old-cross-binutils/sim/arm/armsupp.c

822 lines
19 KiB
C
Raw Normal View History

/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
#include "armdefs.h"
#include "armemu.h"
2000-02-08 20:54:27 +00:00
#include "ansidecl.h"
/* Definitions for the support routines. */
static ARMword ModeToBank (ARMword);
static void EnvokeList (ARMul_State *, unsigned long, unsigned long);
2000-02-05 07:30:26 +00:00
struct EventNode
{ /* An event list node. */
unsigned (*func) (ARMul_State *); /* The function to call. */
2000-02-05 07:30:26 +00:00
struct EventNode *next;
};
/* This routine returns the value of a register from a mode. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
{
mode &= MODEBITS;
if (mode != state->Mode)
2000-05-30 17:13:37 +00:00
return (state->RegBank[ModeToBank ((ARMword) mode)][reg]);
2000-02-05 07:30:26 +00:00
else
return (state->Reg[reg]);
}
/* This routine sets the value of a register for a mode. */
2000-02-05 07:30:26 +00:00
void
ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
{
mode &= MODEBITS;
if (mode != state->Mode)
2000-05-30 17:13:37 +00:00
state->RegBank[ModeToBank ((ARMword) mode)][reg] = value;
2000-02-05 07:30:26 +00:00
else
state->Reg[reg] = value;
}
/* This routine returns the value of the PC, mode independently. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_GetPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return state->Reg[15];
2000-02-05 07:30:26 +00:00
else
return R15PC;
}
/* This routine returns the value of the PC, mode independently. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_GetNextPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return state->Reg[15] + isize;
2000-02-05 07:30:26 +00:00
else
return (state->Reg[15] + isize) & R15PCBITS;
}
/* This routine sets the value of the PC. */
2000-02-05 07:30:26 +00:00
void
ARMul_SetPC (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
FLUSHPIPE;
}
/* This routine returns the value of register 15, mode independently. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_GetR15 (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15]);
else
return (R15PC | ECC | ER15INT | EMODE);
}
/* This routine sets the value of Register 15. */
2000-02-05 07:30:26 +00:00
void
ARMul_SetR15 (ARMul_State * state, ARMword value)
{
2000-02-05 07:30:26 +00:00
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
{
state->Reg[15] = value;
ARMul_R15Altered (state);
}
2000-02-05 07:30:26 +00:00
FLUSHPIPE;
}
/* This routine returns the value of the CPSR. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_GetCPSR (ARMul_State * state)
{
return (CPSR | state->Cpsr);
2000-02-05 07:30:26 +00:00
}
/* This routine sets the value of the CPSR. */
2000-02-05 07:30:26 +00:00
void
ARMul_SetCPSR (ARMul_State * state, ARMword value)
{
state->Cpsr = value;
2000-02-05 07:30:26 +00:00
ARMul_CPSRAltered (state);
}
/* This routine does all the nasty bits involved in a write to the CPSR,
including updating the register bank, given a MSR instruction. */
2000-02-05 07:30:26 +00:00
void
ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
state->Cpsr = ARMul_GetCPSR (state);
if (state->Mode != USER26MODE
&& state->Mode != USER32MODE)
{
/* In user mode, only write flags. */
if (BIT (16))
SETPSR_C (state->Cpsr, rhs);
if (BIT (17))
SETPSR_X (state->Cpsr, rhs);
if (BIT (18))
SETPSR_S (state->Cpsr, rhs);
}
if (BIT (19))
SETPSR_F (state->Cpsr, rhs);
2000-02-05 07:30:26 +00:00
ARMul_CPSRAltered (state);
}
/* Get an SPSR from the specified mode. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_GetSPSR (ARMul_State * state, ARMword mode)
{
2000-05-30 17:13:37 +00:00
ARMword bank = ModeToBank (mode & MODEBITS);
if (! BANK_CAN_ACCESS_SPSR (bank))
return ARMul_GetCPSR (state);
2000-05-30 17:13:37 +00:00
return state->Spsr[bank];
}
/* This routine does a write to an SPSR. */
2000-02-05 07:30:26 +00:00
void
ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
{
2000-05-30 17:13:37 +00:00
ARMword bank = ModeToBank (mode & MODEBITS);
if (BANK_CAN_ACCESS_SPSR (bank))
2000-02-05 07:30:26 +00:00
state->Spsr[bank] = value;
}
/* This routine does a write to the current SPSR, given an MSR instruction. */
2000-02-05 07:30:26 +00:00
void
ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
2000-05-30 17:13:37 +00:00
if (BANK_CAN_ACCESS_SPSR (state->Bank))
2000-02-05 07:30:26 +00:00
{
if (BIT (16))
SETPSR_C (state->Spsr[state->Bank], rhs);
if (BIT (17))
SETPSR_X (state->Spsr[state->Bank], rhs);
if (BIT (18))
SETPSR_S (state->Spsr[state->Bank], rhs);
if (BIT (19))
SETPSR_F (state->Spsr[state->Bank], rhs);
}
}
/* This routine updates the state of the emulator after the Cpsr has been
changed. Both the processor flags and register bank are updated. */
2000-02-05 07:30:26 +00:00
void
ARMul_CPSRAltered (ARMul_State * state)
{
ARMword oldmode;
if (state->prog32Sig == LOW)
state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
2000-05-30 17:13:37 +00:00
2000-02-05 07:30:26 +00:00
oldmode = state->Mode;
2000-05-30 17:13:37 +00:00
2000-02-05 07:30:26 +00:00
if (state->Mode != (state->Cpsr & MODEBITS))
{
state->Mode =
ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
2000-05-30 17:13:37 +00:00
2000-02-05 07:30:26 +00:00
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
state->Cpsr &= ~MODEBITS;
2000-02-05 07:30:26 +00:00
ASSIGNINT (state->Cpsr & INTBITS);
state->Cpsr &= ~INTBITS;
2000-02-05 07:30:26 +00:00
ASSIGNN ((state->Cpsr & NBIT) != 0);
state->Cpsr &= ~NBIT;
2000-02-05 07:30:26 +00:00
ASSIGNZ ((state->Cpsr & ZBIT) != 0);
state->Cpsr &= ~ZBIT;
2000-02-05 07:30:26 +00:00
ASSIGNC ((state->Cpsr & CBIT) != 0);
state->Cpsr &= ~CBIT;
2000-02-05 07:30:26 +00:00
ASSIGNV ((state->Cpsr & VBIT) != 0);
state->Cpsr &= ~VBIT;
ASSIGNS ((state->Cpsr & SBIT) != 0);
state->Cpsr &= ~SBIT;
#ifdef MODET
2000-02-05 07:30:26 +00:00
ASSIGNT ((state->Cpsr & TBIT) != 0);
state->Cpsr &= ~TBIT;
#endif
2000-02-05 07:30:26 +00:00
if (oldmode > SVC26MODE)
{
if (state->Mode <= SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
2000-02-05 07:30:26 +00:00
else
{
if (state->Mode > SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = R15PC;
}
else
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
/* This routine updates the state of the emulator after register 15 has
been changed. Both the processor flags and register bank are updated.
This routine should only be called from a 26 bit mode. */
2000-02-05 07:30:26 +00:00
void
ARMul_R15Altered (ARMul_State * state)
{
2000-02-05 07:30:26 +00:00
if (state->Mode != R15MODE)
{
state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
2000-02-05 07:30:26 +00:00
if (state->Mode > SVC26MODE)
state->Emulate = CHANGEMODE;
2000-02-05 07:30:26 +00:00
ASSIGNR15INT (R15INT);
2000-02-05 07:30:26 +00:00
ASSIGNN ((state->Reg[15] & NBIT) != 0);
ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
ASSIGNC ((state->Reg[15] & CBIT) != 0);
ASSIGNV ((state->Reg[15] & VBIT) != 0);
}
/* This routine controls the saving and restoring of registers across mode
changes. The regbank matrix is largely unused, only rows 13 and 14 are
used across all modes, 8 to 14 are used for FIQ, all others use the USER
column. It's easier this way. old and new parameter are modes numbers.
Notice the side effect of changing the Bank variable. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
{
unsigned i;
2000-05-30 17:13:37 +00:00
ARMword oldbank;
ARMword newbank;
oldbank = ModeToBank (oldmode);
newbank = state->Bank = ModeToBank (newmode);
/* Do we really need to do it? */
2000-05-30 17:13:37 +00:00
if (oldbank != newbank)
{
/* Save away the old registers. */
2000-05-30 17:13:37 +00:00
switch (oldbank)
{
2000-02-05 07:30:26 +00:00
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
2000-05-30 17:13:37 +00:00
if (newbank == FIQBANK)
2000-02-05 07:30:26 +00:00
for (i = 8; i < 13; i++)
state->RegBank[USERBANK][i] = state->Reg[i];
2000-05-30 17:13:37 +00:00
state->RegBank[oldbank][13] = state->Reg[13];
state->RegBank[oldbank][14] = state->Reg[14];
2000-02-05 07:30:26 +00:00
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->RegBank[FIQBANK][i] = state->Reg[i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->RegBank[DUMMYBANK][i] = 0;
break;
2000-05-30 17:13:37 +00:00
default:
abort ();
2000-02-05 07:30:26 +00:00
}
2000-05-30 17:13:37 +00:00
/* Restore the new registers. */
2000-05-30 17:13:37 +00:00
switch (newbank)
{
2000-02-05 07:30:26 +00:00
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
2000-05-30 17:13:37 +00:00
if (oldbank == FIQBANK)
2000-02-05 07:30:26 +00:00
for (i = 8; i < 13; i++)
state->Reg[i] = state->RegBank[USERBANK][i];
2000-05-30 17:13:37 +00:00
state->Reg[13] = state->RegBank[newbank][13];
state->Reg[14] = state->RegBank[newbank][14];
2000-02-05 07:30:26 +00:00
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = state->RegBank[FIQBANK][i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = 0;
break;
2000-05-30 17:13:37 +00:00
default:
abort ();
}
}
2000-05-30 17:13:37 +00:00
return newmode;
}
/* Given a processor mode, this routine returns the
register bank that will be accessed in that mode. */
2000-02-05 07:30:26 +00:00
static ARMword
2000-05-30 17:13:37 +00:00
ModeToBank (ARMword mode)
2000-02-05 07:30:26 +00:00
{
2000-05-30 17:13:37 +00:00
static ARMword bankofmode[] =
{
USERBANK, FIQBANK, IRQBANK, SVCBANK,
2000-02-05 07:30:26 +00:00
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
2000-05-30 17:13:37 +00:00
USERBANK, FIQBANK, IRQBANK, SVCBANK,
2000-02-05 07:30:26 +00:00
DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
2000-05-30 17:13:37 +00:00
DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK
2000-02-05 07:30:26 +00:00
};
2000-05-30 17:13:37 +00:00
if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0])))
return DUMMYBANK;
return bankofmode[mode];
2000-02-05 07:30:26 +00:00
}
/* Returns the register number of the nth register in a reg list. */
2000-02-05 07:30:26 +00:00
unsigned
ARMul_NthReg (ARMword instr, unsigned number)
{
unsigned bit, upto;
for (bit = 0, upto = 0; upto <= number; bit ++)
2000-02-05 07:30:26 +00:00
if (BIT (bit))
upto ++;
2000-02-05 07:30:26 +00:00
return (bit - 1);
}
/* Assigns the N and Z flags depending on the value of result. */
2000-02-05 07:30:26 +00:00
void
ARMul_NegZero (ARMul_State * state, ARMword result)
{
2000-02-05 07:30:26 +00:00
if (NEG (result))
{
SETN;
CLEARZ;
}
else if (result == 0)
{
CLEARN;
SETZ;
}
else
{
CLEARN;
CLEARZ;
}
2000-02-05 07:30:26 +00:00
}
2000-01-26 21:49:14 +00:00
/* Compute whether an addition of A and B, giving RESULT, overflowed. */
2000-02-05 07:30:26 +00:00
int
AddOverflow (ARMword a, ARMword b, ARMword result)
2000-01-26 21:49:14 +00:00
{
return ((NEG (a) && NEG (b) && POS (result))
|| (POS (a) && POS (b) && NEG (result)));
}
/* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
2000-02-05 07:30:26 +00:00
int
SubOverflow (ARMword a, ARMword b, ARMword result)
2000-01-26 21:49:14 +00:00
{
return ((NEG (a) && POS (b) && POS (result))
|| (POS (a) && NEG (b) && NEG (result)));
}
/* Assigns the C flag after an addition of a and b to give result. */
2000-02-05 07:30:26 +00:00
void
ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
2000-02-05 07:30:26 +00:00
ASSIGNC ((NEG (a) && NEG (b)) ||
(NEG (a) && POS (result)) || (NEG (b) && POS (result)));
}
/* Assigns the V flag after an addition of a and b to give result. */
2000-02-05 07:30:26 +00:00
void
ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
2000-01-26 21:49:14 +00:00
ASSIGNV (AddOverflow (a, b, result));
}
/* Assigns the C flag after an subtraction of a and b to give result. */
2000-02-05 07:30:26 +00:00
void
ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
2000-02-05 07:30:26 +00:00
ASSIGNC ((NEG (a) && POS (b)) ||
(NEG (a) && POS (result)) || (POS (b) && POS (result)));
}
/* Assigns the V flag after an subtraction of a and b to give result. */
2000-02-05 07:30:26 +00:00
void
ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
2000-01-26 21:49:14 +00:00
ASSIGNV (SubOverflow (a, b, result));
}
/* This function does the work of generating the addresses used in an
LDC instruction. The code here is always post-indexed, it's up to the
caller to get the input address correct and to handle base register
modification. It also handles the Busy-Waiting. */
2000-02-05 07:30:26 +00:00
void
ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
2000-02-05 07:30:26 +00:00
UNDEF_LSCPCBaseWb;
if (! CP_ACCESS_ALLOWED (state, CPNum))
2000-02-05 07:30:26 +00:00
{
ARMul_UndefInstr (state, instr);
return;
}
if (ADDREXCEPT (address))
INTERNALABORT (address);
2000-02-05 07:30:26 +00:00
cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
2000-02-05 07:30:26 +00:00
if (IntPending (state))
{
cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
}
2000-02-05 07:30:26 +00:00
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
2000-02-05 07:30:26 +00:00
cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
data = ARMul_LoadWordN (state, address);
BUSUSEDINCPCN;
2000-02-05 07:30:26 +00:00
if (BIT (21))
LSBase = state->Base;
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
2000-02-05 07:30:26 +00:00
while (cpab == ARMul_INC)
{
address += 4;
data = ARMul_LoadWordN (state, address);
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
}
2000-02-05 07:30:26 +00:00
if (state->abortSig || state->Aborted)
TAKEABORT;
2000-02-05 07:30:26 +00:00
}
/* This function does the work of generating the addresses used in an
STC instruction. The code here is always post-indexed, it's up to the
caller to get the input address correct and to handle base register
modification. It also handles the Busy-Waiting. */
2000-02-05 07:30:26 +00:00
void
ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
2000-02-05 07:30:26 +00:00
UNDEF_LSCPCBaseWb;
if (! CP_ACCESS_ALLOWED (state, CPNum))
2000-02-05 07:30:26 +00:00
{
ARMul_UndefInstr (state, instr);
return;
}
if (ADDREXCEPT (address) || VECTORACCESS (address))
INTERNALABORT (address);
2000-02-05 07:30:26 +00:00
cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
}
2000-02-05 07:30:26 +00:00
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
#ifndef MODE32
2000-02-05 07:30:26 +00:00
if (ADDREXCEPT (address) || VECTORACCESS (address))
INTERNALABORT (address);
#endif
2000-02-05 07:30:26 +00:00
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
2000-02-05 07:30:26 +00:00
while (cpab == ARMul_INC)
{
address += 4;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
}
2000-02-05 07:30:26 +00:00
if (state->abortSig || state->Aborted)
TAKEABORT;
2000-02-05 07:30:26 +00:00
}
/* This function does the Busy-Waiting for an MCR instruction. */
2000-02-05 07:30:26 +00:00
void
ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
{
unsigned cpab;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return;
}
2000-02-05 07:30:26 +00:00
cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
2000-05-30 17:13:37 +00:00
2000-02-05 07:30:26 +00:00
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
2000-05-30 17:13:37 +00:00
2000-02-05 07:30:26 +00:00
if (IntPending (state))
{
cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
}
2000-05-30 17:13:37 +00:00
2000-02-05 07:30:26 +00:00
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
}
2000-02-05 07:30:26 +00:00
}
/* This function does the Busy-Waiting for an MRC instruction. */
2000-02-05 07:30:26 +00:00
ARMword
ARMul_MRC (ARMul_State * state, ARMword instr)
{
unsigned cpab;
ARMword result = 0;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return result;
}
2000-02-05 07:30:26 +00:00
cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return (0);
}
else
cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
}
2000-02-05 07:30:26 +00:00
if (cpab == ARMul_CANT)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
/* Parent will destroy the flags otherwise. */
result = ECC;
}
2000-02-05 07:30:26 +00:00
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
ARMul_Icycles (state, 1, 0);
}
return result;
}
/* This function does the Busy-Waiting for an CDP instruction. */
2000-02-05 07:30:26 +00:00
void
ARMul_CDP (ARMul_State * state, ARMword instr)
{
unsigned cpab;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return;
}
2000-02-05 07:30:26 +00:00
cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
return;
}
else
cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
}
2000-02-05 07:30:26 +00:00
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
BUSUSEDN;
}
/* This function handles Undefined instructions, as CP isntruction. */
2000-02-05 07:30:26 +00:00
void
2000-02-08 20:54:27 +00:00
ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
{
2000-02-05 07:30:26 +00:00
ARMul_Abort (state, ARMul_UndefinedInstrV);
}
/* Return TRUE if an interrupt is pending, FALSE otherwise. */
2000-02-05 07:30:26 +00:00
unsigned
IntPending (ARMul_State * state)
{
if (state->Exception)
{
/* Any exceptions. */
2000-02-05 07:30:26 +00:00
if (state->NresetSig == LOW)
{
ARMul_Abort (state, ARMul_ResetV);
return TRUE;
2000-02-05 07:30:26 +00:00
}
else if (!state->NfiqSig && !FFLAG)
{
ARMul_Abort (state, ARMul_FIQV);
return TRUE;
2000-02-05 07:30:26 +00:00
}
else if (!state->NirqSig && !IFLAG)
{
ARMul_Abort (state, ARMul_IRQV);
return TRUE;
2000-02-05 07:30:26 +00:00
}
}
return FALSE;
2000-02-05 07:30:26 +00:00
}
/* Align a word access to a non word boundary. */
2000-02-05 07:30:26 +00:00
ARMword
2000-02-08 20:54:27 +00:00
ARMul_Align (state, address, data)
ARMul_State * state ATTRIBUTE_UNUSED;
ARMword address;
ARMword data;
{
/* This code assumes the address is really unaligned,
as a shift by 32 is undefined in C. */
address = (address & 3) << 3; /* Get the word address. */
2000-02-05 07:30:26 +00:00
return ((data >> address) | (data << (32 - address))); /* rot right */
}
/* This routine is used to call another routine after a certain number of
cycles have been executed. The first parameter is the number of cycles
delay before the function is called, the second argument is a pointer
to the function. A delay of zero doesn't work, just call the function. */
2000-02-05 07:30:26 +00:00
void
ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
unsigned (*what) (ARMul_State *))
2000-02-05 07:30:26 +00:00
{
unsigned long when;
struct EventNode *event;
if (state->EventSet++ == 0)
state->Now = ARMul_Time (state);
when = (state->Now + delay) % EVENTLISTSIZE;
event = (struct EventNode *) malloc (sizeof (struct EventNode));
event->func = what;
event->next = *(state->EventPtr + when);
*(state->EventPtr + when) = event;
}
/* This routine is called at the beginning of
every cycle, to envoke scheduled events. */
2000-02-05 07:30:26 +00:00
void
ARMul_EnvokeEvent (ARMul_State * state)
{
static unsigned long then;
then = state->Now;
state->Now = ARMul_Time (state) % EVENTLISTSIZE;
if (then < state->Now)
/* Schedule events. */
2000-02-05 07:30:26 +00:00
EnvokeList (state, then, state->Now);
else if (then > state->Now)
{
/* Need to wrap around the list. */
2000-02-05 07:30:26 +00:00
EnvokeList (state, then, EVENTLISTSIZE - 1L);
EnvokeList (state, 0L, state->Now);
}
2000-02-05 07:30:26 +00:00
}
/* Envokes all the entries in a range. */
2000-02-05 07:30:26 +00:00
static void
EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
{
for (; from <= to; from++)
{
struct EventNode *anevent;
2000-02-05 07:30:26 +00:00
anevent = *(state->EventPtr + from);
while (anevent)
{
(anevent->func) (state);
state->EventSet--;
anevent = anevent->next;
}
*(state->EventPtr + from) = NULL;
}
2000-02-05 07:30:26 +00:00
}
/* This routine is returns the number of clock ticks since the last reset. */
2000-02-05 07:30:26 +00:00
unsigned long
ARMul_Time (ARMul_State * state)
{
return (state->NumScycles + state->NumNcycles +
state->NumIcycles + state->NumCcycles + state->NumFcycles);
}