975 lines
25 KiB
C
975 lines
25 KiB
C
|
/* Target-dependent code for GDB, the GNU debugger.
|
||
|
Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of GDB.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#include "defs.h"
|
||
|
#include "frame.h"
|
||
|
#include "inferior.h"
|
||
|
#include "symtab.h"
|
||
|
#include "target.h"
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/dir.h>
|
||
|
#include <sys/user.h>
|
||
|
#include <signal.h>
|
||
|
#include <sys/ioctl.h>
|
||
|
#include <fcntl.h>
|
||
|
|
||
|
#include <sys/ptrace.h>
|
||
|
#include <sys/reg.h>
|
||
|
|
||
|
#include <a.out.h>
|
||
|
#include <sys/file.h>
|
||
|
#include <sys/stat.h>
|
||
|
#include <sys/core.h>
|
||
|
|
||
|
extern int errno;
|
||
|
extern int attach_flag;
|
||
|
|
||
|
/* Nonzero if we just simulated a single step break. */
|
||
|
int one_stepped;
|
||
|
|
||
|
#if 0
|
||
|
|
||
|
/* This is Damon's implementation of single step simulation. It suffers the
|
||
|
following program:
|
||
|
|
||
|
1 main () {
|
||
|
2 char buf[10];
|
||
|
3 puts ("test");
|
||
|
4 strcmp (buf, "test"); puts ("test");
|
||
|
5 exit (0);
|
||
|
6 }
|
||
|
|
||
|
You cannot `next' on line 4 in the above program. gdb puts a breakpoint
|
||
|
to the return address of `strcmp', and when execution arrives that point,
|
||
|
it is still in the line range and gdb attemps to resume it with single
|
||
|
steps. At that point the breakpoint at step_resume_break_address (return
|
||
|
address of strcmp) and single step's breakpoint mixes up and we end up
|
||
|
with a breakpoint which its shadow and itself are identical.
|
||
|
|
||
|
Fix that problem and use this version. FIXMEmgo.
|
||
|
*/
|
||
|
|
||
|
|
||
|
static struct sstep_breaks {
|
||
|
int address;
|
||
|
int data;
|
||
|
} tbreak[2];
|
||
|
|
||
|
|
||
|
/*
|
||
|
* branch_dest - calculate all places the current instruction may go
|
||
|
*/
|
||
|
static
|
||
|
branch_dest(tb)
|
||
|
register struct sstep_breaks *tb;
|
||
|
{
|
||
|
register ulong opcode, iar;
|
||
|
long instr;
|
||
|
int immediate, absolute;;
|
||
|
|
||
|
iar = read_pc(); /* current IAR */
|
||
|
target_read_memory(iar, &instr, sizeof (instr)); /* current inst */
|
||
|
|
||
|
opcode = instr >> 26;
|
||
|
absolute = instr & 2;
|
||
|
|
||
|
tb[1].address = -1;
|
||
|
|
||
|
switch (opcode) {
|
||
|
case 0x10: /* branch conditional */
|
||
|
immediate = ((instr & ~3) << 16) >> 16;
|
||
|
|
||
|
/*
|
||
|
* two possible locations for next instruction
|
||
|
*/
|
||
|
tb[0].address = iar + 4;
|
||
|
tb[1].address = immediate + (absolute ? 0 : iar);
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 0x12: /* branch unconditional */
|
||
|
immediate = ((instr & ~3) << 6) >> 6;
|
||
|
|
||
|
/*
|
||
|
* only one possible location for next instr
|
||
|
*/
|
||
|
tb[0].address = immediate + (absolute ? 0 : iar);
|
||
|
|
||
|
break;
|
||
|
|
||
|
case 0x13: /* branch conditional register */
|
||
|
/*
|
||
|
* WE NEED TO CHECK THE CR HERE, TO SEE IF THIS IS
|
||
|
* REALLY UNCONDITIONAL.
|
||
|
*/
|
||
|
tb++->address = iar + 4;
|
||
|
|
||
|
switch ((instr >> 1) & 0x3ff) {
|
||
|
case 0x10: /* branch conditional register */
|
||
|
tb->address = read_register(LR_REGNUM) & ~3;
|
||
|
sigtramp_chk(tb); /* return from sig handler? */
|
||
|
break;
|
||
|
|
||
|
case 0x210: /* branch cond to CTR */
|
||
|
tb->address = read_register(CTR_REGNUM) & ~3;
|
||
|
sigtramp_chk(tb); /* return from sig handler? */
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
/*
|
||
|
* not a branch.
|
||
|
*/
|
||
|
tb->address = iar + 4;
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
/*
|
||
|
* not a branch, flow proceeds normally
|
||
|
*/
|
||
|
tb->address = iar + 4;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* sigtramp_chk - heuristic check to see if we think we are returning
|
||
|
* from a signal handler.
|
||
|
*
|
||
|
* Input:
|
||
|
* tb - ^ to a single step branch location
|
||
|
*
|
||
|
* Note:
|
||
|
* When we are at the "br" instruction returning to a signal handler,
|
||
|
* we return in user mode to an address in the kernel. If the
|
||
|
* segment of the branch target is 0, we may very well be in a
|
||
|
* signal handler. From scrounging through this code, we note that
|
||
|
* register 29 has the signal context pointer, from which we can
|
||
|
* determine where we will end up next.
|
||
|
*/
|
||
|
sigtramp_chk(tb)
|
||
|
register struct sstep_breaks *tb; {
|
||
|
struct sigcontext sc;
|
||
|
|
||
|
if (tb->address & 0xf0000000)
|
||
|
return; /* can't have been sigtramp */
|
||
|
|
||
|
if (target_read_memory(read_register(GPR29), &sc, sizeof (sc)))
|
||
|
return; /* read fails, heuristic fails */
|
||
|
|
||
|
if ((sc.sc_jmpbuf.jmp_context.iar & 0xf0000000) == 0x10000000) {
|
||
|
/*
|
||
|
* looks like it might be ok.....
|
||
|
*/
|
||
|
tb->address = sc.sc_jmpbuf.jmp_context.iar;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* single_step - no trace mode harware support, or software support.
|
||
|
* sigh.
|
||
|
*/
|
||
|
single_step(signal) {
|
||
|
register i;
|
||
|
|
||
|
if (!one_stepped) {
|
||
|
/*
|
||
|
* need to set breakpoints for single step.
|
||
|
* figure out all places the current instruction could go.
|
||
|
*/
|
||
|
branch_dest(&tbreak[0]);
|
||
|
|
||
|
/*
|
||
|
* always at least one place to go to
|
||
|
*/
|
||
|
target_insert_breakpoint(tbreak[0].address, &tbreak[0].data);
|
||
|
|
||
|
/*
|
||
|
* if there is another possible location, set a breakpoint there
|
||
|
* as well.
|
||
|
*/
|
||
|
if (tbreak[1].address != -1)
|
||
|
target_insert_breakpoint(tbreak[1].address, &tbreak[1].data);
|
||
|
|
||
|
one_stepped = 1;
|
||
|
ptrace(PT_CONTINUE, inferior_pid, 1, signal, 0);
|
||
|
} else {
|
||
|
/*
|
||
|
* need to clear the breakpoints.
|
||
|
*/
|
||
|
for (i = 0; i < 2; ++i)
|
||
|
if (tbreak[i].address != -1)
|
||
|
target_remove_breakpoint(tbreak[i].address, &tbreak[i].data);
|
||
|
|
||
|
one_stepped = 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
#else /* !DAMON'S VERSION */
|
||
|
|
||
|
/* Breakpoint shadows for the single step instructions will be kept here. */
|
||
|
|
||
|
static struct sstep_breaks {
|
||
|
int address;
|
||
|
int data;
|
||
|
} stepBreaks[2];
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Calculate the destination of a branch/jump. Return -1 if not a branch.
|
||
|
*/
|
||
|
static int
|
||
|
branch_dest (opcode, instr, pc, safety)
|
||
|
int opcode, instr, pc, safety;
|
||
|
{
|
||
|
register long offset;
|
||
|
unsigned dest;
|
||
|
int immediate;
|
||
|
int absolute;
|
||
|
int ext_op;
|
||
|
|
||
|
absolute = (int) ((instr >> 1) & 1);
|
||
|
|
||
|
switch (opcode) {
|
||
|
case 18 :
|
||
|
immediate = ((instr & ~3) << 6) >> 6; /* br unconditionl */
|
||
|
|
||
|
case 16 :
|
||
|
if (opcode != 18) /* br conditional */
|
||
|
immediate = ((instr & ~3) << 16) >> 16;
|
||
|
if (absolute)
|
||
|
dest = immediate;
|
||
|
else
|
||
|
dest = pc + immediate;
|
||
|
break;
|
||
|
|
||
|
case 19 :
|
||
|
ext_op = (instr>>1) & 0x3ff;
|
||
|
|
||
|
if (ext_op == 16) /* br conditional register */
|
||
|
dest = read_register (LR_REGNUM) & ~3;
|
||
|
|
||
|
else if (ext_op == 528) /* br cond to count reg */
|
||
|
dest = read_register (CTR_REGNUM) & ~3;
|
||
|
|
||
|
else return -1;
|
||
|
break;
|
||
|
|
||
|
default: return -1;
|
||
|
}
|
||
|
return (dest < 0x10000000) ? safety : dest;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* AIX does not support PT_STEP. Simulate it. */
|
||
|
|
||
|
int
|
||
|
single_step (signal)
|
||
|
int signal;
|
||
|
{
|
||
|
#define INSNLEN(OPCODE) 4
|
||
|
|
||
|
static char breakp[] = BREAKPOINT;
|
||
|
int ii, insn, ret, loc;
|
||
|
int breaks[2], opcode;
|
||
|
|
||
|
if (!one_stepped) {
|
||
|
extern CORE_ADDR text_start;
|
||
|
loc = read_pc ();
|
||
|
|
||
|
ret = read_memory (loc, &insn, sizeof (int));
|
||
|
if (ret)
|
||
|
printf ("Error in single_step()!!\n");
|
||
|
|
||
|
breaks[0] = loc + INSNLEN(insn);
|
||
|
opcode = insn >> 26;
|
||
|
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
||
|
|
||
|
stepBreaks[1].address = -1;
|
||
|
|
||
|
for (ii=0; ii < 2; ++ii) {
|
||
|
|
||
|
/* ignore invalid breakpoint. */
|
||
|
if ( breaks[ii] == -1)
|
||
|
continue;
|
||
|
|
||
|
read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
|
||
|
|
||
|
ret = write_memory (breaks[ii], breakp, sizeof(int));
|
||
|
stepBreaks[ii].address = breaks[ii];
|
||
|
}
|
||
|
|
||
|
one_stepped = 1;
|
||
|
ptrace (PT_CONTINUE, inferior_pid, 1, signal);
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
/* remove step breakpoints. */
|
||
|
for (ii=0; ii < 2; ++ii)
|
||
|
if (stepBreaks[ii].address != -1)
|
||
|
write_memory
|
||
|
(stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
|
||
|
|
||
|
one_stepped = 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
#endif /* !DAMON's version of single step. */
|
||
|
|
||
|
|
||
|
|
||
|
/* return pc value after skipping a function prologue. */
|
||
|
|
||
|
skip_prologue (pc)
|
||
|
int pc;
|
||
|
{
|
||
|
unsigned int tmp;
|
||
|
unsigned int op;
|
||
|
|
||
|
if (target_read_memory (pc, (char *)&op, sizeof (op)))
|
||
|
return pc; /* Can't access it -- assume no prologue. */
|
||
|
SWAP_TARGET_AND_HOST (&op, sizeof (op));
|
||
|
|
||
|
/* Assume that subsequent fetches can fail with low probability. */
|
||
|
|
||
|
if (op == 0x7c0802a6) { /* mflr r0 */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
else /* else, this is a frameless invocation */
|
||
|
return pc;
|
||
|
|
||
|
if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
|
||
|
pc += 4; /* store floating register double */
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
|
||
|
(tmp == 0x9421) || /* stu r1, NUM(r1) */
|
||
|
(op == 0x93e1fffc)) /* st r31,-4(r1) */
|
||
|
{
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
|
||
|
pc += 4; /* l r30, ... */
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
while ((op & 0xfc1f0000) == 0x90010000) { /* st r?, NUM(r1) */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
|
||
|
pc += 4; /* this happens if r31 is used as */
|
||
|
op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
|
||
|
|
||
|
if ((op >> 16) == 0x907f) { /* st r3, NUM(r31) */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
}
|
||
|
return pc;
|
||
|
}
|
||
|
|
||
|
/* text start and end addresses in virtual memory. */
|
||
|
|
||
|
CORE_ADDR text_start;
|
||
|
CORE_ADDR text_end;
|
||
|
|
||
|
|
||
|
/*************************************************************************
|
||
|
Support for creating pushind a dummy frame into the stack, and popping
|
||
|
frames, etc.
|
||
|
*************************************************************************/
|
||
|
|
||
|
#define DUMMY_FRAME_ADDR_SIZE 10
|
||
|
|
||
|
/* Make sure you initialize these in somewhere, in case gdb gives up what it
|
||
|
was debugging and starts debugging something else. FIXMEmgo */
|
||
|
|
||
|
static int dummy_frame_count = 0;
|
||
|
static int dummy_frame_size = 0;
|
||
|
static CORE_ADDR *dummy_frame_addr = 0;
|
||
|
|
||
|
extern int stop_stack_dummy;
|
||
|
|
||
|
/* push a dummy frame into stack, save all register. Currently we are saving
|
||
|
only gpr's and fpr's, which is not good enough! FIXMEmgo */
|
||
|
|
||
|
push_dummy_frame ()
|
||
|
{
|
||
|
int sp, pc; /* stack pointer and link register */
|
||
|
int ii;
|
||
|
|
||
|
if (dummy_frame_count >= dummy_frame_size) {
|
||
|
dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
|
||
|
if (dummy_frame_addr)
|
||
|
dummy_frame_addr = (CORE_ADDR*) xrealloc
|
||
|
(dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
|
||
|
else
|
||
|
dummy_frame_addr = (CORE_ADDR*)
|
||
|
xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
|
||
|
}
|
||
|
|
||
|
sp = read_register(SP_REGNUM);
|
||
|
pc = read_register(PC_REGNUM);
|
||
|
|
||
|
dummy_frame_addr [dummy_frame_count++] = sp;
|
||
|
|
||
|
/* Be careful! If the stack pointer is not decremented first, then kernel
|
||
|
thinks he is free to use the sapce underneath it. And kernel actually
|
||
|
uses that area for IPC purposes when executing ptrace(2) calls. So
|
||
|
before writing register values into the new frame, decrement and update
|
||
|
%sp first in order to secure your frame. */
|
||
|
|
||
|
write_register (SP_REGNUM, sp-408);
|
||
|
|
||
|
#if 1
|
||
|
/* gdb relies on the state of current_frame. We'd better update it,
|
||
|
otherwise things like do_registers_info() wouldn't work properly! */
|
||
|
|
||
|
flush_cached_frames ();
|
||
|
set_current_frame (create_new_frame (sp-408, pc));
|
||
|
#endif /* 0 */
|
||
|
|
||
|
/* save program counter in link register's space. */
|
||
|
write_memory (sp+8, &pc, 4);
|
||
|
|
||
|
/* save full floating point registers here. They will be from F14..F31
|
||
|
for know. I am not sure if we need to save everything here! */
|
||
|
|
||
|
/* fpr's, f0..f31 */
|
||
|
for (ii = 0; ii < 32; ++ii)
|
||
|
write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
|
||
|
|
||
|
/* gpr's r0..r31 */
|
||
|
for (ii=1; ii <=32; ++ii)
|
||
|
write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
|
||
|
|
||
|
/* so far, 32*2 + 32 words = 384 bytes have been written. We need 6 words
|
||
|
(24 bytes) for the rest of the registers. It brings the total to 408
|
||
|
bytes.
|
||
|
save sp or so call back chain right here. */
|
||
|
write_memory (sp-408, &sp, 4);
|
||
|
sp -= 408;
|
||
|
|
||
|
/* And finally, this is the back chain. */
|
||
|
write_memory (sp+8, &pc, 4);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Pop a dummy frame.
|
||
|
|
||
|
In rs6000 when we push a dummy frame, we save all of the registers. This
|
||
|
is usually done before user calls a function explicitly.
|
||
|
|
||
|
After a dummy frame is pushed, some instructions are copied into stack, and
|
||
|
stack pointer is decremented even more. Since we don't have a frame pointer to
|
||
|
get back to the parent frame of the dummy, we start having trouble poping it.
|
||
|
Therefore, we keep a dummy frame stack, keeping addresses of dummy frames as
|
||
|
such. When poping happens and when we detect that was a dummy frame, we pop
|
||
|
it back to its parent by using dummy frame stack (`dummy_frame_addr' array).
|
||
|
*/
|
||
|
|
||
|
pop_dummy_frame ()
|
||
|
{
|
||
|
CORE_ADDR sp, pc;
|
||
|
int ii;
|
||
|
sp = dummy_frame_addr [--dummy_frame_count];
|
||
|
|
||
|
/* restore all fpr's. */
|
||
|
for (ii = 1; ii <= 32; ++ii)
|
||
|
read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
|
||
|
|
||
|
/* restore all gpr's */
|
||
|
for (ii=1; ii <= 32; ++ii) {
|
||
|
read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
|
||
|
}
|
||
|
|
||
|
read_memory (sp-400, ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
|
||
|
|
||
|
/* when a dummy frame was being pushed, we had to decrement %sp first, in
|
||
|
order to secure astack space. Thus, saved %sp (or %r1) value, is not the
|
||
|
one we should restore. Change it with the one we need. */
|
||
|
|
||
|
*(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
|
||
|
|
||
|
/* Now we can restore all registers. */
|
||
|
|
||
|
store_inferior_registers (-1);
|
||
|
pc = read_pc ();
|
||
|
flush_cached_frames ();
|
||
|
set_current_frame (create_new_frame (sp, pc));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* pop the innermost frame, go back to the caller. */
|
||
|
|
||
|
pop_frame ()
|
||
|
{
|
||
|
int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
|
||
|
FRAME fr = get_current_frame ();
|
||
|
int offset = 0;
|
||
|
int frameless = 0; /* TRUE if function is frameless */
|
||
|
int addr, ii;
|
||
|
int saved_gpr, saved_fpr; /* # of saved gpr's and fpr's */
|
||
|
|
||
|
pc = read_pc ();
|
||
|
sp = FRAME_FP (fr);
|
||
|
|
||
|
if (stop_stack_dummy && dummy_frame_count) {
|
||
|
pop_dummy_frame ();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* figure out previous %pc value. If the function is frameless, it is
|
||
|
still in the link register, otherwise walk the frames and retrieve the
|
||
|
saved %pc value in the previous frame. */
|
||
|
|
||
|
addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
|
||
|
function_frame_info (addr, &frameless, &offset, &saved_gpr, &saved_fpr);
|
||
|
|
||
|
read_memory (sp, &prev_sp, 4);
|
||
|
if (frameless)
|
||
|
lr = read_register (LR_REGNUM);
|
||
|
else
|
||
|
read_memory (prev_sp+8, &lr, 4);
|
||
|
|
||
|
/* reset %pc value. */
|
||
|
write_register (PC_REGNUM, lr);
|
||
|
|
||
|
/* reset register values if any was saved earlier. */
|
||
|
addr = prev_sp - offset;
|
||
|
|
||
|
if (saved_gpr != -1)
|
||
|
for (ii=saved_gpr; ii <= 31; ++ii) {
|
||
|
read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
|
||
|
addr += sizeof (int);
|
||
|
}
|
||
|
|
||
|
if (saved_fpr != -1)
|
||
|
for (ii=saved_fpr; ii <= 31; ++ii) {
|
||
|
read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
|
||
|
addr += 8;
|
||
|
}
|
||
|
|
||
|
write_register (SP_REGNUM, prev_sp);
|
||
|
store_inferior_registers (-1);
|
||
|
flush_cached_frames ();
|
||
|
set_current_frame (create_new_frame (prev_sp, lr));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* fixup the call sequence of a dummy function, with the real function address.
|
||
|
its argumets will be passed by gdb. */
|
||
|
|
||
|
fix_call_dummy(dummyname, pc, fun, nargs, type)
|
||
|
char *dummyname;
|
||
|
int pc;
|
||
|
int fun;
|
||
|
int nargs; /* not used */
|
||
|
int type; /* not used */
|
||
|
|
||
|
{
|
||
|
#define TOC_ADDR_OFFSET 20
|
||
|
#define TARGET_ADDR_OFFSET 28
|
||
|
|
||
|
int ii;
|
||
|
unsigned long target_addr;
|
||
|
unsigned long tocvalue;
|
||
|
|
||
|
target_addr = fun;
|
||
|
tocvalue = find_toc_address (target_addr);
|
||
|
|
||
|
ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
|
||
|
ii = (ii & 0xffff0000) | (tocvalue >> 16);
|
||
|
*(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
|
||
|
|
||
|
ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
|
||
|
ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
|
||
|
*(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
|
||
|
|
||
|
ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
|
||
|
ii = (ii & 0xffff0000) | (target_addr >> 16);
|
||
|
*(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
|
||
|
|
||
|
ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
|
||
|
ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
|
||
|
*(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* return information about a function frame.
|
||
|
- frameless is TRUE, if function does not save %pc value in its frame.
|
||
|
- offset is the number of bytes used in the frame to save registers.
|
||
|
- saved_gpr is the number of the first saved gpr.
|
||
|
- saved_fpr is the number of the first saved fpr.
|
||
|
*/
|
||
|
function_frame_info (pc, frameless, offset, saved_gpr, saved_fpr)
|
||
|
int pc;
|
||
|
int *frameless, *offset, *saved_gpr, *saved_fpr;
|
||
|
{
|
||
|
unsigned int tmp;
|
||
|
register unsigned int op;
|
||
|
|
||
|
*offset = 0;
|
||
|
*saved_gpr = *saved_fpr = -1;
|
||
|
|
||
|
if (!inferior_pid)
|
||
|
return;
|
||
|
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
if (op == 0x7c0802a6) { /* mflr r0 */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
*frameless = 0;
|
||
|
}
|
||
|
else /* else, this is a frameless invocation */
|
||
|
*frameless = 1;
|
||
|
|
||
|
|
||
|
if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
|
||
|
pc += 4;
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
|
||
|
pc += 4; /* store floating register double */
|
||
|
op = read_memory_integer (pc, 4);
|
||
|
}
|
||
|
|
||
|
if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
|
||
|
int tmp2;
|
||
|
*saved_gpr = (op >> 21) & 0x1f;
|
||
|
tmp2 = op & 0xffff;
|
||
|
if (tmp2 > 0x7fff)
|
||
|
tmp2 = 0xffff0000 | tmp2;
|
||
|
|
||
|
if (tmp2 < 0) {
|
||
|
tmp2 = tmp2 * -1;
|
||
|
*saved_fpr = (tmp2 - ((32 - *saved_gpr) * 4)) / 8;
|
||
|
if ( *saved_fpr > 0)
|
||
|
*saved_fpr = 32 - *saved_fpr;
|
||
|
else
|
||
|
*saved_fpr = -1;
|
||
|
}
|
||
|
*offset = tmp2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Pass the arguments in either registers, or in the stack. In RS6000, the first
|
||
|
eight words of the argument list (that might be less than eight parameters if
|
||
|
some parameters occupy more than one word) are passed in r3..r11 registers.
|
||
|
float and double parameters are passed in fpr's, in addition to that. Rest of
|
||
|
the parameters if any are passed in user stack. There might be cases in which
|
||
|
half of the parameter is copied into registers, the other half is pushed into
|
||
|
stack.
|
||
|
|
||
|
If the function is returning a structure, then the return address is passed
|
||
|
in r3, then the first 7 words of the parametes can be passed in registers,
|
||
|
starting from r4. */
|
||
|
|
||
|
CORE_ADDR
|
||
|
push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||
|
int nargs;
|
||
|
value *args;
|
||
|
CORE_ADDR sp;
|
||
|
int struct_return;
|
||
|
CORE_ADDR struct_addr;
|
||
|
{
|
||
|
int ii, len;
|
||
|
int argno; /* current argument number */
|
||
|
int argbytes; /* current argument byte */
|
||
|
char tmp_buffer [50];
|
||
|
value arg;
|
||
|
int f_argno = 0; /* current floating point argno */
|
||
|
|
||
|
CORE_ADDR saved_sp, pc;
|
||
|
|
||
|
if ( dummy_frame_count <= 0)
|
||
|
printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
|
||
|
|
||
|
/* The first eight words of ther arguments are passed in registers. Copy
|
||
|
them appropriately.
|
||
|
|
||
|
If the function is returning a `struct', then the first word (which
|
||
|
will be passed in r3) is used for struct return address. In that
|
||
|
case we should advance one word and start from r4 register to copy
|
||
|
parameters. */
|
||
|
|
||
|
ii = struct_return ? 1 : 0;
|
||
|
|
||
|
for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
|
||
|
|
||
|
arg = value_arg_coerce (args[argno]);
|
||
|
len = TYPE_LENGTH (VALUE_TYPE (arg));
|
||
|
|
||
|
if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
|
||
|
|
||
|
/* floating point arguments are passed in fpr's, as well as gpr's.
|
||
|
There are 13 fpr's reserved for passing parameters. At this point
|
||
|
there is no way we would run out of them. */
|
||
|
|
||
|
if (len > 8)
|
||
|
printf (
|
||
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
|
||
|
bcopy (VALUE_CONTENTS (arg),
|
||
|
®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
|
||
|
++f_argno;
|
||
|
}
|
||
|
|
||
|
if (len > 4) {
|
||
|
|
||
|
/* Argument takes more than one register. */
|
||
|
while (argbytes < len) {
|
||
|
|
||
|
*(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
|
||
|
bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
|
||
|
®isters[REGISTER_BYTE(ii+3)],
|
||
|
(len - argbytes) > 4 ? 4 : len - argbytes);
|
||
|
++ii, argbytes += 4;
|
||
|
|
||
|
if (ii >= 8)
|
||
|
goto ran_out_of_registers_for_arguments;
|
||
|
}
|
||
|
argbytes = 0;
|
||
|
--ii;
|
||
|
}
|
||
|
else { /* Argument can fit in one register. No problem. */
|
||
|
*(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
|
||
|
bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len);
|
||
|
}
|
||
|
++argno;
|
||
|
}
|
||
|
|
||
|
ran_out_of_registers_for_arguments:
|
||
|
|
||
|
/* location for 8 parameters are always reserved. */
|
||
|
sp -= 4 * 8;
|
||
|
|
||
|
/* another six words for back chain, TOC register, link register, etc. */
|
||
|
sp -= 24;
|
||
|
|
||
|
/* if there are more arguments, allocate space for them in
|
||
|
the stack, then push them starting from the ninth one. */
|
||
|
|
||
|
if ((argno < nargs) || argbytes) {
|
||
|
int space = 0, jj;
|
||
|
value val;
|
||
|
|
||
|
if (argbytes) {
|
||
|
space += ((len - argbytes + 3) & -4);
|
||
|
jj = argno + 1;
|
||
|
}
|
||
|
else
|
||
|
jj = argno;
|
||
|
|
||
|
for (; jj < nargs; ++jj) {
|
||
|
val = value_arg_coerce (args[jj]);
|
||
|
space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
|
||
|
}
|
||
|
|
||
|
/* add location required for the rest of the parameters */
|
||
|
space = (space + 7) & -8;
|
||
|
sp -= space;
|
||
|
|
||
|
/* This is another instance we need to be concerned about securing our
|
||
|
stack space. If we write anything underneath %sp (r1), we might conflict
|
||
|
with the kernel who thinks he is free to use this area. So, update %sp
|
||
|
first before doing anything else. */
|
||
|
|
||
|
write_register (SP_REGNUM, sp);
|
||
|
|
||
|
#if 0
|
||
|
pc = read_pc ();
|
||
|
flush_cached_frames ();
|
||
|
set_current_frame (create_new_frame (sp, pc));
|
||
|
#endif
|
||
|
|
||
|
/* if the last argument copied into the registers didn't fit there
|
||
|
completely, push the rest of it into stack. */
|
||
|
|
||
|
if (argbytes) {
|
||
|
write_memory (
|
||
|
sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
|
||
|
++argno;
|
||
|
ii += ((len - argbytes + 3) & -4) / 4;
|
||
|
}
|
||
|
|
||
|
/* push the rest of the arguments into stack. */
|
||
|
for (; argno < nargs; ++argno) {
|
||
|
|
||
|
arg = value_arg_coerce (args[argno]);
|
||
|
len = TYPE_LENGTH (VALUE_TYPE (arg));
|
||
|
|
||
|
|
||
|
/* float types should be passed in fpr's, as well as in the stack. */
|
||
|
if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
|
||
|
|
||
|
if (len > 8)
|
||
|
printf (
|
||
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
|
||
|
bcopy (VALUE_CONTENTS (arg),
|
||
|
®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
|
||
|
++f_argno;
|
||
|
}
|
||
|
|
||
|
write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
|
||
|
ii += ((len + 3) & -4) / 4;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
/* Secure stack areas first, before doing anything else. */
|
||
|
write_register (SP_REGNUM, sp);
|
||
|
|
||
|
#if 0
|
||
|
pc = read_pc ();
|
||
|
flush_cached_frames ();
|
||
|
set_current_frame (create_new_frame (sp, pc));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
saved_sp = dummy_frame_addr [dummy_frame_count - 1];
|
||
|
read_memory (saved_sp, tmp_buffer, 24);
|
||
|
write_memory (sp, tmp_buffer, 24);
|
||
|
|
||
|
write_memory (sp, &saved_sp, 4); /* set back chain properly */
|
||
|
|
||
|
store_inferior_registers (-1);
|
||
|
return sp;
|
||
|
}
|
||
|
|
||
|
/* a given return value in `regbuf' with a type `valtype', extract and copy its
|
||
|
value into `valbuf' */
|
||
|
|
||
|
extract_return_value (valtype, regbuf, valbuf)
|
||
|
struct type *valtype;
|
||
|
char regbuf[REGISTER_BYTES];
|
||
|
char *valbuf;
|
||
|
{
|
||
|
|
||
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
|
||
|
|
||
|
double dd; float ff;
|
||
|
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
||
|
We need to truncate the return value into float size (4 byte) if
|
||
|
necessary. */
|
||
|
|
||
|
if (TYPE_LENGTH (valtype) > 4) /* this is a double */
|
||
|
bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
|
||
|
TYPE_LENGTH (valtype));
|
||
|
else { /* float */
|
||
|
bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
|
||
|
ff = (float)dd;
|
||
|
bcopy (&ff, valbuf, sizeof(float));
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
/* return value is copied starting from r3. */
|
||
|
bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* keep keep structure return address in this variable. */
|
||
|
|
||
|
CORE_ADDR rs6000_struct_return_address;
|
||
|
|
||
|
|
||
|
/* Throw away this debugging code. FIXMEmgo. */
|
||
|
print_frame(fram)
|
||
|
int fram;
|
||
|
{
|
||
|
int ii, val;
|
||
|
for (ii=0; ii<40; ++ii) {
|
||
|
if ((ii % 4) == 0)
|
||
|
printf ("\n");
|
||
|
val = read_memory_integer (fram + ii * 4, 4);
|
||
|
printf ("0x%08x\t", val);
|
||
|
}
|
||
|
printf ("\n");
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* Indirect function calls use a piece of trampoline code do co context switching,
|
||
|
i.e. to set the new TOC table. Skip such code if exists. */
|
||
|
|
||
|
skip_trampoline_code (pc)
|
||
|
int pc;
|
||
|
{
|
||
|
register unsigned int ii, op;
|
||
|
|
||
|
static unsigned trampoline_code[] = {
|
||
|
0x800b0000, /* l r0,0x0(r11) */
|
||
|
0x90410014, /* st r2,0x14(r1) */
|
||
|
0x7c0903a6, /* mtctr r0 */
|
||
|
0x804b0004, /* l r2,0x4(r11) */
|
||
|
0x816b0008, /* l r11,0x8(r11) */
|
||
|
0x4e800420, /* bctr */
|
||
|
0x4e800020, /* br */
|
||
|
0
|
||
|
};
|
||
|
|
||
|
for (ii=0; trampoline_code[ii]; ++ii) {
|
||
|
op = read_memory_integer (pc + (ii*4), 4);
|
||
|
if (op != trampoline_code [ii])
|
||
|
return NULL;
|
||
|
}
|
||
|
ii = read_register (11); /* r11 holds destination addr */
|
||
|
pc = read_memory_integer (ii, 4); /* (r11) value */
|
||
|
return pc;
|
||
|
}
|
||
|
|