1996-08-27 01:52:31 +00:00
|
|
|
|
/* Target-specific definition for the Mitsubishi D10V
|
|
|
|
|
Copyright (C) 1996 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
|
|
|
|
/* Contributed by Martin Hunt, hunt@cygnus.com */
|
|
|
|
|
|
|
|
|
|
#define GDB_TARGET_IS_D10V
|
|
|
|
|
|
|
|
|
|
/* Define the bit, byte, and word ordering of the machine. */
|
|
|
|
|
|
|
|
|
|
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
|
|
|
|
|
|
|
|
|
/* Offset from address of function to start of its code.
|
|
|
|
|
Zero on most machines. */
|
|
|
|
|
|
|
|
|
|
#define FUNCTION_START_OFFSET 0
|
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
/* these are the addresses the D10V-EVA board maps data */
|
|
|
|
|
/* and instruction memory to. */
|
|
|
|
|
|
|
|
|
|
#define DMEM_START 0x2000000
|
|
|
|
|
#define IMEM_START 0x1000000
|
|
|
|
|
#define STACK_START 0x2007ffe
|
|
|
|
|
|
|
|
|
|
#ifdef __STDC__ /* Forward decls for prototypes */
|
|
|
|
|
struct frame_info;
|
|
|
|
|
struct frame_saved_regs;
|
|
|
|
|
struct type;
|
|
|
|
|
struct value;
|
|
|
|
|
#endif
|
|
|
|
|
|
1996-08-27 01:52:31 +00:00
|
|
|
|
/* Advance PC across any function entry prologue instructions
|
|
|
|
|
to reach some "real" code. */
|
|
|
|
|
|
|
|
|
|
extern CORE_ADDR d10v_skip_prologue ();
|
|
|
|
|
#define SKIP_PROLOGUE(ip) \
|
|
|
|
|
{(ip) = d10v_skip_prologue(ip);}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Stack grows downward. */
|
|
|
|
|
#define INNER_THAN <
|
|
|
|
|
|
1996-10-22 17:27:51 +00:00
|
|
|
|
/* for a breakpoint, use "dbt || nop" */
|
1996-08-27 01:52:31 +00:00
|
|
|
|
#define BREAKPOINT {0x2f, 0x90, 0x5e, 0x00}
|
|
|
|
|
|
|
|
|
|
/* If your kernel resets the pc after the trap happens you may need to
|
|
|
|
|
define this before including this file. */
|
1996-09-19 23:21:56 +00:00
|
|
|
|
#define DECR_PC_AFTER_BREAK 4
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
#define REGISTER_NAMES \
|
|
|
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
|
|
|
|
"r8", "r9", "r10","r11","r12", "r13", "r14","sp",\
|
|
|
|
|
"psw","bpsw","pc","bpc", "cr4", "cr5", "cr6", "rpt_c",\
|
|
|
|
|
"rpt_s","rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",\
|
1996-10-29 20:53:04 +00:00
|
|
|
|
"imap0","imap1","dmap","a0", "a1"\
|
1996-08-27 01:52:31 +00:00
|
|
|
|
}
|
|
|
|
|
|
1996-10-29 20:53:04 +00:00
|
|
|
|
#define NUM_REGS 37
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
/* Register numbers of various important registers.
|
|
|
|
|
Note that some of these values are "real" register numbers,
|
|
|
|
|
and correspond to the general registers of the machine,
|
|
|
|
|
and some are "phony" register numbers which are too large
|
|
|
|
|
to be actual register numbers as far as the user is concerned
|
|
|
|
|
but do serve to get the desired values when passed to read_register. */
|
|
|
|
|
|
|
|
|
|
#define R0_REGNUM 0
|
|
|
|
|
#define LR_REGNUM 13
|
|
|
|
|
#define SP_REGNUM 15
|
|
|
|
|
#define FP_REGNUM 11
|
|
|
|
|
#define PC_REGNUM 18
|
|
|
|
|
#define PSW_REGNUM 16
|
1996-10-29 20:53:04 +00:00
|
|
|
|
#define IMAP0_REGNUM 32
|
|
|
|
|
#define IMAP1_REGNUM 33
|
|
|
|
|
#define DMAP_REGNUM 34
|
|
|
|
|
#define A0_REGNUM 35
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
/* Say how much memory is needed to store a copy of the register set */
|
|
|
|
|
#define REGISTER_BYTES ((NUM_REGS-2)*2+16)
|
|
|
|
|
|
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
|
|
|
register N. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_BYTE(N) \
|
|
|
|
|
( ((N) > A0_REGNUM) ? ( ((N)-A0_REGNUM)*8 + A0_REGNUM*2 ) : ((N) * 2) )
|
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the actual machine representation
|
|
|
|
|
for register N. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_RAW_SIZE(N) ( ((N) >= A0_REGNUM) ? 8 : 2 )
|
|
|
|
|
|
|
|
|
|
/* Number of bytes of storage in the program's representation
|
|
|
|
|
for register N. */
|
|
|
|
|
#define REGISTER_VIRTUAL_SIZE(N) ( ((N) >= A0_REGNUM) ? 8 : 2 )
|
|
|
|
|
|
|
|
|
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
|
|
|
|
|
|
|
|
|
#define MAX_REGISTER_RAW_SIZE 8
|
|
|
|
|
|
|
|
|
|
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
|
|
|
|
|
|
|
|
|
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
|
|
|
|
|
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
|
|
|
of data in register N. */
|
|
|
|
|
|
|
|
|
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
|
|
|
|
( ((N) < A0_REGNUM ) ? builtin_type_short : builtin_type_long_long)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
|
|
|
subroutine will return. This is called from call_function.
|
|
|
|
|
|
|
|
|
|
We store structs through a pointer passed in R2 */
|
|
|
|
|
|
|
|
|
|
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
|
|
|
|
{ write_register (2, (ADDR)); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Write into appropriate registers a function return value
|
|
|
|
|
of type TYPE, given in virtual format.
|
|
|
|
|
|
|
|
|
|
Things always get returned in R2/R3 */
|
|
|
|
|
|
|
|
|
|
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
|
|
|
|
write_register_bytes (REGISTER_BYTE(2), VALBUF, TYPE_LENGTH (TYPE))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
|
|
|
the address in which a function should return its structure value,
|
|
|
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
|
|
|
|
|
|
|
|
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Define other aspects of the stack frame.
|
|
|
|
|
we keep a copy of the worked out return pc lying around, since it
|
|
|
|
|
is a useful bit of info */
|
|
|
|
|
|
|
|
|
|
#define EXTRA_FRAME_INFO \
|
|
|
|
|
CORE_ADDR return_pc; \
|
1996-11-07 23:23:57 +00:00
|
|
|
|
CORE_ADDR dummy; \
|
1996-11-01 22:02:37 +00:00
|
|
|
|
int frameless; \
|
1996-09-18 01:50:06 +00:00
|
|
|
|
int size;
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
|
|
|
|
|
d10v_init_extra_frame_info(fromleaf, fi)
|
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
extern void d10v_init_extra_frame_info PARAMS (( int fromleaf, struct frame_info *fi ));
|
|
|
|
|
|
1996-08-27 01:52:31 +00:00
|
|
|
|
/* A macro that tells us whether the function invocation represented
|
|
|
|
|
by FI does not have a frame on the stack associated with it. If it
|
|
|
|
|
does not, FRAMELESS is set to 1, else 0. */
|
|
|
|
|
|
|
|
|
|
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
|
|
|
|
(FRAMELESS) = frameless_look_for_prologue(FI)
|
|
|
|
|
|
|
|
|
|
#define FRAME_CHAIN(FRAME) d10v_frame_chain(FRAME)
|
1996-11-01 22:02:37 +00:00
|
|
|
|
#define FRAME_CHAIN_VALID(chain,frame) \
|
|
|
|
|
((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START)
|
1996-09-18 01:50:06 +00:00
|
|
|
|
#define FRAME_SAVED_PC(FRAME) ((FRAME)->return_pc)
|
1996-08-27 01:52:31 +00:00
|
|
|
|
#define FRAME_ARGS_ADDRESS(fi) (fi)->frame
|
|
|
|
|
#define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
|
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
/* Immediately after a function call, return the saved pc. We can't */
|
|
|
|
|
/* use frame->return_pc beause that is determined by reading R13 off the */
|
|
|
|
|
/*stack and that may not be written yet. */
|
|
|
|
|
|
|
|
|
|
#define SAVED_PC_AFTER_CALL(frame) ((read_register(LR_REGNUM) << 2) | IMEM_START)
|
|
|
|
|
|
1996-08-27 01:52:31 +00:00
|
|
|
|
/* Set VAL to the number of args passed to frame described by FI.
|
|
|
|
|
Can set VAL to -1, meaning no way to tell. */
|
|
|
|
|
/* We can't tell how many args there are */
|
|
|
|
|
|
|
|
|
|
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
|
|
|
|
|
|
|
|
|
/* Return number of bytes at start of arglist that are not really args. */
|
|
|
|
|
|
|
|
|
|
#define FRAME_ARGS_SKIP 0
|
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
|
1996-08-27 01:52:31 +00:00
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
|
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
|
|
|
This includes special registers such as pc and fp saved in special
|
|
|
|
|
ways in the stack frame. sp is even more special:
|
|
|
|
|
the address we return for it IS the sp for the next frame. */
|
|
|
|
|
|
|
|
|
|
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
|
|
|
|
d10v_frame_find_saved_regs(frame_info, &(frame_saved_regs))
|
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
extern void d10v_frame_find_saved_regs PARAMS ((struct frame_info *, struct frame_saved_regs *));
|
|
|
|
|
|
1996-08-27 01:52:31 +00:00
|
|
|
|
#define NAMES_HAVE_UNDERSCORE
|
1996-10-22 17:27:51 +00:00
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
DUMMY FRAMES. Need these to support inferior function calls. They work
|
|
|
|
|
like this on D10V: First we set a breakpoint at 0 or __start. Then we push
|
|
|
|
|
all the registers onto the stack. Then put the function arguments in the proper
|
|
|
|
|
registers and set r13 to our breakpoint address. Finally call the function directly.
|
|
|
|
|
When it hits the breakpoint, clear the break point and pop the old register contents
|
|
|
|
|
off the stack.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define CALL_DUMMY { }
|
|
|
|
|
#define PUSH_DUMMY_FRAME
|
|
|
|
|
#define CALL_DUMMY_START_OFFSET 0
|
|
|
|
|
#define CALL_DUMMY_LOCATION AT_ENTRY_POINT
|
|
|
|
|
#define CALL_DUMMY_BREAKPOINT_OFFSET (0)
|
|
|
|
|
|
|
|
|
|
extern CORE_ADDR d10v_call_dummy_address PARAMS ((void));
|
|
|
|
|
#define CALL_DUMMY_ADDRESS() d10v_call_dummy_address()
|
|
|
|
|
|
|
|
|
|
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
1996-11-01 22:02:37 +00:00
|
|
|
|
sp = d10v_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
|
1996-10-22 17:27:51 +00:00
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) ( pc == IMEM_START + 4 )
|
1996-10-22 17:27:51 +00:00
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
extern CORE_ADDR d10v_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
|
1996-10-22 17:27:51 +00:00
|
|
|
|
int, struct value **,
|
|
|
|
|
struct type *, int));
|
|
|
|
|
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
|
|
|
|
|
sp = d10v_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
|
|
|
|
|
extern CORE_ADDR d10v_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
|
1996-10-22 17:27:51 +00:00
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
|
|
|
a function return value of type TYPE, and copy that, in virtual format,
|
|
|
|
|
into VALBUF. */
|
|
|
|
|
|
|
|
|
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
|
|
|
|
d10v_extract_return_value(TYPE, REGBUF, VALBUF)
|
|
|
|
|
extern void
|
|
|
|
|
d10v_extract_return_value PARAMS ((struct type *, char *, char *));
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Discard from the stack the innermost frame,
|
|
|
|
|
restoring all saved registers. */
|
|
|
|
|
#define POP_FRAME d10v_pop_frame();
|
1996-11-01 22:02:37 +00:00
|
|
|
|
extern void d10v_pop_frame PARAMS((void));
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
|
|
|
|
#define REGISTER_SIZE 2
|
|
|
|
|
|
1996-10-22 17:27:51 +00:00
|
|
|
|
#ifdef CC_HAS_LONG_LONG
|
|
|
|
|
# define LONGEST long long
|
|
|
|
|
#else
|
|
|
|
|
# define LONGEST long
|
|
|
|
|
#endif
|
1996-11-14 20:55:06 +00:00
|
|
|
|
#define ULONGEST unsigned LONGEST
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
1996-11-01 22:02:37 +00:00
|
|
|
|
void d10v_write_pc PARAMS ((CORE_ADDR val, int pid));
|
1996-10-29 20:53:04 +00:00
|
|
|
|
CORE_ADDR d10v_read_pc PARAMS ((int pid));
|
1996-11-01 22:02:37 +00:00
|
|
|
|
void d10v_write_sp PARAMS ((CORE_ADDR val));
|
|
|
|
|
CORE_ADDR d10v_read_sp PARAMS ((void));
|
1996-08-27 01:52:31 +00:00
|
|
|
|
|
1996-10-29 20:53:04 +00:00
|
|
|
|
#define TARGET_READ_PC(pid) d10v_read_pc (pid)
|
|
|
|
|
#define TARGET_WRITE_PC(val,pid) d10v_write_pc (val, pid)
|
1996-11-01 22:02:37 +00:00
|
|
|
|
#define TARGET_READ_FP() d10v_read_sp ()
|
|
|
|
|
#define TARGET_WRITE_FP(val) d10v_write_sp (val)
|
|
|
|
|
#define TARGET_READ_SP() d10v_read_sp ()
|
|
|
|
|
#define TARGET_WRITE_SP(val) d10v_write_sp (val)
|
1996-09-27 17:35:59 +00:00
|
|
|
|
|
|
|
|
|
/* Number of bits in the appropriate type */
|
|
|
|
|
#define TARGET_INT_BIT (2 * TARGET_CHAR_BIT)
|
|
|
|
|
#define TARGET_PTR_BIT (2 * TARGET_CHAR_BIT)
|
|
|
|
|
#define TARGET_DOUBLE_BIT (4 * TARGET_CHAR_BIT)
|
|
|
|
|
#define TARGET_LONG_DOUBLE_BIT (8 * TARGET_CHAR_BIT)
|