|
|
|
current_source_symtab, current_source_line,
|
|
|
|
|
(char ***)NULL);
|
|
|
|
|
if (*string)
|
|
|
|
|
error ("Junk at end of line specification: %s", string);
|
|
|
|
|
return sals;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given a list of NELTS symbols in SYM_ARR, return a list of lines to
|
|
|
|
|
operate on (ask user if necessary).
|
|
|
|
|
If CANONICAL is non-NULL return a corresponding array of mangled names
|
|
|
|
|
as canonical line specs there. */
|
|
|
|
|
|
|
|
|
|
static struct symtabs_and_lines
|
|
|
|
|
decode_line_2 (sym_arr, nelts, funfirstline, canonical)
|
|
|
|
|
struct symbol *sym_arr[];
|
|
|
|
|
int nelts;
|
|
|
|
|
int funfirstline;
|
|
|
|
|
char ***canonical;
|
|
|
|
|
{
|
|
|
|
|
struct symtabs_and_lines values, return_values;
|
|
|
|
|
char *args, *arg1;
|
|
|
|
|
int i;
|
|
|
|
|
char *prompt;
|
|
|
|
|
char *symname;
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
char **canonical_arr = (char **)NULL;
|
|
|
|
|
|
|
|
|
|
values.sals = (struct symtab_and_line *)
|
|
|
|
|
alloca (nelts * sizeof(struct symtab_and_line));
|
|
|
|
|
return_values.sals = (struct symtab_and_line *)
|
|
|
|
|
xmalloc (nelts * sizeof(struct symtab_and_line));
|
|
|
|
|
old_chain = make_cleanup (free, return_values.sals);
|
|
|
|
|
|
|
|
|
|
if (canonical)
|
|
|
|
|
{
|
|
|
|
|
canonical_arr = (char **) xmalloc (nelts * sizeof (char *));
|
|
|
|
|
make_cleanup (free, canonical_arr);
|
|
|
|
|
memset (canonical_arr, 0, nelts * sizeof (char *));
|
|
|
|
|
*canonical = canonical_arr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
|
printf_unfiltered("[0] cancel\n[1] all\n");
|
|
|
|
|
while (i < nelts)
|
|
|
|
|
{
|
|
|
|
|
INIT_SAL (&return_values.sals[i]); /* initialize to zeroes */
|
|
|
|
|
INIT_SAL (&values.sals[i]);
|
|
|
|
|
if (sym_arr[i] && SYMBOL_CLASS (sym_arr[i]) == LOC_BLOCK)
|
|
|
|
|
{
|
|
|
|
|
values.sals[i] = find_function_start_sal (sym_arr[i], funfirstline);
|
|
|
|
|
printf_unfiltered ("[%d] %s at %s:%d\n",
|
|
|
|
|
(i+2),
|
|
|
|
|
SYMBOL_SOURCE_NAME (sym_arr[i]),
|
|
|
|
|
values.sals[i].symtab->filename,
|
|
|
|
|
values.sals[i].line);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
printf_unfiltered ("?HERE\n");
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((prompt = getenv ("PS2")) == NULL)
|
|
|
|
|
{
|
|
|
|
|
prompt = "> ";
|
|
|
|
|
}
|
|
|
|
|
args = command_line_input (prompt, 0, "overload-choice");
|
|
|
|
|
|
|
|
|
|
if (args == 0 || *args == 0)
|
|
|
|
|
error_no_arg ("one or more choice numbers");
|
|
|
|
|
|
|
|
|
|
i = 0;
|
|
|
|
|
while (*args)
|
|
|
|
|
{
|
|
|
|
|
int num;
|
|
|
|
|
|
|
|
|
|
arg1 = args;
|
|
|
|
|
while (*arg1 >= '0' && *arg1 <= '9') arg1++;
|
|
|
|
|
if (*arg1 && *arg1 != ' ' && *arg1 != '\t')
|
|
|
|
|
error ("Arguments must be choice numbers.");
|
|
|
|
|
|
|
|
|
|
num = atoi (args);
|
|
|
|
|
|
|
|
|
|
if (num == 0)
|
|
|
|
|
error ("cancelled");
|
|
|
|
|
else if (num == 1)
|
|
|
|
|
{
|
|
|
|
|
if (canonical_arr)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < nelts; i++)
|
|
|
|
|
{
|
|
|
|
|
if (canonical_arr[i] == NULL)
|
|
|
|
|
{
|
|
|
|
|
symname = SYMBOL_NAME (sym_arr[i]);
|
|
|
|
|
canonical_arr[i] = savestring (symname, strlen (symname));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
memcpy (return_values.sals, values.sals,
|
|
|
|
|
(nelts * sizeof(struct symtab_and_line)));
|
|
|
|
|
return_values.nelts = nelts;
|
|
|
|
|
discard_cleanups (old_chain);
|
|
|
|
|
return return_values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (num >= nelts + 2)
|
|
|
|
|
{
|
|
|
|
|
printf_unfiltered ("No choice number %d.\n", num);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
num -= 2;
|
|
|
|
|
if (values.sals[num].pc)
|
|
|
|
|
{
|
|
|
|
|
if (canonical_arr)
|
|
|
|
|
{
|
|
|
|
|
symname = SYMBOL_NAME (sym_arr[num]);
|
|
|
|
|
make_cleanup (free, symname);
|
|
|
|
|
canonical_arr[i] = savestring (symname, strlen (symname));
|
|
|
|
|
}
|
|
|
|
|
return_values.sals[i++] = values.sals[num];
|
|
|
|
|
values.sals[num].pc = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
printf_unfiltered ("duplicate request for %d ignored.\n", num);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
args = arg1;
|
|
|
|
|
while (*args == ' ' || *args == '\t') args++;
|
|
|
|
|
}
|
|
|
|
|
return_values.nelts = i;
|
|
|
|
|
discard_cleanups (old_chain);
|
|
|
|
|
return return_values;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Slave routine for sources_info. Force line breaks at ,'s.
|
|
|
|
|
NAME is the name to print and *FIRST is nonzero if this is the first
|
|
|
|
|
name printed. Set *FIRST to zero. */
|
|
|
|
|
static void
|
|
|
|
|
output_source_filename (name, first)
|
|
|
|
|
char *name;
|
|
|
|
|
int *first;
|
|
|
|
|
{
|
|
|
|
|
/* Table of files printed so far. Since a single source file can
|
|
|
|
|
result in several partial symbol tables, we need to avoid printing
|
|
|
|
|
it more than once. Note: if some of the psymtabs are read in and
|
|
|
|
|
some are not, it gets printed both under "Source files for which
|
|
|
|
|
symbols have been read" and "Source files for which symbols will
|
|
|
|
|
be read in on demand". I consider this a reasonable way to deal
|
|
|
|
|
with the situation. I'm not sure whether this can also happen for
|
|
|
|
|
symtabs; it doesn't hurt to check. */
|
|
|
|
|
static char **tab = NULL;
|
|
|
|
|
/* Allocated size of tab in elements.
|
|
|
|
|
Start with one 256-byte block (when using GNU malloc.c).
|
|
|
|
|
24 is the malloc overhead when range checking is in effect. */
|
|
|
|
|
static int tab_alloc_size = (256 - 24) / sizeof (char *);
|
|
|
|
|
/* Current size of tab in elements. */
|
|
|
|
|
static int tab_cur_size;
|
|
|
|
|
|
|
|
|
|
char **p;
|
|
|
|
|
|
|
|
|
|
if (*first)
|
|
|
|
|
{
|
|
|
|
|
if (tab == NULL)
|
|
|
|
|
tab = (char **) xmalloc (tab_alloc_size * sizeof (*tab));
|
|
|
|
|
tab_cur_size = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Is NAME in tab? */
|
|
|
|
|
for (p = tab; p < tab + tab_cur_size; p++)
|
|
|
|
|
if (STREQ (*p, name))
|
|
|
|
|
/* Yes; don't print it again. */
|
|
|
|
|
return;
|
|
|
|
|
/* No; add it to tab. */
|
|
|
|
|
if (tab_cur_size == tab_alloc_size)
|
|
|
|
|
{
|
|
|
|
|
tab_alloc_size *= 2;
|
|
|
|
|
tab = (char **) xrealloc ((char *) tab, tab_alloc_size * sizeof (*tab));
|
|
|
|
|
}
|
|
|
|
|
tab[tab_cur_size++] = name;
|
|
|
|
|
|
|
|
|
|
if (*first)
|
|
|
|
|
{
|
|
|
|
|
*first = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
printf_filtered (", ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
wrap_here ("");
|
|
|
|
|
fputs_filtered (name, gdb_stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
sources_info (ignore, from_tty)
|
|
|
|
|
char *ignore;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
int first;
|
|
|
|
|
|
|
|
|
|
if (!have_full_symbols () && !have_partial_symbols ())
|
|
|
|
|
{
|
|
|
|
|
error (no_symtab_msg);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
printf_filtered ("Source files for which symbols have been read in:\n\n");
|
|
|
|
|
|
|
|
|
|
first = 1;
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
output_source_filename (s -> filename, &first);
|
|
|
|
|
}
|
|
|
|
|
printf_filtered ("\n\n");
|
|
|
|
|
|
|
|
|
|
printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
|
|
|
|
|
|
|
|
|
|
first = 1;
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
if (!ps->readin)
|
|
|
|
|
{
|
|
|
|
|
output_source_filename (ps -> filename, &first);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
printf_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
file_matches (file, files, nfiles)
|
|
|
|
|
char *file;
|
|
|
|
|
char *files[];
|
|
|
|
|
int nfiles;
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
if (file != NULL && nfiles != 0)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < nfiles; i++)
|
|
|
|
|
{
|
|
|
|
|
if (strcmp (files[i], basename (file)) == 0)
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (nfiles == 0)
|
|
|
|
|
return 1;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free any memory associated with a search. */
|
|
|
|
|
void
|
|
|
|
|
free_search_symbols (symbols)
|
|
|
|
|
struct symbol_search *symbols;
|
|
|
|
|
{
|
|
|
|
|
struct symbol_search *p;
|
|
|
|
|
struct symbol_search *next;
|
|
|
|
|
|
|
|
|
|
for (p = symbols; p != NULL; p = next)
|
|
|
|
|
{
|
|
|
|
|
next = p->next;
|
|
|
|
|
free (p);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Search the symbol table for matches to the regular expression REGEXP,
|
|
|
|
|
returning the results in *MATCHES.
|
|
|
|
|
|
|
|
|
|
Only symbols of KIND are searched:
|
|
|
|
|
FUNCTIONS_NAMESPACE - search all functions
|
|
|
|
|
TYPES_NAMESPACE - search all type names
|
|
|
|
|
METHODS_NAMESPACE - search all methods NOT IMPLEMENTED
|
|
|
|
|
VARIABLES_NAMESPACE - search all symbols, excluding functions, type names,
|
|
|
|
|
and constants (enums)
|
|
|
|
|
|
|
|
|
|
free_search_symbols should be called when *MATCHES is no longer needed.
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
search_symbols (regexp, kind, nfiles, files, matches)
|
|
|
|
|
char *regexp;
|
|
|
|
|
namespace_enum kind;
|
|
|
|
|
int nfiles;
|
|
|
|
|
char *files[];
|
|
|
|
|
struct symbol_search **matches;
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
register struct blockvector *bv;
|
|
|
|
|
struct blockvector *prev_bv = 0;
|
|
|
|
|
register struct block *b;
|
|
|
|
|
register int i = 0;
|
|
|
|
|
register int j;
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
struct partial_symbol **psym;
|
|
|
|
|
struct objfile *objfile;
|
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
char *val;
|
|
|
|
|
int found_misc = 0;
|
|
|
|
|
static enum minimal_symbol_type types[]
|
|
|
|
|
= {mst_data, mst_text, mst_abs, mst_unknown};
|
|
|
|
|
static enum minimal_symbol_type types2[]
|
|
|
|
|
= {mst_bss, mst_file_text, mst_abs, mst_unknown};
|
|
|
|
|
static enum minimal_symbol_type types3[]
|
|
|
|
|
= {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
|
|
|
|
|
static enum minimal_symbol_type types4[]
|
|
|
|
|
= {mst_file_bss, mst_text, mst_abs, mst_unknown};
|
|
|
|
|
enum minimal_symbol_type ourtype;
|
|
|
|
|
enum minimal_symbol_type ourtype2;
|
|
|
|
|
enum minimal_symbol_type ourtype3;
|
|
|
|
|
enum minimal_symbol_type ourtype4;
|
|
|
|
|
struct symbol_search *sr;
|
|
|
|
|
struct symbol_search *psr;
|
|
|
|
|
struct symbol_search *tail;
|
|
|
|
|
struct cleanup *old_chain = NULL;
|
|
|
|
|
|
|
|
|
|
if (kind < LABEL_NAMESPACE)
|
|
|
|
|
error ("must search on specific namespace");
|
|
|
|
|
|
|
|
|
|
ourtype = types[(int) (kind - LABEL_NAMESPACE)];
|
|
|
|
|
ourtype2 = types2[(int) (kind - LABEL_NAMESPACE)];
|
|
|
|
|
ourtype3 = types3[(int) (kind - LABEL_NAMESPACE)];
|
|
|
|
|
ourtype4 = types4[(int) (kind - LABEL_NAMESPACE)];
|
|
|
|
|
|
|
|
|
|
sr = *matches = NULL;
|
|
|
|
|
tail = NULL;
|
|
|
|
|
|
|
|
|
|
if (regexp != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* Make sure spacing is right for C++ operators.
|
|
|
|
|
This is just a courtesy to make the matching less sensitive
|
|
|
|
|
to how many spaces the user leaves between 'operator'
|
|
|
|
|
and <TYPENAME> or <OPERATOR>. */
|
|
|
|
|
char *opend;
|
|
|
|
|
char *opname = operator_chars (regexp, &opend);
|
|
|
|
|
if (*opname)
|
|
|
|
|
{
|
|
|
|
|
int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
|
|
|
|
|
if (isalpha(*opname) || *opname == '_' || *opname == '$')
|
|
|
|
|
{
|
|
|
|
|
/* There should 1 space between 'operator' and 'TYPENAME'. */
|
|
|
|
|
if (opname[-1] != ' ' || opname[-2] == ' ')
|
|
|
|
|
fix = 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* There should 0 spaces between 'operator' and 'OPERATOR'. */
|
|
|
|
|
if (opname[-1] == ' ')
|
|
|
|
|
fix = 0;
|
|
|
|
|
}
|
|
|
|
|
/* If wrong number of spaces, fix it. */
|
|
|
|
|
if (fix >= 0)
|
|
|
|
|
{
|
|
|
|
|
char *tmp = (char*) alloca(opend-opname+10);
|
|
|
|
|
sprintf(tmp, "operator%.*s%s", fix, " ", opname);
|
|
|
|
|
regexp = tmp;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (0 != (val = re_comp (regexp)))
|
|
|
|
|
error ("Invalid regexp (%s): %s", val, regexp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Search through the partial symtabs *first* for all symbols
|
|
|
|
|
matching the regexp. That way we don't have to reproduce all of
|
|
|
|
|
the machinery below. */
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
struct partial_symbol **bound, **gbound, **sbound;
|
|
|
|
|
int keep_going = 1;
|
|
|
|
|
|
|
|
|
|
if (ps->readin) continue;
|
|
|
|
|
|
|
|
|
|
gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
|
|
|
|
|
sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
|
|
|
|
|
bound = gbound;
|
|
|
|
|
|
|
|
|
|
/* Go through all of the symbols stored in a partial
|
|
|
|
|
symtab in one loop. */
|
|
|
|
|
psym = objfile->global_psymbols.list + ps->globals_offset;
|
|
|
|
|
while (keep_going)
|
|
|
|
|
{
|
|
|
|
|
if (psym >= bound)
|
|
|
|
|
{
|
|
|
|
|
if (bound == gbound && ps->n_static_syms != 0)
|
|
|
|
|
{
|
|
|
|
|
psym = objfile->static_psymbols.list + ps->statics_offset;
|
|
|
|
|
bound = sbound;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
keep_going = 0;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
|
|
|
|
|
/* If it would match (logic taken from loop below)
|
|
|
|
|
load the file and go on to the next one */
|
|
|
|
|
if (file_matches (ps->filename, files, nfiles)
|
|
|
|
|
&& ((regexp == NULL || SYMBOL_MATCHES_REGEXP (*psym))
|
|
|
|
|
&& ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
|
|
|
|
|
&& SYMBOL_CLASS (*psym) != LOC_BLOCK)
|
|
|
|
|
|| (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK)
|
|
|
|
|
|| (kind == TYPES_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
|
|
|
|
|
|| (kind == METHODS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
|
|
|
|
|
{
|
|
|
|
|
PSYMTAB_TO_SYMTAB(ps);
|
|
|
|
|
keep_going = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
psym++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Here, we search through the minimal symbol tables for functions
|
|
|
|
|
and variables that match, and force their symbols to be read.
|
|
|
|
|
This is in particular necessary for demangled variable names,
|
|
|
|
|
which are no longer put into the partial symbol tables.
|
|
|
|
|
The symbol will then be found during the scan of symtabs below.
|
|
|
|
|
|
|
|
|
|
For functions, find_pc_symtab should succeed if we have debug info
|
|
|
|
|
for the function, for variables we have to call lookup_symbol
|
|
|
|
|
to determine if the variable has debug info.
|
|
|
|
|
If the lookup fails, set found_misc so that we will rescan to print
|
|
|
|
|
any matching symbols without debug info.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
if (nfiles == 0 && (kind == VARIABLES_NAMESPACE || kind == FUNCTIONS_NAMESPACE))
|
|
|
|
|
{
|
|
|
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
|
|
|
|
{
|
|
|
|
|
if (MSYMBOL_TYPE (msymbol) == ourtype ||
|
|
|
|
|
MSYMBOL_TYPE (msymbol) == ourtype2 ||
|
|
|
|
|
MSYMBOL_TYPE (msymbol) == ourtype3 ||
|
|
|
|
|
MSYMBOL_TYPE (msymbol) == ourtype4)
|
|
|
|
|
{
|
|
|
|
|
if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol))
|
|
|
|
|
{
|
|
|
|
|
if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
|
|
|
|
|
{
|
|
|
|
|
if (kind == FUNCTIONS_NAMESPACE
|
|
|
|
|
|| lookup_symbol (SYMBOL_NAME (msymbol),
|
|
|
|
|
(struct block *) NULL,
|
|
|
|
|
VAR_NAMESPACE,
|
|
|
|
|
0, (struct symtab **) NULL) == NULL)
|
|
|
|
|
found_misc = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
bv = BLOCKVECTOR (s);
|
|
|
|
|
/* Often many files share a blockvector.
|
|
|
|
|
Scan each blockvector only once so that
|
|
|
|
|
we don't get every symbol many times.
|
|
|
|
|
It happens that the first symtab in the list
|
|
|
|
|
for any given blockvector is the main file. */
|
|
|
|
|
if (bv != prev_bv)
|
|
|
|
|
for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
|
|
|
|
|
{
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (bv, i);
|
|
|
|
|
/* Skip the sort if this block is always sorted. */
|
|
|
|
|
if (!BLOCK_SHOULD_SORT (b))
|
|
|
|
|
sort_block_syms (b);
|
|
|
|
|
for (j = 0; j < BLOCK_NSYMS (b); j++)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
sym = BLOCK_SYM (b, j);
|
|
|
|
|
if (file_matches (s->filename, files, nfiles)
|
|
|
|
|
&& ((regexp == NULL || SYMBOL_MATCHES_REGEXP (sym))
|
|
|
|
|
&& ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (sym) != LOC_TYPEDEF
|
|
|
|
|
&& SYMBOL_CLASS (sym) != LOC_BLOCK
|
|
|
|
|
&& SYMBOL_CLASS (sym) != LOC_CONST)
|
|
|
|
|
|| (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK)
|
|
|
|
|
|| (kind == TYPES_NAMESPACE && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
|
|
|
|
|| (kind == METHODS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK))))
|
|
|
|
|
{
|
|
|
|
|
/* match */
|
|
|
|
|
psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
|
|
|
|
|
psr->block = i;
|
|
|
|
|
psr->symtab = s;
|
|
|
|
|
psr->symbol = sym;
|
|
|
|
|
psr->msymbol = NULL;
|
|
|
|
|
psr->next = NULL;
|
|
|
|
|
if (tail == NULL)
|
|
|
|
|
{
|
|
|
|
|
sr = psr;
|
|
|
|
|
old_chain = make_cleanup ((make_cleanup_func)
|
|
|
|
|
free_search_symbols, sr);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
tail->next = psr;
|
|
|
|
|
tail = psr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
prev_bv = bv;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If there are no eyes, avoid all contact. I mean, if there are
|
|
|
|
|
no debug symbols, then print directly from the msymbol_vector. */
|
|
|
|
|
|
|
|
|
|
if (found_misc || kind != FUNCTIONS_NAMESPACE)
|
|
|
|
|
{
|
|
|
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
|
|
|
|
{
|
|
|
|
|
if (MSYMBOL_TYPE (msymbol) == ourtype ||
|
|
|
|
|
MSYMBOL_TYPE (msymbol) == ourtype2 ||
|
|
|
|
|
MSYMBOL_TYPE (msymbol) == ourtype3 ||
|
|
|
|
|
MSYMBOL_TYPE (msymbol) == ourtype4)
|
|
|
|
|
{
|
|
|
|
|
if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol))
|
|
|
|
|
{
|
|
|
|
|
/* Functions: Look up by address. */
|
|
|
|
|
if (kind != FUNCTIONS_NAMESPACE ||
|
|
|
|
|
(0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
|
|
|
|
|
{
|
|
|
|
|
/* Variables/Absolutes: Look up by name */
|
|
|
|
|
if (lookup_symbol (SYMBOL_NAME (msymbol),
|
|
|
|
|
(struct block *) NULL, VAR_NAMESPACE,
|
|
|
|
|
0, (struct symtab **) NULL) == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* match */
|
|
|
|
|
psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
|
|
|
|
|
psr->block = i;
|
|
|
|
|
psr->msymbol = msymbol;
|
|
|
|
|
psr->symtab = NULL;
|
|
|
|
|
psr->symbol = NULL;
|
|
|
|
|
psr->next = NULL;
|
|
|
|
|
if (tail == NULL)
|
|
|
|
|
{
|
|
|
|
|
sr = psr;
|
|
|
|
|
old_chain = make_cleanup ((make_cleanup_func)
|
|
|
|
|
free_search_symbols, &sr);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
tail->next = psr;
|
|
|
|
|
tail = psr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*matches = sr;
|
|
|
|
|
if (sr != NULL)
|
|
|
|
|
discard_cleanups (old_chain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Helper function for symtab_symbol_info, this function uses
|
|
|
|
|
the data returned from search_symbols() to print information
|
|
|
|
|
regarding the match to gdb_stdout.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
print_symbol_info (kind, s, sym, block, last)
|
|
|
|
|
namespace_enum kind;
|
|
|
|
|
struct symtab *s;
|
|
|
|
|
struct symbol *sym;
|
|
|
|
|
int block;
|
|
|
|
|
char *last;
|
|
|
|
|
{
|
|
|
|
|
if (last == NULL || strcmp (last, s->filename) != 0)
|
|
|
|
|
{
|
|
|
|
|
fputs_filtered ("\nFile ", gdb_stdout);
|
|
|
|
|
fputs_filtered (s->filename, gdb_stdout);
|
|
|
|
|
fputs_filtered (":\n", gdb_stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (kind != TYPES_NAMESPACE && block == STATIC_BLOCK)
|
|
|
|
|
printf_filtered ("static ");
|
|
|
|
|
|
|
|
|
|
/* Typedef that is not a C++ class */
|
|
|
|
|
if (kind == TYPES_NAMESPACE
|
|
|
|
|
&& SYMBOL_NAMESPACE (sym) != STRUCT_NAMESPACE)
|
|
|
|
|
c_typedef_print (SYMBOL_TYPE(sym), sym, gdb_stdout);
|
|
|
|
|
/* variable, func, or typedef-that-is-c++-class */
|
|
|
|
|
else if (kind < TYPES_NAMESPACE ||
|
|
|
|
|
(kind == TYPES_NAMESPACE &&
|
|
|
|
|
SYMBOL_NAMESPACE(sym) == STRUCT_NAMESPACE))
|
|
|
|
|
{
|
|
|
|
|
type_print (SYMBOL_TYPE (sym),
|
|
|
|
|
(SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
|
|
|
|
? "" : SYMBOL_SOURCE_NAME (sym)),
|
|
|
|
|
gdb_stdout, 0);
|
|
|
|
|
|
|
|
|
|
printf_filtered (";\n");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
# if 0
|
|
|
|
|
/* Tiemann says: "info methods was never implemented." */
|
|
|
|
|
char *demangled_name;
|
|
|
|
|
c_type_print_base (TYPE_FN_FIELD_TYPE(t, block),
|
|
|
|
|
gdb_stdout, 0, 0);
|
|
|
|
|
c_type_print_varspec_prefix (TYPE_FN_FIELD_TYPE(t, block),
|
|
|
|
|
gdb_stdout, 0);
|
|
|
|
|
if (TYPE_FN_FIELD_STUB (t, block))
|
|
|
|
|
check_stub_method (TYPE_DOMAIN_TYPE (type), j, block);
|
|
|
|
|
demangled_name =
|
|
|
|
|
cplus_demangle (TYPE_FN_FIELD_PHYSNAME (t, block),
|
|
|
|
|
DMGL_ANSI | DMGL_PARAMS);
|
|
|
|
|
if (demangled_name == NULL)
|
|
|
|
|
fprintf_filtered (stream, "<badly mangled name %s>",
|
|
|
|
|
TYPE_FN_FIELD_PHYSNAME (t, block));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
fputs_filtered (demangled_name, stream);
|
|
|
|
|
free (demangled_name);
|
|
|
|
|
}
|
|
|
|
|
# endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This help function for symtab_symbol_info() prints information
|
|
|
|
|
for non-debugging symbols to gdb_stdout.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
print_msymbol_info (msymbol)
|
|
|
|
|
struct minimal_symbol *msymbol;
|
|
|
|
|
{
|
|
|
|
|
printf_filtered (" %08lx %s\n",
|
|
|
|
|
(unsigned long) SYMBOL_VALUE_ADDRESS (msymbol),
|
|
|
|
|
SYMBOL_SOURCE_NAME (msymbol));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This is the guts of the commands "info functions", "info types", and
|
|
|
|
|
"info variables". It calls search_symbols to find all matches and then
|
|
|
|
|
print_[m]symbol_info to print out some useful information about the
|
|
|
|
|
matches.
|
|
|
|
|
*/
|
|
|
|
|
static void
|
|
|
|
|
symtab_symbol_info (regexp, kind, from_tty)
|
|
|
|
|
char *regexp;
|
|
|
|
|
namespace_enum kind;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
static char *classnames[]
|
|
|
|
|
= {"variable", "function", "type", "method"};
|
|
|
|
|
struct symbol_search *symbols;
|
|
|
|
|
struct symbol_search *p;
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
char *last_filename = NULL;
|
|
|
|
|
int first = 1;
|
|
|
|
|
|
|
|
|
|
/* must make sure that if we're interrupted, symbols gets freed */
|
|
|
|
|
search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
|
|
|
|
|
old_chain = make_cleanup ((make_cleanup_func) free_search_symbols, symbols);
|
|
|
|
|
|
|
|
|
|
printf_filtered (regexp
|
|
|
|
|
? "All %ss matching regular expression \"%s\":\n"
|
|
|
|
|
: "All defined %ss:\n",
|
|
|
|
|
classnames[(int) (kind - LABEL_NAMESPACE - 1)], regexp);
|
|
|
|
|
|
|
|
|
|
for (p = symbols; p != NULL; p = p->next)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
|
|
|
|
|
if (p->msymbol != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (first)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("\nNon-debugging symbols:\n");
|
|
|
|
|
first = 0;
|
|
|
|
|
}
|
|
|
|
|
print_msymbol_info (p->msymbol);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
print_symbol_info (kind,
|
|
|
|
|
p->symtab,
|
|
|
|
|
p->symbol,
|
|
|
|
|
p->block,
|
|
|
|
|
last_filename);
|
|
|
|
|
last_filename = p->symtab->filename;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
variables_info (regexp, from_tty)
|
|
|
|
|
char *regexp;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
symtab_symbol_info (regexp, VARIABLES_NAMESPACE, from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
functions_info (regexp, from_tty)
|
|
|
|
|
char *regexp;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
symtab_symbol_info (regexp, FUNCTIONS_NAMESPACE, from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
types_info (regexp, from_tty)
|
|
|
|
|
char *regexp;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
symtab_symbol_info (regexp, TYPES_NAMESPACE, from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* Tiemann says: "info methods was never implemented." */
|
|
|
|
|
static void
|
|
|
|
|
methods_info (regexp)
|
|
|
|
|
char *regexp;
|
|
|
|
|
{
|
|
|
|
|
symtab_symbol_info (regexp, METHODS_NAMESPACE, 0, from_tty);
|
|
|
|
|
}
|
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
|
|
|
|
/* Breakpoint all functions matching regular expression. */
|
|
|
|
|
static void
|
|
|
|
|
rbreak_command (regexp, from_tty)
|
|
|
|
|
char *regexp;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
struct symbol_search *ss;
|
|
|
|
|
struct symbol_search *p;
|
|
|
|
|
struct cleanup *old_chain;
|
|
|
|
|
|
|
|
|
|
search_symbols (regexp, FUNCTIONS_NAMESPACE, 0, (char **) NULL, &ss);
|
|
|
|
|
old_chain = make_cleanup ((make_cleanup_func) free_search_symbols, ss);
|
|
|
|
|
|
|
|
|
|
for (p = ss; p != NULL; p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->msymbol == NULL)
|
|
|
|
|
{
|
|
|
|
|
char *string = (char *) alloca (strlen (p->symtab->filename)
|
|
|
|
|
+ strlen (SYMBOL_NAME (p->symbol))
|
|
|
|
|
+ 4);
|
|
|
|
|
strcpy (string, p->symtab->filename);
|
|
|
|
|
strcat (string, ":'");
|
|
|
|
|
strcat (string, SYMBOL_NAME (p->symbol));
|
|
|
|
|
strcat (string, "'");
|
|
|
|
|
break_command (string, from_tty);
|
|
|
|
|
print_symbol_info (FUNCTIONS_NAMESPACE,
|
|
|
|
|
p->symtab,
|
|
|
|
|
p->symbol,
|
|
|
|
|
p->block,
|
|
|
|
|
p->symtab->filename);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
break_command (SYMBOL_NAME (p->msymbol), from_tty);
|
|
|
|
|
printf_filtered ("<function, no debug info> %s;\n",
|
|
|
|
|
SYMBOL_SOURCE_NAME (p->msymbol));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Return Nonzero if block a is lexically nested within block b,
|
|
|
|
|
or if a and b have the same pc range.
|
|
|
|
|
Return zero otherwise. */
|
|
|
|
|
int
|
|
|
|
|
contained_in (a, b)
|
|
|
|
|
struct block *a, *b;
|
|
|
|
|
{
|
|
|
|
|
if (!a || !b)
|
|
|
|
|
return 0;
|
|
|
|
|
return BLOCK_START (a) >= BLOCK_START (b)
|
|
|
|
|
&& BLOCK_END (a) <= BLOCK_END (b);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Helper routine for make_symbol_completion_list. */
|
|
|
|
|
|
|
|
|
|
static int return_val_size;
|
|
|
|
|
static int return_val_index;
|
|
|
|
|
static char **return_val;
|
|
|
|
|
|
|
|
|
|
#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
|
|
|
|
|
do { \
|
|
|
|
|
if (SYMBOL_DEMANGLED_NAME (symbol) != NULL) \
|
|
|
|
|
/* Put only the mangled name on the list. */ \
|
|
|
|
|
/* Advantage: "b foo<TAB>" completes to "b foo(int, int)" */ \
|
|
|
|
|
/* Disadvantage: "b foo__i<TAB>" doesn't complete. */ \
|
|
|
|
|
completion_list_add_name \
|
|
|
|
|
(SYMBOL_DEMANGLED_NAME (symbol), (sym_text), (len), (text), (word)); \
|
|
|
|
|
else \
|
|
|
|
|
completion_list_add_name \
|
|
|
|
|
(SYMBOL_NAME (symbol), (sym_text), (len), (text), (word)); \
|
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
/* Test to see if the symbol specified by SYMNAME (which is already
|
|
|
|
|
demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
|
|
|
|
|
characters. If so, add it to the current completion list. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
completion_list_add_name (symname, sym_text, sym_text_len, text, word)
|
|
|
|
|
char *symname;
|
|
|
|
|
char *sym_text;
|
|
|
|
|
int sym_text_len;
|
|
|
|
|
char *text;
|
|
|
|
|
char *word;
|
|
|
|
|
{
|
|
|
|
|
int newsize;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* clip symbols that cannot match */
|
|
|
|
|
|
|
|
|
|
if (strncmp (symname, sym_text, sym_text_len) != 0)
|
|
|
|
|
{
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Clip any symbol names that we've already considered. (This is a
|
|
|
|
|
time optimization) */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < return_val_index; ++i)
|
|
|
|
|
{
|
|
|
|
|
if (STREQ (symname, return_val[i]))
|
|
|
|
|
{
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We have a match for a completion, so add SYMNAME to the current list
|
|
|
|
|
of matches. Note that the name is moved to freshly malloc'd space. */
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
char *new;
|
|
|
|
|
if (word == sym_text)
|
|
|
|
|
{
|
|
|
|
|
new = xmalloc (strlen (symname) + 5);
|
|
|
|
|
strcpy (new, symname);
|
|
|
|
|
}
|
|
|
|
|
else if (word > sym_text)
|
|
|
|
|
{
|
|
|
|
|
/* Return some portion of symname. */
|
|
|
|
|
new = xmalloc (strlen (symname) + 5);
|
|
|
|
|
strcpy (new, symname + (word - sym_text));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Return some of SYM_TEXT plus symname. */
|
|
|
|
|
new = xmalloc (strlen (symname) + (sym_text - word) + 5);
|
|
|
|
|
strncpy (new, word, sym_text - word);
|
|
|
|
|
new[sym_text - word] = '\0';
|
|
|
|
|
strcat (new, symname);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Recheck for duplicates if we intend to add a modified symbol. */
|
|
|
|
|
if (word != sym_text)
|
|
|
|
|
{
|
|
|
|
|
for (i = 0; i < return_val_index; ++i)
|
|
|
|
|
{
|
|
|
|
|
if (STREQ (new, return_val[i]))
|
|
|
|
|
{
|
|
|
|
|
free (new);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (return_val_index + 3 > return_val_size)
|
|
|
|
|
{
|
|
|
|
|
newsize = (return_val_size *= 2) * sizeof (char *);
|
|
|
|
|
return_val = (char **) xrealloc ((char *) return_val, newsize);
|
|
|
|
|
}
|
|
|
|
|
return_val[return_val_index++] = new;
|
|
|
|
|
return_val[return_val_index] = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a NULL terminated array of all symbols (regardless of class) which
|
|
|
|
|
begin by matching TEXT. If the answer is no symbols, then the return value
|
|
|
|
|
is an array which contains only a NULL pointer.
|
|
|
|
|
|
|
|
|
|
Problem: All of the symbols have to be copied because readline frees them.
|
|
|
|
|
I'm not going to worry about this; hopefully there won't be that many. */
|
|
|
|
|
|
|
|
|
|
char **
|
|
|
|
|
make_symbol_completion_list (text, word)
|
|
|
|
|
char *text;
|
|
|
|
|
char *word;
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
register struct minimal_symbol *msymbol;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
register struct block *b, *surrounding_static_block = 0;
|
|
|
|
|
register int i, j;
|
|
|
|
|
struct partial_symbol **psym;
|
|
|
|
|
/* The symbol we are completing on. Points in same buffer as text. */
|
|
|
|
|
char *sym_text;
|
|
|
|
|
/* Length of sym_text. */
|
|
|
|
|
int sym_text_len;
|
|
|
|
|
|
|
|
|
|
/* Now look for the symbol we are supposed to complete on.
|
|
|
|
|
FIXME: This should be language-specific. */
|
|
|
|
|
{
|
|
|
|
|
char *p;
|
|
|
|
|
char quote_found;
|
|
|
|
|
char *quote_pos = NULL;
|
|
|
|
|
|
|
|
|
|
/* First see if this is a quoted string. */
|
|
|
|
|
quote_found = '\0';
|
|
|
|
|
for (p = text; *p != '\0'; ++p)
|
|
|
|
|
{
|
|
|
|
|
if (quote_found != '\0')
|
|
|
|
|
{
|
|
|
|
|
if (*p == quote_found)
|
|
|
|
|
/* Found close quote. */
|
|
|
|
|
quote_found = '\0';
|
|
|
|
|
else if (*p == '\\' && p[1] == quote_found)
|
|
|
|
|
/* A backslash followed by the quote character
|
|
|
|
|
doesn't end the string. */
|
|
|
|
|
++p;
|
|
|
|
|
}
|
|
|
|
|
else if (*p == '\'' || *p == '"')
|
|
|
|
|
{
|
|
|
|
|
quote_found = *p;
|
|
|
|
|
quote_pos = p;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (quote_found == '\'')
|
|
|
|
|
/* A string within single quotes can be a symbol, so complete on it. */
|
|
|
|
|
sym_text = quote_pos + 1;
|
|
|
|
|
else if (quote_found == '"')
|
|
|
|
|
/* A double-quoted string is never a symbol, nor does it make sense
|
|
|
|
|
to complete it any other way. */
|
|
|
|
|
return NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* It is not a quoted string. Break it based on the characters
|
|
|
|
|
which are in symbols. */
|
|
|
|
|
while (p > text)
|
|
|
|
|
{
|
|
|
|
|
if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
|
|
|
|
|
--p;
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
sym_text = p;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sym_text_len = strlen (sym_text);
|
|
|
|
|
|
|
|
|
|
return_val_size = 100;
|
|
|
|
|
return_val_index = 0;
|
|
|
|
|
return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
|
|
|
|
|
return_val[0] = NULL;
|
|
|
|
|
|
|
|
|
|
/* Look through the partial symtabs for all symbols which begin
|
|
|
|
|
by matching SYM_TEXT. Add each one that you find to the list. */
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
/* If the psymtab's been read in we'll get it when we search
|
|
|
|
|
through the blockvector. */
|
|
|
|
|
if (ps->readin) continue;
|
|
|
|
|
|
|
|
|
|
for (psym = objfile->global_psymbols.list + ps->globals_offset;
|
|
|
|
|
psym < (objfile->global_psymbols.list + ps->globals_offset
|
|
|
|
|
+ ps->n_global_syms);
|
|
|
|
|
psym++)
|
|
|
|
|
{
|
|
|
|
|
/* If interrupted, then quit. */
|
|
|
|
|
QUIT;
|
|
|
|
|
COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (psym = objfile->static_psymbols.list + ps->statics_offset;
|
|
|
|
|
psym < (objfile->static_psymbols.list + ps->statics_offset
|
|
|
|
|
+ ps->n_static_syms);
|
|
|
|
|
psym++)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At this point scan through the misc symbol vectors and add each
|
|
|
|
|
symbol you find to the list. Eventually we want to ignore
|
|
|
|
|
anything that isn't a text symbol (everything else will be
|
|
|
|
|
handled by the psymtab code above). */
|
|
|
|
|
|
|
|
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Search upwards from currently selected frame (so that we can
|
|
|
|
|
complete on local vars. */
|
|
|
|
|
|
|
|
|
|
for (b = get_selected_block (); b != NULL; b = BLOCK_SUPERBLOCK (b))
|
|
|
|
|
{
|
|
|
|
|
if (!BLOCK_SUPERBLOCK (b))
|
|
|
|
|
{
|
|
|
|
|
surrounding_static_block = b; /* For elmin of dups */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Also catch fields of types defined in this places which match our
|
|
|
|
|
text string. Only complete on types visible from current context. */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (b); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (b, i);
|
|
|
|
|
COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
|
|
|
|
|
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
|
|
|
|
{
|
|
|
|
|
struct type *t = SYMBOL_TYPE (sym);
|
|
|
|
|
enum type_code c = TYPE_CODE (t);
|
|
|
|
|
|
|
|
|
|
if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
|
|
|
|
|
{
|
|
|
|
|
for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
|
|
|
|
|
{
|
|
|
|
|
if (TYPE_FIELD_NAME (t, j))
|
|
|
|
|
{
|
|
|
|
|
completion_list_add_name (TYPE_FIELD_NAME (t, j),
|
|
|
|
|
sym_text, sym_text_len, text, word);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Go through the symtabs and check the externs and statics for
|
|
|
|
|
symbols which match. */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (b); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (b, i);
|
|
|
|
|
COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
|
|
|
|
|
/* Don't do this block twice. */
|
|
|
|
|
if (b == surrounding_static_block) continue;
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (b); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (b, i);
|
|
|
|
|
COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (return_val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Determine if PC is in the prologue of a function. The prologue is the area
|
|
|
|
|
between the first instruction of a function, and the first executable line.
|
|
|
|
|
Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
|
|
|
|
|
|
|
|
|
|
If non-zero, func_start is where we think the prologue starts, possibly
|
|
|
|
|
by previous examination of symbol table information.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
in_prologue (pc, func_start)
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
CORE_ADDR func_start;
|
|
|
|
|
{
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
|
|
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
|
|
|
goto nosyms; /* Might be in prologue */
|
|
|
|
|
|
|
|
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
|
|
|
|
|
|
if (sal.line == 0)
|
|
|
|
|
goto nosyms;
|
|
|
|
|
|
|
|
|
|
/* sal.end is the address of the first instruction past sal.line. */
|
|
|
|
|
if (sal.end > func_addr
|
|
|
|
|
&& sal.end <= func_end) /* Is prologue in function? */
|
|
|
|
|
return pc < sal.end; /* Yes, is pc in prologue? */
|
|
|
|
|
|
|
|
|
|
/* The line after the prologue seems to be outside the function. In this
|
|
|
|
|
case, tell the caller to find the prologue the hard way. */
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
/* Come here when symtabs don't contain line # info. In this case, it is
|
|
|
|
|
likely that the user has stepped into a library function w/o symbols, or
|
|
|
|
|
is doing a stepi/nexti through code without symbols. */
|
|
|
|
|
|
|
|
|
|
nosyms:
|
|
|
|
|
|
|
|
|
|
/* If func_start is zero (meaning unknown) then we don't know whether pc is
|
|
|
|
|
in the prologue or not. I.E. it might be. */
|
|
|
|
|
|
|
|
|
|
if (!func_start) return 1;
|
|
|
|
|
|
|
|
|
|
/* We need to call the target-specific prologue skipping functions with the
|
|
|
|
|
function's start address because PC may be pointing at an instruction that
|
|
|
|
|
could be mistakenly considered part of the prologue. */
|
|
|
|
|
|
1999-05-05 14:45:51 +00:00
|
|
|
|
func_start = SKIP_PROLOGUE (func_start);
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
return pc < func_start;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Begin overload resolution functions */
|
|
|
|
|
/* Helper routine for make_symbol_completion_list. */
|
|
|
|
|
|
|
|
|
|
static int sym_return_val_size;
|
|
|
|
|
static int sym_return_val_index;
|
|
|
|
|
static struct symbol **sym_return_val;
|
|
|
|
|
|
|
|
|
|
/* Test to see if the symbol specified by SYMNAME (which is already
|
|
|
|
|
demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
|
|
|
|
|
characters. If so, add it to the current completion list. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
overload_list_add_symbol (sym, oload_name)
|
|
|
|
|
struct symbol * sym;
|
|
|
|
|
char * oload_name;
|
|
|
|
|
{
|
|
|
|
|
int newsize;
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
/* Get the demangled name without parameters */
|
|
|
|
|
char * sym_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ARM | DMGL_ANSI);
|
|
|
|
|
if (!sym_name)
|
|
|
|
|
{
|
|
|
|
|
sym_name = (char *) xmalloc (strlen (SYMBOL_NAME (sym)) + 1);
|
|
|
|
|
strcpy (sym_name, SYMBOL_NAME (sym));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* skip symbols that cannot match */
|
|
|
|
|
if (strcmp (sym_name, oload_name) != 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* If there is no type information, we can't do anything, so skip */
|
|
|
|
|
if (SYMBOL_TYPE (sym) == NULL)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* skip any symbols that we've already considered. */
|
|
|
|
|
for (i = 0; i < sym_return_val_index; ++i)
|
|
|
|
|
if (!strcmp (SYMBOL_NAME (sym), SYMBOL_NAME (sym_return_val[i])))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We have a match for an overload instance, so add SYM to the current list
|
|
|
|
|
* of overload instances */
|
|
|
|
|
if (sym_return_val_index + 3 > sym_return_val_size)
|
|
|
|
|
{
|
|
|
|
|
newsize = (sym_return_val_size *= 2) * sizeof (struct symbol *);
|
|
|
|
|
sym_return_val = (struct symbol **) xrealloc ((char *) sym_return_val, newsize);
|
|
|
|
|
}
|
|
|
|
|
sym_return_val[sym_return_val_index++] = sym;
|
|
|
|
|
sym_return_val[sym_return_val_index] = NULL;
|
|
|
|
|
|
|
|
|
|
free (sym_name);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a null-terminated list of pointers to function symbols that
|
|
|
|
|
* match name of the supplied symbol FSYM.
|
|
|
|
|
* This is used in finding all overloaded instances of a function name.
|
|
|
|
|
* This has been modified from make_symbol_completion_list. */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct symbol **
|
|
|
|
|
make_symbol_overload_list (fsym)
|
|
|
|
|
struct symbol * fsym;
|
|
|
|
|
{
|
|
|
|
|
register struct symbol *sym;
|
|
|
|
|
register struct symtab *s;
|
|
|
|
|
register struct partial_symtab *ps;
|
|
|
|
|
register struct minimal_symbol *msymbol;
|
|
|
|
|
register struct objfile *objfile;
|
|
|
|
|
register struct block *b, *surrounding_static_block = 0;
|
|
|
|
|
register int i, j;
|
|
|
|
|
struct partial_symbol **psym;
|
|
|
|
|
/* The name we are completing on. */
|
|
|
|
|
char *oload_name = NULL;
|
|
|
|
|
/* Length of name. */
|
|
|
|
|
int oload_name_len = 0;
|
|
|
|
|
|
|
|
|
|
/* Look for the symbol we are supposed to complete on.
|
|
|
|
|
* FIXME: This should be language-specific. */
|
|
|
|
|
|
|
|
|
|
oload_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_ARM | DMGL_ANSI);
|
|
|
|
|
if (!oload_name)
|
|
|
|
|
{
|
|
|
|
|
oload_name = (char *) xmalloc (strlen (SYMBOL_NAME (fsym)) + 1);
|
|
|
|
|
strcpy (oload_name, SYMBOL_NAME (fsym));
|
|
|
|
|
}
|
|
|
|
|
oload_name_len = strlen (oload_name);
|
|
|
|
|
|
|
|
|
|
sym_return_val_size = 100;
|
|
|
|
|
sym_return_val_index = 0;
|
|
|
|
|
sym_return_val = (struct symbol **) xmalloc ((sym_return_val_size + 1) * sizeof (struct symbol *));
|
|
|
|
|
sym_return_val[0] = NULL;
|
|
|
|
|
|
1999-04-26 18:34:20 +00:00
|
|
|
|
/* Comment and #if 0 from Rajiv Mirani <mirani@cup.hp.com>.
|
|
|
|
|
However, leaving #if 0's around is uncool. We need to figure out
|
|
|
|
|
what this is really trying to do, decide whether we want that,
|
|
|
|
|
and either fix it or delete it. --- Jim Blandy, Mar 1999 */
|
|
|
|
|
|
|
|
|
|
/* ??? RM: What in hell is this? overload_list_add_symbol expects a symbol,
|
|
|
|
|
* not a partial_symbol or a minimal_symbol. And it looks at the type field
|
|
|
|
|
* of the symbol, and we don't know the type of minimal and partial symbols
|
|
|
|
|
*/
|
|
|
|
|
#if 0
|
1999-04-16 01:35:26 +00:00
|
|
|
|
/* Look through the partial symtabs for all symbols which begin
|
|
|
|
|
by matching OLOAD_NAME. Add each one that you find to the list. */
|
|
|
|
|
|
|
|
|
|
ALL_PSYMTABS (objfile, ps)
|
|
|
|
|
{
|
|
|
|
|
/* If the psymtab's been read in we'll get it when we search
|
|
|
|
|
through the blockvector. */
|
|
|
|
|
if (ps->readin) continue;
|
|
|
|
|
|
|
|
|
|
for (psym = objfile->global_psymbols.list + ps->globals_offset;
|
|
|
|
|
psym < (objfile->global_psymbols.list + ps->globals_offset
|
|
|
|
|
+ ps->n_global_syms);
|
|
|
|
|
psym++)
|
|
|
|
|
{
|
|
|
|
|
/* If interrupted, then quit. */
|
|
|
|
|
QUIT;
|
|
|
|
|
overload_list_add_symbol (*psym, oload_name);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (psym = objfile->static_psymbols.list + ps->statics_offset;
|
|
|
|
|
psym < (objfile->static_psymbols.list + ps->statics_offset
|
|
|
|
|
+ ps->n_static_syms);
|
|
|
|
|
psym++)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
overload_list_add_symbol (*psym, oload_name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* At this point scan through the misc symbol vectors and add each
|
|
|
|
|
symbol you find to the list. Eventually we want to ignore
|
|
|
|
|
anything that isn't a text symbol (everything else will be
|
|
|
|
|
handled by the psymtab code above). */
|
|
|
|
|
|
|
|
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
overload_list_add_symbol (msymbol, oload_name);
|
|
|
|
|
}
|
1999-04-26 18:34:20 +00:00
|
|
|
|
#endif
|
1999-04-16 01:35:26 +00:00
|
|
|
|
|
|
|
|
|
/* Search upwards from currently selected frame (so that we can
|
|
|
|
|
complete on local vars. */
|
|
|
|
|
|
|
|
|
|
for (b = get_selected_block (); b != NULL; b = BLOCK_SUPERBLOCK (b))
|
|
|
|
|
{
|
|
|
|
|
if (!BLOCK_SUPERBLOCK (b))
|
|
|
|
|
{
|
|
|
|
|
surrounding_static_block = b; /* For elimination of dups */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Also catch fields of types defined in this places which match our
|
|
|
|
|
text string. Only complete on types visible from current context. */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (b); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (b, i);
|
|
|
|
|
overload_list_add_symbol (sym, oload_name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Go through the symtabs and check the externs and statics for
|
|
|
|
|
symbols which match. */
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (b); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (b, i);
|
|
|
|
|
overload_list_add_symbol (sym, oload_name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ALL_SYMTABS (objfile, s)
|
|
|
|
|
{
|
|
|
|
|
QUIT;
|
|
|
|
|
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
|
|
|
|
|
/* Don't do this block twice. */
|
|
|
|
|
if (b == surrounding_static_block) continue;
|
|
|
|
|
for (i = 0; i < BLOCK_NSYMS (b); i++)
|
|
|
|
|
{
|
|
|
|
|
sym = BLOCK_SYM (b, i);
|
|
|
|
|
overload_list_add_symbol (sym, oload_name);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
free (oload_name);
|
|
|
|
|
|
|
|
|
|
return (sym_return_val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* End of overload resolution functions */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
_initialize_symtab ()
|
|
|
|
|
{
|
|
|
|
|
add_info ("variables", variables_info,
|
|
|
|
|
"All global and static variable names, or those matching REGEXP.");
|
|
|
|
|
if (dbx_commands)
|
|
|
|
|
add_com("whereis", class_info, variables_info,
|
|
|
|
|
"All global and static variable names, or those matching REGEXP.");
|
|
|
|
|
|
|
|
|
|
add_info ("functions", functions_info,
|
|
|
|
|
"All function names, or those matching REGEXP.");
|
|
|
|
|
|
|
|
|
|
/* FIXME: This command has at least the following problems:
|
|
|
|
|
1. It prints builtin types (in a very strange and confusing fashion).
|
|
|
|
|
2. It doesn't print right, e.g. with
|
|
|
|
|
typedef struct foo *FOO
|
|
|
|
|
type_print prints "FOO" when we want to make it (in this situation)
|
|
|
|
|
print "struct foo *".
|
|
|
|
|
I also think "ptype" or "whatis" is more likely to be useful (but if
|
|
|
|
|
there is much disagreement "info types" can be fixed). */
|
|
|
|
|
add_info ("types", types_info,
|
|
|
|
|
"All type names, or those matching REGEXP.");
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
add_info ("methods", methods_info,
|
|
|
|
|
"All method names, or those matching REGEXP::REGEXP.\n\
|
|
|
|
|
If the class qualifier is omitted, it is assumed to be the current scope.\n\
|
|
|
|
|
If the first REGEXP is omitted, then all methods matching the second REGEXP\n\
|
|
|
|
|
are listed.");
|
|
|
|
|
#endif
|
|
|
|
|
add_info ("sources", sources_info,
|
|
|
|
|
"Source files in the program.");
|
|
|
|
|
|
|
|
|
|
add_com ("rbreak", class_breakpoint, rbreak_command,
|
|
|
|
|
"Set a breakpoint for all functions matching REGEXP.");
|
|
|
|
|
|
|
|
|
|
if (xdb_commands)
|
|
|
|
|
{
|
|
|
|
|
add_com ("lf", class_info, sources_info, "Source files in the program");
|
|
|
|
|
add_com ("lg", class_info, variables_info,
|
|
|
|
|
"All global and static variable names, or those matching REGEXP.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize the one built-in type that isn't language dependent... */
|
|
|
|
|
builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
|
|
|
|
|
"<unknown type>", (struct objfile *) NULL);
|
|
|
|
|
}
|