old-cross-binutils/gdb/gdbarch.sh

2161 lines
69 KiB
Bash
Raw Normal View History

2000-08-11 02:55:38 +00:00
#!/bin/sh -u
1999-08-31 01:14:27 +00:00
# Architecture commands for GDB, the GNU debugger.
# Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
1999-08-31 01:14:27 +00:00
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
2000-03-30 05:32:23 +00:00
compare_new ()
{
file=$1
2000-08-11 02:55:38 +00:00
if test ! -r ${file}
2000-03-30 05:32:23 +00:00
then
echo "${file} missing? cp new-${file} ${file}" 1>&2
elif diff -c ${file} new-${file}
then
echo "${file} unchanged" 1>&2
else
echo "${file} has changed? cp new-${file} ${file}" 1>&2
fi
}
# Format of the input table
read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
do_read ()
{
comment=""
class=""
while read line
do
if test "${line}" = ""
then
continue
elif test "${line}" = "#" -a "${comment}" = ""
then
continue
elif expr "${line}" : "#" > /dev/null
then
comment="${comment}
${line}"
else
# The semantics of IFS varies between different SH's. Some
# treat ``::' as three fields while some treat it as just too.
# Work around this by eliminating ``::'' ....
line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
OFS="${IFS}" ; IFS="[:]"
eval read ${read} <<EOF
${line}
EOF
IFS="${OFS}"
# .... and then going back through each field and strip out those
# that ended up with just that space character.
for r in ${read}
do
if eval test \"\${${r}}\" = \"\ \"
then
eval ${r}=""
fi
done
test "${staticdefault}" || staticdefault=0
# NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
# multi-arch defaults.
# test "${predefault}" || predefault=0
test "${fmt}" || fmt="%ld"
test "${print}" || print="(long) ${macro}"
case "${invalid_p}" in
0 ) valid_p=1 ;;
"" )
if [ -n "${predefault}" ]
then
#invalid_p="gdbarch->${function} == ${predefault}"
valid_p="gdbarch->${function} != ${predefault}"
else
#invalid_p="gdbarch->${function} == 0"
valid_p="gdbarch->${function} != 0"
fi
;;
* ) valid_p="!(${invalid_p})"
esac
# PREDEFAULT is a valid fallback definition of MEMBER when
# multi-arch is not enabled. This ensures that the
# default value, when multi-arch is the same as the
# default value when not multi-arch. POSTDEFAULT is
# always a valid definition of MEMBER as this again
# ensures consistency.
if [ -n "${postdefault}" ]
then
fallbackdefault="${postdefault}"
elif [ -n "${predefault}" ]
then
fallbackdefault="${predefault}"
else
fallbackdefault=""
fi
#NOT YET: See gdbarch.log for basic verification of
# database
break
fi
done
if [ -n "${class}" ]
then
true
else
false
fi
}
1999-08-31 01:14:27 +00:00
fallback_default_p ()
{
[ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
}
class_is_variable_p ()
{
case "${class}" in
*v* | *V* ) true ;;
* ) false ;;
esac
}
class_is_function_p ()
{
case "${class}" in
*f* | *F* | *m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_multiarch_p ()
{
case "${class}" in
*m* | *M* ) true ;;
* ) false ;;
esac
}
class_is_predicate_p ()
{
case "${class}" in
*F* | *V* | *M* ) true ;;
* ) false ;;
esac
}
class_is_info_p ()
{
case "${class}" in
*i* ) true ;;
* ) false ;;
esac
}
1999-09-13 21:40:00 +00:00
# dump out/verify the doco
for field in ${read}
do
case ${field} in
class ) : ;;
1999-12-14 01:06:04 +00:00
# # -> line disable
# f -> function
# hiding a function
# F -> function + predicate
# hiding a function + predicate to test function validity
# v -> variable
# hiding a variable
# V -> variable + predicate
# hiding a variable + predicate to test variables validity
# i -> set from info
# hiding something from the ``struct info'' object
# m -> multi-arch function
# hiding a multi-arch function (parameterised with the architecture)
# M -> multi-arch function + predicate
# hiding a multi-arch function + predicate to test function validity
1999-09-13 21:40:00 +00:00
level ) : ;;
# See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
# LEVEL is a predicate on checking that a given method is
# initialized (using INVALID_P).
1999-09-13 21:40:00 +00:00
macro ) : ;;
# The name of the MACRO that this method is to be accessed by.
1999-09-13 21:40:00 +00:00
returntype ) : ;;
# For functions, the return type; for variables, the data type
1999-09-13 21:40:00 +00:00
function ) : ;;
# For functions, the member function name; for variables, the
# variable name. Member function names are always prefixed with
# ``gdbarch_'' for name-space purity.
1999-09-13 21:40:00 +00:00
formal ) : ;;
# The formal argument list. It is assumed that the formal
# argument list includes the actual name of each list element.
# A function with no arguments shall have ``void'' as the
# formal argument list.
1999-09-13 21:40:00 +00:00
actual ) : ;;
# The list of actual arguments. The arguments specified shall
# match the FORMAL list given above. Functions with out
# arguments leave this blank.
1999-09-13 21:40:00 +00:00
attrib ) : ;;
# Any GCC attributes that should be attached to the function
# declaration. At present this field is unused.
1999-09-13 21:40:00 +00:00
staticdefault ) : ;;
# To help with the GDB startup a static gdbarch object is
# created. STATICDEFAULT is the value to insert into that
# static gdbarch object. Since this a static object only
# simple expressions can be used.
1999-09-13 21:40:00 +00:00
# If STATICDEFAULT is empty, zero is used.
predefault ) : ;;
1999-09-13 21:40:00 +00:00
# An initial value to assign to MEMBER of the freshly
# malloc()ed gdbarch object. After initialization, the
# freshly malloc()ed object is passed to the target
# architecture code for further updates.
1999-09-13 21:40:00 +00:00
# If PREDEFAULT is empty, zero is used.
# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
# INVALID_P are specified, PREDEFAULT will be used as the
# default for the non- multi-arch target.
# A zero PREDEFAULT function will force the fallback to call
# internal_error().
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
postdefault ) : ;;
# A value to assign to MEMBER of the new gdbarch object should
# the target architecture code fail to change the PREDEFAULT
# value.
# If POSTDEFAULT is empty, no post update is performed.
# If both INVALID_P and POSTDEFAULT are non-empty then
# INVALID_P will be used to determine if MEMBER should be
# changed to POSTDEFAULT.
# If a non-empty POSTDEFAULT and a zero INVALID_P are
# specified, POSTDEFAULT will be used as the default for the
# non- multi-arch target (regardless of the value of
# PREDEFAULT).
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
1999-09-13 21:40:00 +00:00
1999-12-14 01:06:04 +00:00
invalid_p ) : ;;
1999-09-13 21:40:00 +00:00
# A predicate equation that validates MEMBER. Non-zero is
# returned if the code creating the new architecture failed to
# initialize MEMBER or the initialized the member is invalid.
# If POSTDEFAULT is non-empty then MEMBER will be updated to
# that value. If POSTDEFAULT is empty then internal_error()
# is called.
# If INVALID_P is empty, a check that MEMBER is no longer
# equal to PREDEFAULT is used.
# The expression ``0'' disables the INVALID_P check making
# PREDEFAULT a legitimate value.
# See also PREDEFAULT and POSTDEFAULT.
1999-09-13 21:40:00 +00:00
fmt ) : ;;
# printf style format string that can be used to print out the
# MEMBER. Sometimes "%s" is useful. For functions, this is
# ignored and the function address is printed.
# If FMT is empty, ``%ld'' is used.
1999-09-13 21:40:00 +00:00
print ) : ;;
# An optional equation that casts MEMBER to a value suitable
# for formatting by FMT.
# If PRINT is empty, ``(long)'' is used.
1999-09-13 21:40:00 +00:00
print_p ) : ;;
# An optional indicator for any predicte to wrap around the
# print member code.
# () -> Call a custom function to do the dump.
# exp -> Wrap print up in ``if (${print_p}) ...
# ``'' -> No predicate
1999-09-13 21:40:00 +00:00
# If PRINT_P is empty, ``1'' is always used.
1999-09-13 21:40:00 +00:00
description ) : ;;
# Currently unused.
1999-09-13 21:40:00 +00:00
*) exit 1;;
esac
done
1999-08-31 01:14:27 +00:00
function_list ()
{
1999-09-13 21:40:00 +00:00
# See below (DOCO) for description of each field
cat <<EOF
i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
1999-08-31 01:14:27 +00:00
#
i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
2000-08-11 02:55:38 +00:00
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
# Number of bits in a float for the target machine.
v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
# Number of bits in a double for the target machine.
v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
# Number of bits in a long double for the target machine.
v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
# / addr_bit will be set from it.
#
# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
#
# ptr_bit is the size of a pointer on the target
2000-08-11 02:55:38 +00:00
v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
# addr_bit is the size of a target address as represented in gdb
v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
2000-08-11 02:55:38 +00:00
# Number of bits in a BFD_VMA for the target object file format.
v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
1999-08-31 01:14:27 +00:00
#
v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
1999-08-31 01:14:27 +00:00
#
2001-05-04 04:15:33 +00:00
f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
2000-08-11 02:55:38 +00:00
#
M:::void:register_read:int regnum, char *buf:regnum, buf:
M:::void:register_write:int regnum, char *buf:regnum, buf:
#
1999-08-31 01:14:27 +00:00
v:2:NUM_REGS:int:num_regs::::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
1999-08-31 01:14:27 +00:00
v:2:SP_REGNUM:int:sp_regnum::::0:-1
v:2:FP_REGNUM:int:fp_regnum::::0:-1
v:2:PC_REGNUM:int:pc_regnum::::0:-1
v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
# This should be defined in tm.h, if REGISTER_NAMES is not set up
# to map one to one onto the sdb register numbers.
f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
1999-08-31 01:14:27 +00:00
v:2:REGISTER_SIZE:int:register_size::::0:-1
v:2:REGISTER_BYTES:int:register_bytes::::0:-1
f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
2000-12-15 12:33:08 +00:00
F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
1999-08-31 01:14:27 +00:00
#
v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
1999-08-31 01:14:27 +00:00
v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
1999-08-31 01:14:27 +00:00
f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
1999-08-31 01:14:27 +00:00
#
v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
1999-08-31 01:14:27 +00:00
f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
#
f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
# This function is called when the value of a pseudo-register needs to
# be updated. Typically it will be defined on a per-architecture
# basis.
f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
# This function is called when the value of a pseudo-register needs to
# be set or stored. Typically it will be defined on a
# per-architecture basis.
f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
1999-08-31 01:14:27 +00:00
#
f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new functions which architectures can redefine, defaulting to generic_pointer_to_address and generic_address_to_pointer. * findvar.c (extract_typed_address, store_typed_address, generic_pointer_to_address, generic_address_to_pointer): New functions. (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default definitions. (extract_address, store_address): Doc fixes. * values.c (value_as_pointer): Doc fix. (value_from_pointer): New function. * defs.h (extract_typed_address, store_typed_address): New declarations. * inferior.h (generic_address_to_pointer, generic_pointer_to_address): New declarations. * value.h (value_from_pointer): New declaration. * ax-gdb.c (const_var_ref): Use value_from_pointer, not value_from_longest. * blockframe.c (generic_push_dummy_frame): Use read_pc and read_sp, not read_register. * c-valprint.c (c_val_print): Use extract_typed_address instead of extract_address to extract vtable entries and references. * cp-valprint.c (cp_print_value_fields): Use value_from_pointer instead of value_from_longest to extract the vtable's address. * eval.c (evaluate_subexp_standard): Use value_from_pointer instead of value_from_longest to compute `this', and for doing pointer-to-member dereferencing. * findvar.c (read_register): Use extract_unsigned_integer, not extract_address. (read_var_value): Use store_typed_address instead of store_address for building label values. (locate_var_value): Use value_from_pointer instead of value_from_longest. * hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer, instead of value_from_longest, to build arguments to __d_shl_get. * printcmd.c (set_next_address): Use value_from_pointer, not value_from_longest. (x_command): Use value_from_pointer, not value_from_longest. * tracepoint.c (set_traceframe_context): Use value_from_pointer, not value_from_longest. * valarith.c (value_add, value_sub): Use value_from_pointer, not value_from_longest. * valops.c (find_function_in_inferior, value_coerce_array, value_coerce_function, value_addr, hand_function_call): Same. * value.h (COERCE_REF): Use unpack_pointer, not unpack_long. * values.c (unpack_long): Use extract_typed_address to produce addresses from pointers and references, not extract_address. (value_from_longest): Use store_typed_address instead of store_address to produce pointer and reference values.
2000-04-14 18:43:41 +00:00
#
f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
1999-08-31 01:14:27 +00:00
f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
f:2:POP_FRAME:void:pop_frame:void:-:::0
1999-08-31 01:14:27 +00:00
#
f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
1999-08-31 01:14:27 +00:00
#
f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
1999-08-31 01:14:27 +00:00
#
f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
1999-08-31 01:14:27 +00:00
f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
1999-08-31 01:14:27 +00:00
v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
1999-08-31 01:14:27 +00:00
v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
#
f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
1999-08-31 01:14:27 +00:00
#
v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
1999-08-31 01:14:27 +00:00
f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
#
F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
v:2:PARM_BOUNDARY:int:parm_boundary
#
v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
2001-06-15 22:10:21 +00:00
f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
# we get a "real" address such as one would find in a symbol table.
# This is used only for addresses of instructions, and even then I'm
# not sure it's used in all contexts. It exists to deal with there
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
# the target needs software single step. An ISA method to implement it.
#
# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
# using the breakpoint system instead of blatting memory directly (as with rs6000).
#
# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
# single step. If not, then implement single step using breakpoints.
F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
1999-08-31 01:14:27 +00:00
EOF
}
#
# The .log file
#
exec > new-gdbarch.log
function_list | while do_read
do
cat <<EOF
1999-08-31 01:14:27 +00:00
${class} ${macro}(${actual})
${returntype} ${function} ($formal)${attrib}
EOF
for r in ${read}
do
eval echo \"\ \ \ \ ${r}=\${${r}}\"
done
# #fallbackdefault=${fallbackdefault}
# #valid_p=${valid_p}
#EOF
if class_is_predicate_p && fallback_default_p
then
2000-08-11 02:55:38 +00:00
echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
kill $$
exit 1
fi
if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
then
echo "Error: postdefault is useless when invalid_p=0" 1>&2
kill $$
exit 1
fi
echo ""
done
exec 1>&2
compare_new gdbarch.log
1999-08-31 01:14:27 +00:00
copyright ()
{
cat <<EOF
2000-03-30 05:32:23 +00:00
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
1999-08-31 01:14:27 +00:00
/* Dynamic architecture support for GDB, the GNU debugger.
Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
1999-08-31 01:14:27 +00:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file was created with the aid of \`\`gdbarch.sh''.
The Bourne shell script \`\`gdbarch.sh'' creates the files
1999-08-31 01:14:27 +00:00
\`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
against the existing \`\`gdbarch.[hc]''. Any differences found
being reported.
If editing this file, please also run gdbarch.sh and merge any
changes into that script. Conversely, when making sweeping changes
1999-08-31 01:14:27 +00:00
to this file, modifying gdbarch.sh and using its output may prove
easier. */
EOF
}
#
# The .h file
#
exec > new-gdbarch.h
copyright
cat <<EOF
#ifndef GDBARCH_H
#define GDBARCH_H
struct frame_info;
struct value;
extern struct gdbarch *current_gdbarch;
/* If any of the following are defined, the target wasn't correctly
converted. */
#if GDB_MULTI_ARCH
#if defined (EXTRA_FRAME_INFO)
#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
#endif
#endif
#if GDB_MULTI_ARCH
#if defined (FRAME_FIND_SAVED_REGS)
#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
#endif
#endif
#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
#endif
1999-08-31 01:14:27 +00:00
EOF
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are pre-initialized by GDBARCH. */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
printf "#endif\n"
fi
1999-08-31 01:14:27 +00:00
done
# function typedef's
printf "\n"
printf "\n"
printf "/* The following are initialized by the target dependent code. */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if [ -n "${comment}" ]
then
echo "${comment}" | sed \
-e '2 s,#,/*,' \
-e '3,$ s,#, ,' \
-e '$ s,$, */,'
fi
2001-03-21 19:25:03 +00:00
if class_is_multiarch_p
then
2001-03-21 19:25:03 +00:00
if class_is_predicate_p
then
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
fi
else
if class_is_predicate_p
then
printf "\n"
printf "#if defined (${macro})\n"
printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
#printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
printf "#if !defined (${macro}_P)\n"
2001-03-21 19:25:03 +00:00
printf "#define ${macro}_P() (1)\n"
printf "#endif\n"
printf "#endif\n"
2001-03-21 19:25:03 +00:00
printf "\n"
printf "/* Default predicate for non- multi-arch targets. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
printf "#define ${macro}_P() (0)\n"
printf "#endif\n"
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
2001-03-21 19:25:03 +00:00
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
printf "#endif\n"
fi
fi
if class_is_variable_p
then
if fallback_default_p || class_is_predicate_p
then
printf "\n"
printf "/* Default (value) for non- multi-arch platforms. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
echo "#define ${macro} (${fallbackdefault})" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
printf "#endif\n"
fi
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
printf "#endif\n"
fi
if class_is_function_p
then
2001-03-21 19:25:03 +00:00
if class_is_multiarch_p ; then :
elif fallback_default_p || class_is_predicate_p
then
printf "\n"
printf "/* Default (function) for non- multi-arch platforms. */\n"
printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
if [ "x${fallbackdefault}" = "x0" ]
then
printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
else
# FIXME: Should be passing current_gdbarch through!
echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
fi
printf "#endif\n"
fi
printf "\n"
if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
elif class_is_multiarch_p
then
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
else
printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
fi
if [ "x${formal}" = "xvoid" ]
1999-08-31 01:14:27 +00:00
then
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1999-08-31 01:14:27 +00:00
else
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1999-08-31 01:14:27 +00:00
fi
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2001-03-21 19:25:03 +00:00
if class_is_multiarch_p ; then :
else
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if GDB_MULTI_ARCH\n"
printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
if [ "x${actual}" = "x" ]
then
printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
elif [ "x${actual}" = "x-" ]
then
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
else
printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
fi
printf "#endif\n"
printf "#endif\n"
1999-08-31 01:14:27 +00:00
fi
fi
1999-08-31 01:14:27 +00:00
done
# close it off
cat <<EOF
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
/* Mechanism for co-ordinating the selection of a specific
architecture.
GDB targets (*-tdep.c) can register an interest in a specific
architecture. Other GDB components can register a need to maintain
per-architecture data.
The mechanisms below ensures that there is only a loose connection
between the set-architecture command and the various GDB
components. Each component can independently register their need
1999-08-31 01:14:27 +00:00
to maintain architecture specific data with gdbarch.
Pragmatics:
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
didn't scale.
The more traditional mega-struct containing architecture specific
data for all the various GDB components was also considered. Since
GDB is built from a variable number of (fairly independent)
1999-08-31 01:14:27 +00:00
components it was determined that the global aproach was not
applicable. */
/* Register a new architectural family with GDB.
Register support for the specified ARCHITECTURE with GDB. When
gdbarch determines that the specified architecture has been
selected, the corresponding INIT function is called.
--
The INIT function takes two parameters: INFO which contains the
information available to gdbarch about the (possibly new)
architecture; ARCHES which is a list of the previously created
\`\`struct gdbarch'' for this architecture.
The INIT function parameter INFO shall, as far as possible, be
pre-initialized with information obtained from INFO.ABFD or
previously selected architecture (if similar). INIT shall ensure
that the INFO.BYTE_ORDER is non-zero.
The INIT function shall return any of: NULL - indicating that it
doesn't recognize the selected architecture; an existing \`\`struct
1999-08-31 01:14:27 +00:00
gdbarch'' from the ARCHES list - indicating that the new
architecture is just a synonym for an earlier architecture (see
gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
- that describes the selected architecture (see gdbarch_alloc()).
The DUMP_TDEP function shall print out all target specific values.
Care should be taken to ensure that the function works in both the
multi-arch and non- multi-arch cases. */
1999-08-31 01:14:27 +00:00
struct gdbarch_list
{
struct gdbarch *gdbarch;
struct gdbarch_list *next;
};
struct gdbarch_info
{
/* Use default: NULL (ZERO). */
const struct bfd_arch_info *bfd_arch_info;
/* Use default: 0 (ZERO). */
int byte_order;
/* Use default: NULL (ZERO). */
bfd *abfd;
/* Use default: NULL (ZERO). */
struct gdbarch_tdep_info *tdep_info;
};
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1999-08-31 01:14:27 +00:00
/* DEPRECATED - use gdbarch_register() */
1999-08-31 01:14:27 +00:00
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
extern void gdbarch_register (enum bfd_architecture architecture,
gdbarch_init_ftype *,
gdbarch_dump_tdep_ftype *);
1999-08-31 01:14:27 +00:00
/* Return a freshly allocated, NULL terminated, array of the valid
architecture names. Since architectures are registered during the
_initialize phase this function only returns useful information
once initialization has been completed. */
extern const char **gdbarch_printable_names (void);
1999-08-31 01:14:27 +00:00
/* Helper function. Search the list of ARCHES for a GDBARCH that
matches the information provided by INFO. */
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
basic initialization using values obtained from the INFO andTDEP
parameters. set_gdbarch_*() functions are called to complete the
initialization of the object. */
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
It is assumed that the caller freeds the \`\`struct
gdbarch_tdep''. */
extern void gdbarch_free (struct gdbarch *);
/* Helper function. Force an update of the current architecture.
1999-08-31 01:14:27 +00:00
The actual architecture selected is determined by INFO, \`\`(gdb) set
architecture'' et.al., the existing architecture and BFD's default
architecture. INFO should be initialized to zero and then selected
fields should be updated.
1999-08-31 01:14:27 +00:00
Returns non-zero if the update succeeds */
extern int gdbarch_update_p (struct gdbarch_info info);
1999-08-31 01:14:27 +00:00
/* Register per-architecture data-pointer.
Reserve space for a per-architecture data-pointer. An identifier
for the reserved data-pointer is returned. That identifer should
be saved in a local static variable.
1999-08-31 01:14:27 +00:00
The per-architecture data-pointer can be initialized in one of two
ways: The value can be set explicitly using a call to
set_gdbarch_data(); the value can be set implicitly using the value
returned by a non-NULL INIT() callback. INIT(), when non-NULL is
called after the basic architecture vector has been created.
1999-08-31 01:14:27 +00:00
When a previously created architecture is re-selected, the
per-architecture data-pointer for that previous architecture is
restored. INIT() is not called.
During initialization, multiple assignments of the data-pointer are
allowed, non-NULL values are deleted by calling FREE(). If the
architecture is deleted using gdbarch_free() all non-NULL data
pointers are also deleted using FREE().
1999-08-31 01:14:27 +00:00
Multiple registrarants for any architecture are allowed (and
strongly encouraged). */
struct gdbarch_data;
1999-08-31 01:14:27 +00:00
typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
void *pointer);
extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
gdbarch_data_free_ftype *free);
extern void set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer);
1999-08-31 01:14:27 +00:00
extern void *gdbarch_data (struct gdbarch_data*);
/* Register per-architecture memory region.
Provide a memory-region swap mechanism. Per-architecture memory
region are created. These memory regions are swapped whenever the
architecture is changed. For a new architecture, the memory region
is initialized with zero (0) and the INIT function is called.
Memory regions are swapped / initialized in the order that they are
registered. NULL DATA and/or INIT values can be specified.
New code should use register_gdbarch_data(). */
typedef void (gdbarch_swap_ftype) (void);
extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1999-10-26 03:43:48 +00:00
#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1999-08-31 01:14:27 +00:00
/* The target-system-dependent byte order is dynamic */
1999-08-31 01:14:27 +00:00
/* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
is selectable at runtime. The user can use the \`\`set endian''
command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
target_byte_order should be auto-detected (from the program image
say). */
#if GDB_MULTI_ARCH
/* Multi-arch GDB is always bi-endian. */
#define TARGET_BYTE_ORDER_SELECTABLE_P 1
#endif
#ifndef TARGET_BYTE_ORDER_SELECTABLE_P
/* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
#ifdef TARGET_BYTE_ORDER_SELECTABLE
#define TARGET_BYTE_ORDER_SELECTABLE_P 1
#else
#define TARGET_BYTE_ORDER_SELECTABLE_P 0
#endif
#endif
extern int target_byte_order;
#ifdef TARGET_BYTE_ORDER_SELECTABLE
/* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
and expect defs.h to re-define TARGET_BYTE_ORDER. */
#undef TARGET_BYTE_ORDER
#endif
#ifndef TARGET_BYTE_ORDER
#define TARGET_BYTE_ORDER (target_byte_order + 0)
#endif
extern int target_byte_order_auto;
#ifndef TARGET_BYTE_ORDER_AUTO
#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
#endif
/* The target-system-dependent BFD architecture is dynamic */
1999-08-31 01:14:27 +00:00
extern int target_architecture_auto;
#ifndef TARGET_ARCHITECTURE_AUTO
#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
#endif
extern const struct bfd_arch_info *target_architecture;
#ifndef TARGET_ARCHITECTURE
#define TARGET_ARCHITECTURE (target_architecture + 0)
#endif
/* The target-system-dependent disassembler is semi-dynamic */
1999-08-31 01:14:27 +00:00
#include "dis-asm.h" /* Get defs for disassemble_info */
extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
unsigned int len, disassemble_info *info);
1999-08-31 01:14:27 +00:00
extern void dis_asm_memory_error (int status, bfd_vma memaddr,
disassemble_info *info);
extern void dis_asm_print_address (bfd_vma addr,
disassemble_info *info);
extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
extern disassemble_info tm_print_insn_info;
#ifndef TARGET_PRINT_INSN
#define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
#endif
#ifndef TARGET_PRINT_INSN_INFO
#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
#endif
/* Set the dynamic target-system-dependent parameters (architecture,
1999-08-31 01:14:27 +00:00
byte-order, ...) using information found in the BFD */
extern void set_gdbarch_from_file (bfd *);
1999-10-26 03:43:48 +00:00
/* Initialize the current architecture to the "first" one we find on
our list. */
extern void initialize_current_architecture (void);
/* For non-multiarched targets, do any initialization of the default
gdbarch object necessary after the _initialize_MODULE functions
have run. */
extern void initialize_non_multiarch ();
1999-08-31 01:14:27 +00:00
/* gdbarch trace variable */
extern int gdbarch_debug;
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1999-08-31 01:14:27 +00:00
#endif
EOF
exec 1>&2
#../move-if-change new-gdbarch.h gdbarch.h
2000-03-30 05:32:23 +00:00
compare_new gdbarch.h
1999-08-31 01:14:27 +00:00
#
# C file
#
exec > new-gdbarch.c
copyright
cat <<EOF
#include "defs.h"
#include "arch-utils.h"
1999-08-31 01:14:27 +00:00
#if GDB_MULTI_ARCH
#include "gdbcmd.h"
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
#else
/* Just include everything in sight so that the every old definition
of macro is visible. */
#include "gdb_string.h"
#include <ctype.h>
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "gdb_wait.h"
1999-08-31 01:14:27 +00:00
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "gdbthread.h"
#include "annotate.h"
#include "symfile.h" /* for overlay functions */
#endif
#include "symcat.h"
#include "floatformat.h"
1999-08-31 01:14:27 +00:00
#include "gdb_assert.h"
#include "gdb-events.h"
1999-08-31 01:14:27 +00:00
/* Static function declarations */
static void verify_gdbarch (struct gdbarch *gdbarch);
static void alloc_gdbarch_data (struct gdbarch *);
static void init_gdbarch_data (struct gdbarch *);
static void free_gdbarch_data (struct gdbarch *);
1999-08-31 01:14:27 +00:00
static void init_gdbarch_swap (struct gdbarch *);
static void swapout_gdbarch_swap (struct gdbarch *);
static void swapin_gdbarch_swap (struct gdbarch *);
/* Convenience macro for allocting typesafe memory. */
#ifndef XMALLOC
#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
#endif
/* Non-zero if we want to trace architecture code. */
#ifndef GDBARCH_DEBUG
#define GDBARCH_DEBUG 0
#endif
int gdbarch_debug = GDBARCH_DEBUG;
EOF
# gdbarch open the gdbarch object
printf "\n"
printf "/* Maintain the struct gdbarch object */\n"
printf "\n"
printf "struct gdbarch\n"
printf "{\n"
printf " /* basic architectural information */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf " ${returntype} ${function};\n"
fi
1999-08-31 01:14:27 +00:00
done
printf "\n"
printf " /* target specific vector. */\n"
printf " struct gdbarch_tdep *tdep;\n"
printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
printf "\n"
printf " /* per-architecture data-pointers */\n"
printf " unsigned nr_data;\n"
printf " void **data;\n"
printf "\n"
printf " /* per-architecture swap-regions */\n"
printf " struct gdbarch_swap *swap;\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
/* Multi-arch values.
When extending this structure you must:
Add the field below.
Declare set/get functions and define the corresponding
macro in gdbarch.h.
gdbarch_alloc(): If zero/NULL is not a suitable default,
initialize the new field.
verify_gdbarch(): Confirm that the target updated the field
correctly.
gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1999-08-31 01:14:27 +00:00
field is dumped out
\`\`startup_gdbarch()'': Append an initial value to the static
1999-08-31 01:14:27 +00:00
variable (base values on the host's c-type system).
get_gdbarch(): Implement the set/get functions (probably using
the macro's as shortcuts).
*/
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_variable_p
then
printf " ${returntype} ${function};\n"
elif class_is_function_p
then
printf " gdbarch_${function}_ftype *${function}${attrib};\n"
fi
1999-08-31 01:14:27 +00:00
done
printf "};\n"
1999-08-31 01:14:27 +00:00
# A pre-initialized vector
printf "\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
/* The default architecture uses host values (for want of a better
choice). */
EOF
printf "\n"
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
printf "\n"
printf "struct gdbarch startup_gdbarch =\n"
printf "{\n"
printf " /* basic architecture information */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf " ${staticdefault},\n"
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
/* target specific vector and its dump routine */
NULL, NULL,
1999-08-31 01:14:27 +00:00
/*per-architecture data-pointers and swap regions */
0, NULL, NULL,
/* Multi-arch values */
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_function_p || class_is_variable_p
then
printf " ${staticdefault},\n"
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
/* startup_gdbarch() */
1999-08-31 01:14:27 +00:00
};
struct gdbarch *current_gdbarch = &startup_gdbarch;
/* Do any initialization needed for a non-multiarch configuration
after the _initialize_MODULE functions have been run. */
void
initialize_non_multiarch ()
{
alloc_gdbarch_data (&startup_gdbarch);
init_gdbarch_data (&startup_gdbarch);
}
1999-08-31 01:14:27 +00:00
EOF
# Create a new gdbarch struct
printf "\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
2000-08-11 02:55:38 +00:00
/* Create a new \`\`struct gdbarch'' based on information provided by
1999-08-31 01:14:27 +00:00
\`\`struct gdbarch_info''. */
EOF
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
struct gdbarch *
gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep)
{
struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
memset (gdbarch, 0, sizeof (*gdbarch));
alloc_gdbarch_data (gdbarch);
1999-08-31 01:14:27 +00:00
gdbarch->tdep = tdep;
EOF
printf "\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_info_p
then
printf " gdbarch->${function} = info->${function};\n"
fi
1999-08-31 01:14:27 +00:00
done
printf "\n"
printf " /* Force the explicit initialization of these. */\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_function_p || class_is_variable_p
then
if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1999-08-31 01:14:27 +00:00
then
printf " gdbarch->${function} = ${predefault};\n"
1999-08-31 01:14:27 +00:00
fi
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
/* gdbarch_alloc() */
return gdbarch;
}
EOF
# Free a gdbarch struct.
printf "\n"
printf "\n"
cat <<EOF
/* Free a gdbarch struct. This should never happen in normal
operation --- once you've created a gdbarch, you keep it around.
However, if an architecture's init function encounters an error
building the structure, it may need to clean up a partially
constructed gdbarch. */
void
gdbarch_free (struct gdbarch *arch)
{
gdb_assert (arch != NULL);
free_gdbarch_data (arch);
xfree (arch);
}
EOF
1999-08-31 01:14:27 +00:00
# verify a new architecture
printf "\n"
printf "\n"
printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
static void
verify_gdbarch (struct gdbarch *gdbarch)
{
/* Only perform sanity checks on a multi-arch target. */
if (!GDB_MULTI_ARCH)
1999-08-31 01:14:27 +00:00
return;
/* fundamental */
if (gdbarch->byte_order == 0)
internal_error (__FILE__, __LINE__,
"verify_gdbarch: byte-order unset");
1999-08-31 01:14:27 +00:00
if (gdbarch->bfd_arch_info == NULL)
internal_error (__FILE__, __LINE__,
"verify_gdbarch: bfd_arch_info unset");
1999-08-31 01:14:27 +00:00
/* Check those that need to be defined for the given multi-arch level. */
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_function_p || class_is_variable_p
then
if [ "x${invalid_p}" = "x0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif class_is_predicate_p
then
printf " /* Skip verify of ${function}, has predicate */\n"
# FIXME: See do_read for potential simplification
elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
then
printf " if (${invalid_p})\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${predefault}" -a -n "${postdefault}" ]
then
printf " if (gdbarch->${function} == ${predefault})\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${postdefault}" ]
then
printf " if (gdbarch->${function} == 0)\n"
printf " gdbarch->${function} = ${postdefault};\n"
elif [ -n "${invalid_p}" ]
1999-08-31 01:14:27 +00:00
then
printf " if ((GDB_MULTI_ARCH >= ${level})\n"
printf " && (${invalid_p}))\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
elif [ -n "${predefault}" ]
1999-08-31 01:14:27 +00:00
then
printf " if ((GDB_MULTI_ARCH >= ${level})\n"
printf " && (gdbarch->${function} == ${predefault}))\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1999-08-31 01:14:27 +00:00
fi
fi
1999-08-31 01:14:27 +00:00
done
cat <<EOF
}
EOF
# dump the structure
printf "\n"
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
/* Print out the details of the current architecture. */
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
just happens to match the global variable \`\`current_gdbarch''. That
way macros refering to that variable get the local and not the global
version - ulgh. Once everything is parameterised with gdbarch, this
will go away. */
1999-08-31 01:14:27 +00:00
void
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1999-08-31 01:14:27 +00:00
{
fprintf_unfiltered (file,
"gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
GDB_MULTI_ARCH);
1999-08-31 01:14:27 +00:00
EOF
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
# multiarch functions don't have macros.
class_is_multiarch_p && continue
if [ "x${returntype}" = "xvoid" ]
then
printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
else
printf "#ifdef ${macro}\n"
fi
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}(${actual})\",\n"
printf " XSTRING (${macro} (${actual})));\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
printf " XSTRING (${macro}));\n"
fi
printf "#endif\n"
done
function_list | while do_read
do
if class_is_multiarch_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
printf " (long) current_gdbarch->${function});\n"
continue
fi
printf "#ifdef ${macro}\n"
if [ "x${print_p}" = "x()" ]
then
printf " gdbarch_dump_${function} (current_gdbarch);\n"
elif [ "x${print_p}" = "x0" ]
then
printf " /* skip print of ${macro}, print_p == 0. */\n"
elif [ -n "${print_p}" ]
then
printf " if (${print_p})\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
elif class_is_function_p
then
printf " if (GDB_MULTI_ARCH)\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
printf " (long) current_gdbarch->${function}\n"
printf " /*${macro} ()*/);\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
printf " ${print});\n"
fi
printf "#endif\n"
1999-08-31 01:14:27 +00:00
done
cat <<EOF
if (current_gdbarch->dump_tdep != NULL)
current_gdbarch->dump_tdep (current_gdbarch, file);
}
EOF
1999-08-31 01:14:27 +00:00
# GET/SET
printf "\n"
1999-08-31 01:14:27 +00:00
cat <<EOF
struct gdbarch_tdep *
gdbarch_tdep (struct gdbarch *gdbarch)
{
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1999-08-31 01:14:27 +00:00
return gdbarch->tdep;
}
EOF
printf "\n"
function_list | while do_read
1999-08-31 01:14:27 +00:00
do
if class_is_predicate_p
then
printf "\n"
printf "int\n"
printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
printf "{\n"
if [ -n "${valid_p}" ]
then
printf " return ${valid_p};\n"
else
printf "#error \"gdbarch_${function}_p: not defined\"\n"
fi
printf "}\n"
fi
if class_is_function_p
then
printf "\n"
printf "${returntype}\n"
if [ "x${formal}" = "xvoid" ]
1999-08-31 01:14:27 +00:00
then
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1999-08-31 01:14:27 +00:00
else
printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1999-08-31 01:14:27 +00:00
fi
printf "{\n"
printf " if (gdbarch->${function} == 0)\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
then
if class_is_multiarch_p
then
params="gdbarch"
else
params=""
fi
else
if class_is_multiarch_p
then
params="gdbarch, ${actual}"
else
params="${actual}"
fi
fi
if [ "x${returntype}" = "xvoid" ]
1999-08-31 01:14:27 +00:00
then
printf " gdbarch->${function} (${params});\n"
1999-08-31 01:14:27 +00:00
else
printf " return gdbarch->${function} (${params});\n"
1999-08-31 01:14:27 +00:00
fi
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_variable_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
if [ "x${invalid_p}" = "x0" ]
then
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
elif [ -n "${invalid_p}" ]
1999-08-31 01:14:27 +00:00
then
printf " if (${invalid_p})\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
elif [ -n "${predefault}" ]
1999-08-31 01:14:27 +00:00
then
printf " if (gdbarch->${function} == ${predefault})\n"
printf " internal_error (__FILE__, __LINE__,\n"
printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1999-08-31 01:14:27 +00:00
fi
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
printf "\n"
printf "void\n"
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
printf "{\n"
printf " gdbarch->${function} = ${function};\n"
printf "}\n"
elif class_is_info_p
then
printf "\n"
printf "${returntype}\n"
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
printf "{\n"
printf " if (gdbarch_debug >= 2)\n"
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
printf " return gdbarch->${function};\n"
printf "}\n"
fi
1999-08-31 01:14:27 +00:00
done
# All the trailing guff
cat <<EOF
/* Keep a registry of per-architecture data-pointers required by GDB
1999-08-31 01:14:27 +00:00
modules. */
struct gdbarch_data
{
unsigned index;
gdbarch_data_init_ftype *init;
gdbarch_data_free_ftype *free;
1999-08-31 01:14:27 +00:00
};
struct gdbarch_data_registration
{
struct gdbarch_data *data;
struct gdbarch_data_registration *next;
};
struct gdbarch_data_registry
1999-08-31 01:14:27 +00:00
{
unsigned nr;
1999-08-31 01:14:27 +00:00
struct gdbarch_data_registration *registrations;
};
struct gdbarch_data_registry gdbarch_data_registry =
1999-08-31 01:14:27 +00:00
{
0, NULL,
};
struct gdbarch_data *
register_gdbarch_data (gdbarch_data_init_ftype *init,
gdbarch_data_free_ftype *free)
1999-08-31 01:14:27 +00:00
{
struct gdbarch_data_registration **curr;
for (curr = &gdbarch_data_registry.registrations;
1999-08-31 01:14:27 +00:00
(*curr) != NULL;
curr = &(*curr)->next);
(*curr) = XMALLOC (struct gdbarch_data_registration);
(*curr)->next = NULL;
(*curr)->data = XMALLOC (struct gdbarch_data);
(*curr)->data->index = gdbarch_data_registry.nr++;
(*curr)->data->init = init;
(*curr)->data->free = free;
1999-08-31 01:14:27 +00:00
return (*curr)->data;
}
/* Walk through all the registered users initializing each in turn. */
1999-08-31 01:14:27 +00:00
static void
init_gdbarch_data (struct gdbarch *gdbarch)
1999-08-31 01:14:27 +00:00
{
struct gdbarch_data_registration *rego;
for (rego = gdbarch_data_registry.registrations;
rego != NULL;
rego = rego->next)
1999-08-31 01:14:27 +00:00
{
struct gdbarch_data *data = rego->data;
gdb_assert (data->index < gdbarch->nr_data);
if (data->init != NULL)
{
void *pointer = data->init (gdbarch);
set_gdbarch_data (gdbarch, data, pointer);
}
}
}
/* Create/delete the gdbarch data vector. */
static void
alloc_gdbarch_data (struct gdbarch *gdbarch)
{
gdb_assert (gdbarch->data == NULL);
gdbarch->nr_data = gdbarch_data_registry.nr;
gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
}
static void
free_gdbarch_data (struct gdbarch *gdbarch)
{
struct gdbarch_data_registration *rego;
gdb_assert (gdbarch->data != NULL);
for (rego = gdbarch_data_registry.registrations;
rego != NULL;
rego = rego->next)
{
struct gdbarch_data *data = rego->data;
gdb_assert (data->index < gdbarch->nr_data);
if (data->free != NULL && gdbarch->data[data->index] != NULL)
{
data->free (gdbarch, gdbarch->data[data->index]);
gdbarch->data[data->index] = NULL;
}
1999-08-31 01:14:27 +00:00
}
xfree (gdbarch->data);
gdbarch->data = NULL;
1999-08-31 01:14:27 +00:00
}
/* Initialize the current value of thee specified per-architecture
data-pointer. */
void
set_gdbarch_data (struct gdbarch *gdbarch,
struct gdbarch_data *data,
void *pointer)
{
gdb_assert (data->index < gdbarch->nr_data);
if (data->free != NULL && gdbarch->data[data->index] != NULL)
data->free (gdbarch, gdbarch->data[data->index]);
gdbarch->data[data->index] = pointer;
}
1999-08-31 01:14:27 +00:00
/* Return the current value of the specified per-architecture
data-pointer. */
void *
gdbarch_data (struct gdbarch_data *data)
1999-08-31 01:14:27 +00:00
{
gdb_assert (data->index < current_gdbarch->nr_data);
1999-08-31 01:14:27 +00:00
return current_gdbarch->data[data->index];
}
/* Keep a registry of swapped data required by GDB modules. */
1999-08-31 01:14:27 +00:00
struct gdbarch_swap
{
void *swap;
struct gdbarch_swap_registration *source;
struct gdbarch_swap *next;
};
struct gdbarch_swap_registration
{
void *data;
unsigned long sizeof_data;
gdbarch_swap_ftype *init;
struct gdbarch_swap_registration *next;
};
struct gdbarch_swap_registry
1999-08-31 01:14:27 +00:00
{
int nr;
struct gdbarch_swap_registration *registrations;
};
struct gdbarch_swap_registry gdbarch_swap_registry =
1999-08-31 01:14:27 +00:00
{
0, NULL,
};
void
register_gdbarch_swap (void *data,
unsigned long sizeof_data,
gdbarch_swap_ftype *init)
{
struct gdbarch_swap_registration **rego;
for (rego = &gdbarch_swap_registry.registrations;
1999-08-31 01:14:27 +00:00
(*rego) != NULL;
rego = &(*rego)->next);
(*rego) = XMALLOC (struct gdbarch_swap_registration);
(*rego)->next = NULL;
(*rego)->init = init;
(*rego)->data = data;
(*rego)->sizeof_data = sizeof_data;
}
static void
init_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap_registration *rego;
struct gdbarch_swap **curr = &gdbarch->swap;
for (rego = gdbarch_swap_registry.registrations;
1999-08-31 01:14:27 +00:00
rego != NULL;
rego = rego->next)
{
if (rego->data != NULL)
{
(*curr) = XMALLOC (struct gdbarch_swap);
(*curr)->source = rego;
(*curr)->swap = xmalloc (rego->sizeof_data);
(*curr)->next = NULL;
memset (rego->data, 0, rego->sizeof_data);
curr = &(*curr)->next;
}
if (rego->init != NULL)
rego->init ();
}
}
static void
swapout_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
}
static void
swapin_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
}
/* Keep a registry of the architectures known by GDB. */
1999-08-31 01:14:27 +00:00
struct gdbarch_registration
1999-08-31 01:14:27 +00:00
{
enum bfd_architecture bfd_architecture;
gdbarch_init_ftype *init;
gdbarch_dump_tdep_ftype *dump_tdep;
1999-08-31 01:14:27 +00:00
struct gdbarch_list *arches;
struct gdbarch_registration *next;
1999-08-31 01:14:27 +00:00
};
static struct gdbarch_registration *gdbarch_registry = NULL;
1999-08-31 01:14:27 +00:00
static void
append_name (const char ***buf, int *nr, const char *name)
{
*buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
(*buf)[*nr] = name;
*nr += 1;
}
const char **
gdbarch_printable_names (void)
{
if (GDB_MULTI_ARCH)
{
/* Accumulate a list of names based on the registed list of
architectures. */
enum bfd_architecture a;
int nr_arches = 0;
const char **arches = NULL;
struct gdbarch_registration *rego;
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
{
const struct bfd_arch_info *ap;
ap = bfd_lookup_arch (rego->bfd_architecture, 0);
if (ap == NULL)
internal_error (__FILE__, __LINE__,
"gdbarch_architecture_names: multi-arch unknown");
do
{
append_name (&arches, &nr_arches, ap->printable_name);
ap = ap->next;
}
while (ap != NULL);
}
append_name (&arches, &nr_arches, NULL);
return arches;
}
else
/* Just return all the architectures that BFD knows. Assume that
the legacy architecture framework supports them. */
return bfd_arch_list ();
}
1999-08-31 01:14:27 +00:00
void
gdbarch_register (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init,
gdbarch_dump_tdep_ftype *dump_tdep)
1999-08-31 01:14:27 +00:00
{
struct gdbarch_registration **curr;
1999-08-31 01:14:27 +00:00
const struct bfd_arch_info *bfd_arch_info;
/* Check that BFD recognizes this architecture */
1999-08-31 01:14:27 +00:00
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
if (bfd_arch_info == NULL)
{
internal_error (__FILE__, __LINE__,
"gdbarch: Attempt to register unknown architecture (%d)",
bfd_architecture);
1999-08-31 01:14:27 +00:00
}
/* Check that we haven't seen this architecture before */
for (curr = &gdbarch_registry;
1999-08-31 01:14:27 +00:00
(*curr) != NULL;
curr = &(*curr)->next)
{
if (bfd_architecture == (*curr)->bfd_architecture)
internal_error (__FILE__, __LINE__,
"gdbarch: Duplicate registraration of architecture (%s)",
bfd_arch_info->printable_name);
1999-08-31 01:14:27 +00:00
}
/* log it */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
bfd_arch_info->printable_name,
(long) init);
/* Append it */
(*curr) = XMALLOC (struct gdbarch_registration);
1999-08-31 01:14:27 +00:00
(*curr)->bfd_architecture = bfd_architecture;
(*curr)->init = init;
(*curr)->dump_tdep = dump_tdep;
1999-08-31 01:14:27 +00:00
(*curr)->arches = NULL;
(*curr)->next = NULL;
/* When non- multi-arch, install whatever target dump routine we've
been provided - hopefully that routine has been written correctly
and works regardless of multi-arch. */
if (!GDB_MULTI_ARCH && dump_tdep != NULL
&& startup_gdbarch.dump_tdep == NULL)
startup_gdbarch.dump_tdep = dump_tdep;
}
void
register_gdbarch_init (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init)
{
gdbarch_register (bfd_architecture, init, NULL);
1999-08-31 01:14:27 +00:00
}
/* Look for an architecture using gdbarch_info. Base search on only
BFD_ARCH_INFO and BYTE_ORDER. */
struct gdbarch_list *
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
const struct gdbarch_info *info)
{
for (; arches != NULL; arches = arches->next)
{
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
continue;
if (info->byte_order != arches->gdbarch->byte_order)
continue;
return arches;
}
return NULL;
}
/* Update the current architecture. Return ZERO if the update request
failed. */
int
gdbarch_update_p (struct gdbarch_info info)
1999-08-31 01:14:27 +00:00
{
struct gdbarch *new_gdbarch;
struct gdbarch_list **list;
struct gdbarch_registration *rego;
1999-08-31 01:14:27 +00:00
/* Fill in missing parts of the INFO struct using a number of
sources: \`\`set ...''; INFOabfd supplied; existing target. */
/* \`\`(gdb) set architecture ...'' */
if (info.bfd_arch_info == NULL
&& !TARGET_ARCHITECTURE_AUTO)
info.bfd_arch_info = TARGET_ARCHITECTURE;
if (info.bfd_arch_info == NULL
&& info.abfd != NULL
&& bfd_get_arch (info.abfd) != bfd_arch_unknown
&& bfd_get_arch (info.abfd) != bfd_arch_obscure)
info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1999-08-31 01:14:27 +00:00
if (info.bfd_arch_info == NULL)
info.bfd_arch_info = TARGET_ARCHITECTURE;
/* \`\`(gdb) set byte-order ...'' */
if (info.byte_order == 0
&& !TARGET_BYTE_ORDER_AUTO)
info.byte_order = TARGET_BYTE_ORDER;
/* From the INFO struct. */
if (info.byte_order == 0
&& info.abfd != NULL)
info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
: bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
: 0);
/* From the current target. */
1999-08-31 01:14:27 +00:00
if (info.byte_order == 0)
info.byte_order = TARGET_BYTE_ORDER;
1999-08-31 01:14:27 +00:00
/* Must have found some sort of architecture. */
gdb_assert (info.bfd_arch_info != NULL);
1999-08-31 01:14:27 +00:00
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.bfd_arch_info %s\n",
1999-08-31 01:14:27 +00:00
(info.bfd_arch_info != NULL
? info.bfd_arch_info->printable_name
: "(null)"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.byte_order %d (%s)\n",
1999-08-31 01:14:27 +00:00
info.byte_order,
(info.byte_order == BIG_ENDIAN ? "big"
: info.byte_order == LITTLE_ENDIAN ? "little"
: "default"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.abfd 0x%lx\n",
1999-08-31 01:14:27 +00:00
(long) info.abfd);
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.tdep_info 0x%lx\n",
1999-08-31 01:14:27 +00:00
(long) info.tdep_info);
}
/* Find the target that knows about this architecture. */
for (rego = gdbarch_registry;
rego != NULL;
rego = rego->next)
if (rego->bfd_architecture == info.bfd_arch_info->arch)
break;
if (rego == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
return 0;
}
1999-08-31 01:14:27 +00:00
/* Ask the target for a replacement architecture. */
new_gdbarch = rego->init (info, rego->arches);
/* Did the target like it? No. Reject the change. */
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
1999-08-31 01:14:27 +00:00
return 0;
}
/* Did the architecture change? No. Do nothing. */
if (current_gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
1999-08-31 01:14:27 +00:00
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
return 1;
}
/* Swap all data belonging to the old target out */
swapout_gdbarch_swap (current_gdbarch);
/* Is this a pre-existing architecture? Yes. Swap it in. */
for (list = &rego->arches;
(*list) != NULL;
list = &(*list)->next)
{
if ((*list)->gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
1999-08-31 01:14:27 +00:00
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
current_gdbarch = new_gdbarch;
swapin_gdbarch_swap (new_gdbarch);
architecture_changed_event ();
1999-08-31 01:14:27 +00:00
return 1;
}
}
1999-08-31 01:14:27 +00:00
/* Append this new architecture to this targets list. */
(*list) = XMALLOC (struct gdbarch_list);
(*list)->next = NULL;
(*list)->gdbarch = new_gdbarch;
/* Switch to this new architecture. Dump it out. */
current_gdbarch = new_gdbarch;
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
1999-08-31 01:14:27 +00:00
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
}
/* Check that the newly installed architecture is valid. Plug in
any post init values. */
new_gdbarch->dump_tdep = rego->dump_tdep;
1999-08-31 01:14:27 +00:00
verify_gdbarch (new_gdbarch);
/* Initialize the per-architecture memory (swap) areas.
CURRENT_GDBARCH must be update before these modules are
called. */
init_gdbarch_swap (new_gdbarch);
/* Initialize the per-architecture data-pointer of all parties that
registered an interest in this architecture. CURRENT_GDBARCH
must be updated before these modules are called. */
init_gdbarch_data (new_gdbarch);
architecture_changed_event ();
if (gdbarch_debug)
gdbarch_dump (current_gdbarch, gdb_stdlog);
1999-08-31 01:14:27 +00:00
return 1;
}
/* Disassembler */
/* Pointer to the target-dependent disassembly function. */
int (*tm_print_insn) (bfd_vma, disassemble_info *);
disassemble_info tm_print_insn_info;
extern void _initialize_gdbarch (void);
1999-08-31 01:14:27 +00:00
void
_initialize_gdbarch (void)
1999-08-31 01:14:27 +00:00
{
2000-03-30 05:32:23 +00:00
struct cmd_list_element *c;
1999-08-31 01:14:27 +00:00
INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
tm_print_insn_info.flavour = bfd_target_unknown_flavour;
tm_print_insn_info.read_memory_func = dis_asm_read_memory;
tm_print_insn_info.memory_error_func = dis_asm_memory_error;
tm_print_insn_info.print_address_func = dis_asm_print_address;
2000-03-30 05:32:23 +00:00
add_show_from_set (add_set_cmd ("arch",
1999-08-31 01:14:27 +00:00
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\\n\\
2000-03-30 05:32:23 +00:00
When non-zero, architecture debugging is enabled.", &setdebuglist),
&showdebuglist);
c = add_set_cmd ("archdebug",
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\\n\\
2000-03-30 05:32:23 +00:00
When non-zero, architecture debugging is enabled.", &setlist);
deprecate_cmd (c, "set debug arch");
deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
1999-08-31 01:14:27 +00:00
}
EOF
# close things off
exec 1>&2
#../move-if-change new-gdbarch.c gdbarch.c
2000-03-30 05:32:23 +00:00
compare_new gdbarch.c